Lie representations of $G L(V)$

Marianne Johnson
University of Manchester
marianne.johnson@maths.man.ac.uk

Antalya Algebra Days IX
22nd-27th May 2007

Outline

- Tensor representations of $G L(V)$
- Lie representations of $G L(V)$
- Klyachko's Theorem
- A combinatorial proof

Tensor representations of $G L(V)$

- V a finite dimensional vector space over a field of characteristic zero

Tensor representations of $G L(V)$

- V a finite dimensional vector space over a field of characteristic zero
- T the tensor algebra on V

$$
T=\bigoplus_{n \geq 0} T_{n} \quad T_{n}=V^{\otimes n}
$$

Tensor representations of $G L(V)$

- V a finite dimensional vector space over a field of characteristic zero
- T the tensor algebra on V

$$
T=\bigoplus_{n \geq 0} T_{n} \quad T_{n}=V^{\otimes n}
$$

- V is the natural module for $G L(V)$

Tensor representations of $G L(V)$

- V a finite dimensional vector space over a field of characteristic zero
- T the tensor algebra on V

$$
T=\bigoplus_{n \geq 0} T_{n} \quad T_{n}=V^{\otimes n}
$$

- V is the natural module for $G L(V)$
- T is a $G L(V)$-module

Tensor representations of $G L(V)$

- V a finite dimensional vector space over a field of characteristic zero
- T the tensor algebra on V

$$
T=\bigoplus_{n \geq 0} T_{n} \quad T_{n}=V^{\otimes n}
$$

- V is the natural module for $G L(V)$
- T is a $G L(V)$-module
- Each T_{n} is a $G L(V)$-submodule of T called the nth tensor representation.

Tensor representations of $G L(V)$

Schur (1901, 1923): The T_{n} are semisimple $G L(V)$-modules and the irreducible components are parameterised by partitions of n

$$
T_{n} \cong \bigoplus_{\lambda \vdash n} t_{\lambda}[\lambda]
$$

Tensor representations of $G L(V)$

Schur (1901, 1923): The T_{n} are semisimple $G L(V)$-modules and the irreducible components are parameterised by partitions of n

$$
T_{n} \cong \bigoplus_{\lambda \vdash n} t_{\lambda}[\lambda]
$$

[λ] - irreducible $\mathrm{GL}(\mathrm{V})$-module corresponding to λ ($[\lambda]=0$ if λ has more than $\operatorname{dim} V$ parts). t_{λ} - multiplicity

Tensor representations of $G L(V)$

Schur (1901, 1923): The T_{n} are semisimple $G L(V)$-modules and the irreducible components are parameterised by partitions of n

$$
T_{n} \cong \bigoplus_{\lambda \vdash n} t_{\lambda}[\lambda]
$$

[λ] - irreducible $\mathrm{GL}(\mathrm{V})$-module corresponding to λ ($[\lambda]=0$ if λ has more than $\operatorname{dim} V$ parts).
t_{λ} - multiplicity
Recall that a partition of n is a sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $\lambda_{1}+\cdots+\lambda_{k}=n$

Tensor representations of $G L(V)$

Schur (1901, 1923): The T_{n} are semisimple $G L(V)$-modules and the irreducible components are parameterised by partitions of n

$$
T_{n} \cong \bigoplus_{\lambda \vdash n} t_{\lambda}[\lambda]
$$

[λ] - irreducible $\mathrm{GL}(\mathrm{V})$-module corresponding to λ ($[\lambda]=0$ if λ has more than $\operatorname{dim} V$ parts).
t_{λ} - multiplicity
Recall that a partition of n is a sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $\lambda_{1}+\cdots+\lambda_{k}=n$
e.g. $\lambda=(4,2,2,1,1)=\left(4,2^{2}, 1^{2}\right) \vdash 10$

Tensor representations of $G L(V)$

- A Young diagram of shape λ is a collection of n boxes arranged with λ_{i} boxes in the i th row

Tensor representations of $G L(V)$

- A Young diagram of shape λ is a collection of n boxes arranged with λ_{i} boxes in the i th row

Example:
$\lambda=\left(4,2^{2}, 1^{2}\right)$

Tensor representations of $G L(V)$

- A Young diagram of shape λ is a collection of n boxes arranged with λ_{i} boxes in the i th row

Example:

$\lambda=\left(4,2^{2}, 1^{2}\right)$

A standard tableau of shape λ is a Young diagram numbered with $\{1, \ldots, n\}$ such that the entries increase along every row and down every column.

Tensor representations of $G L(V)$

- A Young diagram of shape λ is a collection of n boxes arranged with λ_{i} boxes in the i th row

Example:
$\lambda=\left(4,2^{2}, 1^{2}\right)$

1	2	5	6
3	7		
4	8		
9			
10			

A standard tableau of shape λ is a Young diagram numbered with $\{1, \ldots, n\}$ such that the entries increase along every row and down every column.

Tensor representations of $G L(V)$

- A Young diagram of shape λ is a collection of n boxes arranged with λ_{i} boxes in the i th row
Example:
$\lambda=\left(4,2^{2}, 1^{2}\right)$

1	2	5	6
3	7		
4	8		
9			
10			

A standard tableau of shape λ is a Young diagram numbered with $\{1, \ldots, n\}$ such that the entries increase along every row and down every column.

- It turns out that $t_{\lambda}=$ number of standard tableaux of shape λ.

Tensor representations of $G L(V)$

Example:
$T_{4} \cong$
[4]
$\oplus 3[3,1]$
$\oplus 2\left[2^{2}\right]$
$\oplus 3\left[2,1^{2}\right] \oplus\left[1^{4}\right]$

Lie representations of $G L(V)$

- Turn T into a Lie algebra by setting $[u, v]=u \otimes v-v \otimes u$

Lie representations of $G L(V)$

- Turn T into a Lie algebra by setting $[u, v]=u \otimes v-v \otimes u$
- L the Lie subalgebra generated by V in T

$$
L=\bigoplus_{n \geq 1} L_{n} \quad L_{n}=L \cap T_{n}
$$

Lie representations of $G L(V)$

- Turn T into a Lie algebra by setting $[u, v]=u \otimes v-v \otimes u$
- L the Lie subalgebra generated by V in T

$$
L=\bigoplus_{n \geq 1} L_{n} \quad L_{n}=L \cap T_{n}
$$

- L_{n} is a $G L(V)$-submodule of T_{n} called the nth Lie representation.

Lie representations of $G L(V)$

- Turn T into a Lie algebra by setting $[u, v]=u \otimes v-v \otimes u$
- L the Lie subalgebra generated by V in T

$$
L=\bigoplus_{n \geq 1} L_{n} \quad L_{n}=L \cap T_{n}
$$

- L_{n} is a $G L(V)$-submodule of T_{n} called the nth Lie representation.
- Hence

$$
L_{n} \cong \bigoplus_{\lambda \vdash n} I_{\lambda}[\lambda] \quad 0 \leq I_{\lambda} \leq t_{\lambda}
$$

Lie representations of $G L(V)$

- Turn T into a Lie algebra by setting $[u, v]=u \otimes v-v \otimes u$
- L the Lie subalgebra generated by V in T

$$
L=\bigoplus_{n \geq 1} L_{n} \quad L_{n}=L \cap T_{n}
$$

- L_{n} is a $G L(V)$-submodule of T_{n} called the nth Lie representation.
- Hence

$$
L_{n} \cong \bigoplus_{\lambda \vdash n} I_{\lambda}[\lambda] \quad 0 \leq I_{\lambda} \leq t_{\lambda}
$$

- What is I_{λ} ?

Lie representations of $G L(V)$

Decomposition into irreducibles		Missing
$L_{1} \cong[1]$	-	
$L_{2} \cong\left[1^{2}\right]$	$[2]$	
$L_{3} \cong[2,1]$	$[3],\left[1^{3}\right]$	
$L_{4} \cong[3,1] \oplus\left[2,1^{2}\right]$	$[4],\left[2^{2}\right],\left[1^{4}\right]$	
$L_{5} \cong[4,1] \oplus[3,2] \oplus\left[3,1^{2}\right] \oplus\left[2^{2}, 1\right] \oplus\left[2,1^{3}\right]$	$[5],\left[1^{5}\right]$	
$L_{6} \cong[5,1] \oplus[4,2] \oplus 2\left[4,1^{2}\right] \oplus\left[3^{2}\right] \oplus 3[3,2,1]$	$[6],\left[2^{3}\right],\left[1^{6}\right]$	
	$\oplus\left[3,1^{3}\right] \oplus 2\left[2^{2}, 1^{2}\right] \oplus\left[2,1^{4}\right]$	

Lie representations of $G L(V)$

Wever (1949):

$$
I_{\lambda}=\frac{1}{n} \sum_{d \mid n} \mu(d) \chi_{\lambda}\left(\tau^{n / d}\right)
$$

Lie representations of $G L(V)$

Wever (1949):

$$
I_{\lambda}=\frac{1}{n} \sum_{d \mid n} \mu(d) \chi_{\lambda}\left(\tau^{n / d}\right)
$$

μ - the Möbius function
χ_{λ} - the character of the irreducible S_{n}-module corresponding to λ τ - a cycle of length n in S_{n}

Lie representations of $G L(V)$

Wever (1949):

$$
I_{\lambda}=\frac{1}{n} \sum_{d \mid n} \mu(d) \chi_{\lambda}\left(\tau^{n / d}\right)
$$

μ - the Möbius function
χ_{λ} - the character of the irreducible S_{n}-module corresponding to λ τ - a cycle of length n in S_{n}

It is difficult to see in general which modules actually occur in the decomposition of L_{n}, that is, for which λ we have $I_{\lambda}>0$.

Klyachko's Theorem (1974)

Let $n \geq 3$ and let $\lambda \vdash n$ with no more than $\operatorname{dim}(V)$ parts. Then

$$
I_{\lambda}>0 \Leftrightarrow \lambda \neq\left(1^{n}\right),(n),\left(2^{2}\right),\left(2^{3}\right) .
$$

Klyachko's Theorem (1974)

Let $n \geq 3$ and let $\lambda \vdash n$ with no more than $\operatorname{dim}(V)$ parts. Then

$$
I_{\lambda}>0 \Leftrightarrow \lambda \neq\left(1^{n}\right),(n),\left(2^{2}\right),\left(2^{3}\right) .
$$

In other words, almost every irreducible $G L(V)$ module occurs in the Lie representation.

Standard tableaux, descents and major index

- It turns out that I_{λ} also has a nice combinatorial description in terms of standard tableaux.

Standard tableaux, descents and major index

- It turns out that I_{λ} also has a nice combinatorial description in terms of standard tableaux.
- Let T be a standard tableau. An entry i is a descent in T if $i+1$ occurs in any row below the row containing i.

Standard tableaux, descents and major index

- It turns out that I_{λ} also has a nice combinatorial description in terms of standard tableaux.
- Let T be a standard tableau. An entry i is a descent in T if $i+1$ occurs in any row below the row containing i.

Standard tableaux, descents and major index

- It turns out that I_{λ} also has a nice combinatorial description in terms of standard tableaux.
- Let T be a standard tableau. An entry i is a descent in T if $i+1$ occurs in any row below the row containing i.

Standard tableaux, descents and major index

- It turns out that I_{λ} also has a nice combinatorial description in terms of standard tableaux.
- Let T be a standard tableau. An entry i is a descent in T if $i+1$ occurs in any row below the row containing i.

We shall write $D(T)$ for the set of all descents in T

We define the major index of T to be the sum of all descents in T

Standard tableaux, descents and major index

- It turns out that I_{λ} also has a nice combinatorial description in terms of standard tableaux.
- Let T be a standard tableau. An entry i is a descent in T if $i+1$ occurs in any row below the row containing i.

We shall write $D(T)$ for the set of all descents in T

We define the major index of T to be the sum of all descents in T

$$
\operatorname{maj}(T)=\sum_{i \in D(T)} i
$$

Standard tableaux, descents and major index

Example: $\lambda=(5,3,2,1) \vdash 11$

Standard tableaux, descents and major index

Example: $\lambda=(5,3,2,1) \vdash 11$

Standard tableaux, descents and major index

Example: $\lambda=(5,3,2,1) \vdash 11$

1	2	4	8	9
3	5	11		
6	10			
7				

Standard tableaux, descents and major index

Example: $\lambda=(5,3,2,1) \vdash 11$

1	2	4	8	9	$D(T)=\{2,4,5,6,9\}$
3	5	11			
6	10				
7					

Standard tableaux, descents and major index

Example: $\lambda=(5,3,2,1) \vdash 11$

1	2	4	8	9	$D(T)=\{2,4,5,6,9\}$
3	5	11			$\operatorname{maj}(T)=2+4+5+6+9=26$
6	10				
7					

Remarks:

- $D(T) \subseteq\{1, \ldots, n-1\}$

Standard tableaux, descents and major index

Example: $\lambda=(5,3,2,1) \vdash 11$

1	2	4	8	9	$D(T)=\{2,4,5,6,9\}$
3	5	11			$\operatorname{maj}(T)=2+4+5+6+9=26$
6	10				
7					

Remarks:

- $D(T) \subseteq\{1, \ldots, n-1\}$
- $k-1 \leq|D(T)| \leq n-\lambda_{1}$

Kraśkiewicz-Weyman Theorem (1987)

Let i and n be coprime.

$$
\begin{aligned}
& I_{\lambda}=\text { number of standard tableaux } T \text { of shape } \lambda \text { with } \\
& \operatorname{maj}(T) \equiv i \bmod n .
\end{aligned}
$$

Kraśkiewicz-Weyman Theorem (1987)

Let i and n be coprime.

$$
\begin{aligned}
& I_{\lambda}=\text { number of standard tableaux } T \text { of shape } \lambda \text { with } \\
& \operatorname{maj}(T) \equiv i \bmod n .
\end{aligned}
$$

- Note that i can be any fixed number which is coprime to n.

Kraśkiewicz-Weyman Theorem (1987)

Let i and n be coprime.

$$
\begin{gathered}
I_{\lambda}=\text { number of standard tableaux } T \text { of shape } \lambda \text { with } \\
\operatorname{maj}(T) \equiv i \bmod n .
\end{gathered}
$$

- Note that i can be any fixed number which is coprime to n.
- It is natural to try to prove Klyachko's Theorem using the Kraśkiewicz-Weyman Theorem

Theorem

Let $n \geq 3, \lambda \vdash n$.
\exists a standard tableau of shape λ with major index coprime to n

$$
\Longleftrightarrow \lambda \neq\left(1^{n}\right),(n),\left(2^{2}\right),\left(2^{3}\right)
$$

Theorem

Let $n \geq 3, \lambda \vdash n$.
\exists a standard tableau of shape λ with major index coprime to n

$$
\Longleftrightarrow \lambda \neq\left(1^{n}\right),(n),\left(2^{2}\right),\left(2^{3}\right)
$$

			1	2	1	2	1	3	1	3	1	4
1 2	1	3	3	4	3	5	2	4	2	5	2	5
4 4	2	4	5	6	4	6	5	6	4	6	3	6
2												

Main Idea

- We look at standard tableaux with "small" descent sets.

Main Idea

- We look at standard tableaux with "small" descent sets.
- Let $\lambda \vdash n$ into k parts.

We can construct a standard tableau of shape λ with at most k descents which has major index coprime to n.

Main Idea

- We look at standard tableaux with "small" descent sets.
- Let $\lambda \vdash n$ into k parts.

We can construct a standard tableau of shape λ with at most k descents which has major index coprime to n.

Strategy:

- Two part partitions.

Main Idea

- We look at standard tableaux with "small" descent sets.
- Let $\lambda \vdash n$ into k parts.

We can construct a standard tableau of shape λ with at most k descents which has major index coprime to n.

Strategy:

- Two part partitions.
- Rectangles.

Main Idea

- We look at standard tableaux with "small" descent sets.
- Let $\lambda \vdash n$ into k parts.

We can construct a standard tableau of shape λ with at most k descents which has major index coprime to n.

Strategy:

- Two part partitions.
- Rectangles.
- Non-rectangular partitions into more than two parts.

Two part partitions

$n=2 m+1, \lambda=(n-s, s):$

1	\ldots	s	\ldots	m	$\mathrm{~m}+\mathrm{s}+1$	\ldots	$2 \mathrm{~m}+1$
$\mathrm{~m}+1$	\ldots	$\mathrm{~m}+\mathrm{s}$					

$n=2 m, \lambda=(n-s, s), 1<s<m:$

1	2	\ldots	s	\ldots	$\mathrm{~m}-1$	$\mathrm{~m}+1$	$\mathrm{~m}+2$	$\mathrm{~m}+\mathrm{s}+2$	\ldots	2 m
m	$\mathrm{~m}+3$	\ldots	$\mathrm{~m}+\mathrm{s}+1$							

1	3	\ldots	2 m
2			

1	2	3	\ldots	$\mathrm{~m}-1$	$\mathrm{~m}+2$
m	$\mathrm{~m}+1$	$\mathrm{~m}+3$	\ldots	$2 \mathrm{~m}-1$	2 m

Rectangles

$$
\text { Let } n=m k, \lambda=\left(m^{k}\right) \vdash n \quad 0 \leq i \leq k-2 \quad 1 \leq s \leq m-1 \text {. }
$$

$T=$	1	\ldots		m
	:			:
	(i-1)m+1			im
	im+1	im+2		$(\mathrm{i}+1) \mathrm{m}+1$
	im+s+1	$(i+1) \mathrm{m}+2$	\ldots	(i+2)m
	!			\vdots
	(k-2)m+1		...	(k-1)m
	(k-1)m+1		...	km

$-\operatorname{maj}(T)=\frac{m k(k-1)}{2}+i m+s+1$

- Show that one of these is coprime to n (technical)

The rest

- Let λ be a non-rectangular partition of n into $k>2$ parts.

The rest

- Let λ be a non-rectangular partition of n into $k>2$ parts.
- Write $n=m k+r$ where $0 \leq r<k<n$

The rest

- Let λ be a non-rectangular partition of n into $k>2$ parts.
- Write $n=m k+r$ where $0 \leq r<k<n$
- Let $m_{1}+\cdots+m_{k}=n, m_{i} \in\{m, m+1\}$.

The rest

- Let λ be a non-rectangular partition of n into $k>2$ parts.
- Write $n=m k+r$ where $0 \leq r<k<n$
- Let $m_{1}+\cdots+m_{k}=n, m_{i} \in\{m, m+1\}$.
- Set $\lambda^{(k)}=\lambda$

The rest

- Let λ be a non-rectangular partition of n into $k>2$ parts.
- Write $n=m k+r$ where $0 \leq r<k<n$
- Let $m_{1}+\cdots+m_{k}=n, m_{i} \in\{m, m+1\}$.
- Set $\lambda^{(k)}=\lambda$

The lower rim

The rest

- Let λ be a non-rectangular partition of n into $k>2$ parts.
- Write $n=m k+r$ where $0 \leq r<k<n$
- Let $m_{1}+\cdots+m_{k}=n, m_{i} \in\{m, m+1\}$.
- Set $\lambda^{(k)}=\lambda$

Can remove m_{i} boxes from the lower rim of $\lambda^{(i)}$ to obtain a Young diagram $\lambda^{(i-1)}$ which has $i-1$ rows.

The lower rim

The rest

- For every choice m_{1}, \ldots, m_{k} we can construct a standard tableau T of shape λ with descent set

$$
D(T)=\left\{m_{1}, m_{1}+m_{2}, \ldots, m_{1}+m_{2}+\cdots+m_{k-1}\right\}
$$

The rest

- For every choice m_{1}, \ldots, m_{k} we can construct a standard tableau T of shape λ with descent set

$$
D(T)=\left\{m_{1}, m_{1}+m_{2}, \ldots, m_{1}+m_{2}+\cdots+m_{k-1}\right\}
$$

- Put the entries

$$
m_{1}+\cdots+m_{i-1}+1, \ldots, m_{1}+\cdots+m_{i-1}+m_{i}
$$

from left to right in $\lambda^{(i)} \backslash \lambda^{(i-1)}$

The rest

- For every choice m_{1}, \ldots, m_{k} we can construct a standard tableau T of shape λ with descent set

$$
D(T)=\left\{m_{1}, m_{1}+m_{2}, \ldots, m_{1}+m_{2}+\cdots+m_{k-1}\right\}
$$

- Put the entries

$$
m_{1}+\cdots+m_{i-1}+1, \ldots, m_{1}+\cdots+m_{i-1}+m_{i}
$$

from left to right in $\lambda^{(i)} \backslash \lambda^{(i-1)}$

- It can be shown that one of these descent sets gives major index which is coprime to n.

