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Tensor representations of GL(V )

I V a finite dimensional vector space over a field of
characteristic zero

I T the tensor algebra on V

T =
⊕
n≥0

Tn Tn = V⊗n

I V is the natural module for GL(V )

I T is a GL(V )-module

I Each Tn is a GL(V )-submodule of T called the nth tensor
representation.
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Tensor representations of GL(V )

Schur (1901, 1923): The Tn are semisimple GL(V )-modules and
the irreducible components are parameterised by partitions of n

Tn
∼=

⊕
λ`n

tλ[λ]

[λ] - irreducible GL(V)-module corresponding to λ
([λ] = 0 if λ has more than dim V parts).
tλ - multiplicity

Recall that a partition of n is a sequence of positive integers
λ = (λ1, . . . , λk) such that λ1 ≥ · · · ≥ λk and λ1 + · · ·+ λk = n

e.g. λ = (4, 2, 2, 1, 1) = (4, 22, 12) ` 10
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Tensor representations of GL(V )

I A Young diagram of shape λ is a collection of n boxes
arranged with λi boxes in the ith row

Example:
λ = (4, 22, 12)

A standard tableau of shape λ is a Young
diagram numbered with {1, . . . , n} such
that the entries increase along every row
and down every column.

1 2 5 6

3 7

4 8

9

10

I It turns out that
tλ = number of standard tableaux of shape λ.



Tensor representations of GL(V )

I A Young diagram of shape λ is a collection of n boxes
arranged with λi boxes in the ith row

Example:
λ = (4, 22, 12)

A standard tableau of shape λ is a Young
diagram numbered with {1, . . . , n} such
that the entries increase along every row
and down every column.

1 2 5 6

3 7

4 8

9

10

I It turns out that
tλ = number of standard tableaux of shape λ.



Tensor representations of GL(V )

I A Young diagram of shape λ is a collection of n boxes
arranged with λi boxes in the ith row

Example:
λ = (4, 22, 12)

A standard tableau of shape λ is a Young
diagram numbered with {1, . . . , n} such
that the entries increase along every row
and down every column.

1 2 5 6

3 7

4 8

9

10

I It turns out that
tλ = number of standard tableaux of shape λ.



Tensor representations of GL(V )

I A Young diagram of shape λ is a collection of n boxes
arranged with λi boxes in the ith row

Example:
λ = (4, 22, 12)

A standard tableau of shape λ is a Young
diagram numbered with {1, . . . , n} such
that the entries increase along every row
and down every column.

1 2 5 6

3 7

4 8

9

10

I It turns out that
tλ = number of standard tableaux of shape λ.



Tensor representations of GL(V )

I A Young diagram of shape λ is a collection of n boxes
arranged with λi boxes in the ith row

Example:
λ = (4, 22, 12)

A standard tableau of shape λ is a Young
diagram numbered with {1, . . . , n} such
that the entries increase along every row
and down every column.

1 2 5 6

3 7

4 8

9

10

I It turns out that
tλ = number of standard tableaux of shape λ.



Tensor representations of GL(V )

Example:

T4
∼= [4] ⊕ 3 [3, 1] ⊕ 2 [22] ⊕ 3 [2, 12] ⊕ [14]

1 2 3 4 1 2 3
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1 3 4
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Lie representations of GL(V )

I Turn T into a Lie algebra by setting [u, v ] = u ⊗ v − v ⊗ u

I L the Lie subalgebra generated by V in T

L =
⊕
n≥1

Ln Ln = L ∩ Tn

I Ln is a GL(V )-submodule of Tn called the nth Lie
representation.

I Hence
Ln
∼=

⊕
λ`n

lλ[λ] 0 ≤ lλ ≤ tλ

I What is lλ?
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Lie representations of GL(V )

Decomposition into irreducibles Missing

L1
∼= [1] −

L2
∼= [12] [2]

L3
∼= [2, 1] [3], [13]

L4
∼= [3, 1]⊕ [2, 12] [4], [22], [14]

L5
∼= [4, 1]⊕ [3, 2]⊕ [3, 12]⊕ [22, 1]⊕ [2, 13] [5], [15]

L6
∼= [5, 1]⊕ [4, 2]⊕ 2[4, 12]⊕ [32]⊕ 3[3, 2, 1] [6], [23], [16]

⊕[3, 13]⊕ 2[22, 12]⊕ [2, 14]



Lie representations of GL(V )

Wever (1949):

lλ =
1

n

∑
d |n

µ(d)χλ(τn/d)

µ - the Möbius function
χλ - the character of the irreducible Sn-module corresponding to λ
τ - a cycle of length n in Sn

It is difficult to see in general which modules actually occur in the
decomposition of Ln, that is, for which λ we have lλ > 0.
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Klyachko’s Theorem (1974)

Let n ≥ 3 and let λ ` n with no more than dim(V ) parts. Then

lλ > 0 ⇔ λ 6= (1n), (n), (22), (23).

In other words, almost every irreducible GL(V ) module occurs in
the Lie representation.
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Standard tableaux, descents and major index

I It turns out that lλ also has a nice combinatorial description in
terms of standard tableaux.

I Let T be a standard tableau. An entry i is a descent in T if
i + 1 occurs in any row below the row containing i .

i

i+1

We shall write D(T ) for the set of all
descents in T

We define the major index of T to be
the sum of all descents in T

maj(T ) =
∑

i∈D(T ) i
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Standard tableaux, descents and major index

Example: λ = (5, 3, 2, 1) ` 11

1 2 4 8 9

3 5 11

6 10

7

D(T ) = {2, 4, 5, 6, 9}

maj(T ) = 2 + 4 + 5 + 6 + 9 = 26

Remarks:

I D(T ) ⊆ {1, . . . , n − 1}
I k − 1 ≤ |D(T )| ≤ n − λ1
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Kraśkiewicz-Weyman Theorem (1987)

Let i and n be coprime.

lλ = number of standard tableaux T of shape λ with
maj(T ) ≡ i mod n.

I Note that i can be any fixed number which is coprime to n.

I It is natural to try to prove Klyachko’s Theorem using the
Kraśkiewicz-Weyman Theorem
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Theorem

Let n ≥ 3, λ ` n.
∃ a standard tableau of shape λ with major index coprime to n

⇐⇒ λ 6= (1n), (n), (22), (23)

1 2

3 4

2

1 3

2 4

4

1 2

3 4

5 6

6

1 2

3 5

4 6

10

1 3

2 4

5 6

8

1 3

2 5

4 6

9

1 4

2 5

3 6

12
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Main Idea

I We look at standard tableaux with “small” descent sets.

I Let λ ` n into k parts.
We can construct a standard tableau of shape λ with at most
k descents which has major index coprime to n.

Strategy:

I Two part partitions.

I Rectangles.

I Non-rectangular partitions into more than two parts.
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Two part partitions

n = 2m + 1, λ = (n − s, s):
1 ... s ... m m+s+1 ... 2m+1

m+1 ... m+s

n = 2m, λ = (n − s, s), 1 < s < m:
1 2 ... s ... m-1 m+1 m+2 m+s+2 ... 2m
m m+3 ... m+s+1

1 3 ... 2m
2

1 2 3 ... m-1 m+2
m m+1 m+3 ... 2m-1 2m



Rectangles

Let n = mk , λ = (mk) ` n 0 ≤ i ≤ k − 2 1 ≤ s ≤ m − 1.

T =

1 ... m
...

...
(i-1)m+1 ... im

im+1 im+2 ... im+s im+s+2 ... (i+1)m+1
im+s+1 (i+1)m+2 ... (i+2)m

...
...

(k-2)m+1 ... (k-1)m
(k-1)m+1 ... km

I maj(T ) = mk(k−1)
2 + im + s + 1

I Show that one of these is coprime to n (technical)



The rest

I Let λ be a non-rectangular partition of n into k > 2 parts.

I Write n = mk + r where 0 ≤ r < k < n

I Let m1 + · · ·+ mk = n, mi ∈ {m,m + 1}.
I Set λ(k) = λ

The lower rim

Can remove mi boxes from the lower

rim of λ(i) to obtain a Young diagram

λ(i−1) which has i − 1 rows.
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The rest

I For every choice m1, . . . ,mk we can construct a standard
tableau T of shape λ with descent set

D(T ) = {m1,m1 + m2, . . . ,m1 + m2 + · · ·+ mk−1}

I Put the entries

m1 + · · ·+ mi−1 + 1, . . . ,m1 + · · ·+ mi−1 + mi

from left to right in λ(i) r λ(i−1)

I It can be shown that one of these descent sets gives major
index which is coprime to n.
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