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Abstract

Young measures are a way of understanding the limiting behaviour of a sequence of mea-

surable functions which encompasses how the sequence behaves under composition with a

continuous function. This is useful in the Calculus of Variations, particularly for the direct

method, where the integral functional is not necessarily continuous with respect to the con-

vergence associated with minimising sequences. In this essay Young measures are introduced

and used to prove weak lower semi-continuity results for such functionals, with discussion of

the rôle of quasiconvexity for functionals defined on Sobolev spaces.

1 Introduction

The Calculus of Variations is a field of mathematical analysis primarily concerned with functionals
I : X → R∪{+∞}, where X is a Banach space, and their minimisation over a subset A ⊆ X. The
so-called “Direct Method” is a way of proving the existence of an element ū ∈ A that minimises
I. Specifically, the problem is often reduced to the satisfaction of conditions (D1), (D2) and (D3)
for the following theorem, leaving regularity results until later:

Theorem 1.1 (The Direct Method for Existence). Let I : X → R∪{+∞}, where X is a reflexive
Banach space, and let A ⊆ X. Suppose the following three conditions hold:

(D1) A is a closed, convex subset of X,

(D2) I is coercive i.e. for u ∈ A, I is bounded below and

lim
‖u‖→∞

I(u) = +∞, (1)

(D3) I is lower semi-continuous with respect to the weak topology on X i.e.

uj ⇀ u =⇒ lim inf
j→∞

I(uj) ≥ I(u). (2)

Then there exists ū ∈ A with I(ū) ≤ I(u) for all u ∈ A.

Proof. Since I is bounded below, we can define α = infu∈A I(u). If α = +∞ then the theorem is
trivial, so we may choose a sequence {uj}j∈N such that I(uj) < +∞ and

lim
j→∞

I(uj) = α. (3)
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We call {uj}j∈N a minimising sequence. We see that {I(uj)}j∈N is a bounded sequence in R,
so by the coercivity assumption (D2) we have that {uj}j∈N is bounded in X. Since X is separable
and reflexive, the sequential version of the Banach-Alaoglu Theorem (Corollary A.6) implies the
existence of a weakly convergent subsequence in X:

ujk
⇀ ū. (4)

Mazur’s Theorem [5, p.70] states that a subset of a Banach space that is both closed and convex
is also weakly closed. Hence by (D1), ū ∈ A. By the lower semi-continuity assumption (D3)

α = inf
u∈A

I(u) ≤ I(ū) ≤ lim inf
k→∞

I(ujk
) = α. (5)

Hence ū minimises I over A.

In this essay, we consider functionals I : W 1,p(Ω; Rm) → R ∪ {+∞} of the form

I(u) =
∫

Ω

f(x, u(x),∇u(x)) dx. (6)

Here Ω is a bounded, open, measurable subset of Rn, and 1 < p < ∞ so that X = W 1,p(Ω; Rm)
satisfies the conditions in Theorem 1.1. The endpoint cases p = 1,∞ must be treated carefully,
and will be discussed later on.

We would like to prove the existence of a minimiser for I over the set

A =
{
u ∈W 1,p(Ω; Rm) : u− g ∈W 1,p

0 (Ω; Rm)
}
, (7)

for a given function g ∈W 1,p(Ω; Rm). Here W 1,p
0 (Ω; Rm) is the closure of the space of compactly

supported functions in W 1,p(Ω,Rm). Such a set A is therefore closed and convex, so satisfies
condition (D1) of Theorem 1.1.

We assume that f : Ω× Rn × Rm×n → R is a Carathéodory function, i.e. it is measurable
in its first argument, and continuous in all others. To satisfy condition (D2) of Theorem 1.1, we
assume there exists c > 0 and d ≥ 0 such that

f(x, λ,A) ≥ c|A|p − d. (8)

Here | · | denotes the entrywise p-norm on Rm×n. Indeed, then we have that I is bounded below,
and by Friedrich’s inequality on W 1,p

0 (Ω; Rm) there is a constant γ > 0 such that

‖u‖p ≤ ‖u− g‖p + ‖g‖p ≤ γ‖∇u−∇g‖p + ‖g‖p ≤ γ‖∇u‖+ γ‖∇g‖p + ‖g‖p.

Therefore in A, ‖u‖1,p →∞ ⇐⇒ ‖∇u‖p →∞, and so,

lim
‖u‖1,p→∞

I(u) = lim
‖∇u‖p→∞

I(u) ≥ lim
‖∇u‖p→∞

c‖∇u‖p
p − d · |Ω| = +∞.

Considering the final condition (D3), that of weak lower semi-continuity, it is difficult to see
what reasonable condition we can place on f for its satisfaction. It is nontrivial; in fact, the
remainder of the essay is devoted to understanding the solution to this problem!

In Section 2, we discuss some of the fine details of weak convergence in Lebesgue spaces.
In Section 3, we introduce Young Measures as a way to understand these weak limits under
composition by a continuous function f . In Section 4, we prove weak lower semi-continuity results
for functionals of the form (6).
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2 Oscillations, Concentrations and Weak Convergence

In this section we discuss weak convergence in Lebesgue spaces in order to better understand
minimising sequences. We let {uj}j∈N be a sequence of measurable functions from Ω into Rm

throughout. We must stress the assumption that Ω is of finite measure. Some of the results here
can be made to apply to more general domains, but only with distracting technicalities.

Definition 2.1. We say that {uj}j∈N converges in measure to u, written uj
m→ u, if

∀ε > 0, lim
j→∞

| {x ∈ Ω : |uj(x)− u(x)| > ε} | = 0. (9)

Definition 2.2. We say that {uj}j∈N is uniformly integrable, abbreviated to “UI”, if

lim
M→∞

sup
j

∫
{|uj |≥M}

|uj(x)|dx = 0. (10)

We say that {uj}j∈N is uniformly p-integrable, abbreviated to “p-UI”, if {|uj |p}j∈N is UI.

Remark 2.3. Note that if a sequence is p-UI then it is bounded in Lp(Ω; Rm). The partial converse
is that if a sequence is bounded in Lp(Ω; Rm) then it is q-UI for any 1 ≤ q < p.

Theorem 2.4 (Vitali’s Convergence Theorem). Let {uj}j∈N and u be measurable functions from
Ω into Rm, and let 1 ≤ p <∞. Then uj → u in Lp(Ω; Rm) if and only if

(V1) uj
m→ u

(V2) {uj}j∈N is p-UI

Remark 2.5. For a proof, see [11, p.165]. A corollary is the Dominated Convergence Theorem.

Theorem 2.6 (Characterisations of weak convergence). Let {uj}j∈N ⊂ Lp(Ω; Rm), 1 ≤ p ≤ ∞,
and 1

p + 1
q = 1. Then the following three statements are equivalent:

1. uj ⇀ u (uj
?
⇀ u if p = ∞)

2.
∫
Ω
uj(x) · g(x) dx→

∫
Ω
u(x) · g(x) dx ∀g ∈ Lq(Ω; Rm)

3. (W1)
∫

B
uj(x) dx→

∫
B
u(x) dx ∀B ∈ B(Ω) (i.e. all Borel-measurable subsets B ⊆ Ω)

(W2) For p > 1, supj ‖uj‖p <∞. For p = 1, {uj}j∈N is UI.

Remark 2.7. Note that by the second statement, weak? convergence in L∞ is the strongest of
these notions of convergence, and weak convergence in L1 is the weakest.

A consequence of Vitali’s Convergence Theorem 2.4 is that if {uj}j∈N is weakly convergent but
not convergent in norm then at least one of conditions (V1) and (V2) above must fail. Informally,
if (V1) fails we say that the sequence oscillates, and if (V2) fails we say that the sequence
concentrates. A consequence of Theorem 2.6 is that concentrations do not occur for sequences
converging weakly in L1(Ω; Rm), because they are uniformly integrable by (W2). We demonstrate
this with the following examples:

Example 2.8 (Oscillation). Define χ : R → R by

χ(x) = 1[0,1/2](x)− 1[1/2,1](x), x ∈ [0, 1], (11)

extended 1-periodically to R, and define uj(x) = χ(jx) on (0, 1).
Then uj ⇀ 0 in Lp(0, 1) (uj

?
⇀ 0 for p = ∞), using Theorem 2.6. However, uj 9 0 in Lp(0, 1),

because {uj}j∈N does not satisfy (V1).
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Example 2.9 (Concentration). Define the sequence {vj}j∈N ⊂ Lp(0, 1) (1 ≤ p <∞) by

vj(x) = j1/p
1[0,1/j)(x). (12)

Then by Theorem 2.6, vj ⇀ 0 in Lp(0, 1) for p > 1, but not for p = 1. If we let g ∈ C([0, 1]) then∫ 1

0

vj(x)g(x) dx =
∫ 1/j

0

jg(x) dx

=
∫ 1

0

g(j−1x) dx

→ g(0) as j →∞.

Here we see that {vj}j∈N does not converge weakly in L1(0, 1), but it does converge weakly? in the
dual space (C([0, 1]))? to the Dirac delta measure at zero, δ0. We do not have norm convergence
in any of the cases, since {vj}j∈N is not p-UI.

Example 2.10 (Oscillation and concentration). Consider the sum of the above sequences, wj =
uj +vj . Then for 1 < p <∞, wj ⇀ 0 in Lp(0, 1), but the sequence satisfies neither (V1) nor (V2).

Suppose we have a sequence of functions {uj}j∈N such that uj ⇀ u in Lp(Ω; Rm) (uj
?
⇀ u if

p = ∞) and we take a continuous function f : Rm → R. If {f(uj(·))}j∈N converges weakly in
Lp(Ω; Rm) too, then what is the limit?

If we consider the oscillation example above, and let f : λ 7→ λ2, then f(uj(x)) = 1(x) so
that f(uj(·))

?
⇀ 1. Hence, in general f(uj(·)) does not converge weakly to f(u(·)). For general

f : R → R continuous and g smooth with compact support in [0, 1], we have∫ 1

0

g(x)f(uj(x)) dx = −
∫ 1

0

g′(x)
∫ x

0

f(uj(y)) dy dx

= −
∫ 1

0

g′(x)j−1

∫ jx

0

f(χ(y)) dy dx

= −
∫ 1

0

g′(x)

(
j−1djxe1

2
(f(1) + f(−1))− j−1

∫ djxe

jx

f(χ(y)) dy

)
dx

→ −
∫ 1

0

g′(x)x
1
2

(f(1) + f(−1)) dx

=
∫ 1

0

g(x)
1
2

(f(1) + f(−1)) dx as j →∞.

Since the space of all such g is dense in L1(0, 1) we have that f(uj(·))
?
⇀ 1

2 (f(1) + f(−1)) in
L∞(0, 1).

Now consider the concentration example for a fixed p ∈ [1,∞). If f : R → R continuous then
it is not necessarily true that f(vj(·)) = f(j1/p)1[0,1/j) +f(0)1[1/j,1] is uniformly integrable. Take
for example f(λ) = |λ|p. By Theorem 2.6 then, it is not even necessarily true that the sequence
converges weakly in L1(0, 1). But if we assume that {f(vj(·))}j∈N is uniformly integrable, then
since f(vj(·))

m→ f(0) as j → ∞, we can deduce from Vitali’s Convergence Theorem 2.4 that
f → f(0) in L1(0, 1).

Put plainly, in the UI case, f(vj(·)) → f(v(·)), where v is the limit in measure of {vj}j∈N. The
concentration is either ignored completely in the limit, or behaves badly because {f(vj(·))}j∈N is
not uniformly integrable. We will see that the behaviour exhibited here is typical of oscillations
and concentrations in general.
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3 Weak Convergence, Duality and Young Measures

In this section, we seek to understand how f(·, uj(·)) : Ω → R behaves for a Carathéodory function
f and a weakly convergent sequence {uj}j∈N ⊂ Lp(Ω; Rm). Our approach here will be to construct
a Banach space that is a subset of the Carathéodory functions, for which we can use theorems of
functional analysis, then extend our results to the space of all Carathéodory functions.

Definition 3.1 (Simple functions). For a Banach space X, a function S : Ω → X is said to be
simple, if it is of the form

S(x) =
K∑

k=1

1Bk
(x) · ϕk, (13)

where K ∈ N, and ϕk ∈ X and Bk ⊂ B(Ω) for each k. They are a generalisation of step functions.

Definition 3.2 (Strongly measurable functions). A function F : Ω → X is said to be strongly
measurable if there exists a sequence of simple functions {Si}i∈N such that

‖Si(x)− F (x)‖X → 0 as i→∞ for a.e. x ∈ Ω. (14)

The vector space of strongly measurable functions is denoted L0(Ω;X).

Definition 3.3 (Lebesgue spaces for Banach space valued functions). For a Banach space X and
1 ≤ p ≤ ∞, we define the space

Lp(Ω;X) =
{
F ∈ L0(Ω;X) : (x 7→ ‖F (x)‖X) ∈ Lp(Ω; R)

}
(15)

Remark 3.4. When endowed with the norm ‖F‖p,X = ‖x 7→ ‖F (x)‖X‖p, the space is a Banach
space. It is separable if and only if X is separable and p <∞.

For any E ⊂ Rm define the space of continuous functions that vanish at infinity:

C0(E) =
{
ϕ : E → R continuous and bounded : lim

|λ|→∞
ϕ(λ) = 0

}
. (16)

We endow C0(E) with the supremum norm, denoted ‖ · ‖∞, to make it a separable Banach space.
By Remark 3.4, L1(Ω;C0(Rm)) is also a separable Banach space. Note that we can consider
this space as a subset of the Carathéodory functions by defining f(x, λ) = (F (x)) (λ) for each
F ∈ L1(Ω;C0(Rm)). We alert the reader to the fact that we will abuse notation and switch
between F and f without mention.

Now, for a fixed u ∈ Lp(Ω; Rm) consider the following functional ν over f ∈ L1(Ω;C0(Rm)):

ν(f) =
∫

Ω

f(x, u(x)) dx. (17)

We can see that ν is a bounded linear functional with norm 1; it is therefore a member of the dual
space (L1(Ω;C0(Rm)))?. Then for the weakly convergent sequence {uj}j∈N ⊂ Lp(Ω; Rm) (weakly?

convergent for p = ∞), we can associate functionals {ν(j)}j∈N to see the limit in a more functional
analytic setting:

lim
j→∞

∫
Ω

f(x, uj(x)) dx = lim
j→∞

ν(j)(f). (18)

Our goal now is to understand this dual space (L1(Ω;C0(Rm)))?.
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Definition 3.5 (Radon measures). Let E ∈ B(Rm). A Radon measure on E is a measure over
B(E) with values in [−∞,∞], such that every compact set has finite measure. For every Radon
measure µ there is a positive Radon measure |µ| called the total variation measure:

|µ|(B) = sup

{∑
i∈N

|µ(Bi)| : {Bi}i∈N ⊂ B(E) partitions B

}
(19)

The Banach space of all Radon measures on E with ‖µ‖M := |µ|(E) <∞ is denoted M(E).

The cone of all positive Radon measures is denoted M+(E). The set of all probability
measures over B(E), which are necessarily Radon measures, is denoted MP(Rm).

Theorem 3.6 (Riesz-Alexandrov Representation Theorem). There is an isometric isomorphism
between M(E) and the dual space (C0(E))?, with the duality pairing given by [1, p.61]:

〈µ, ϕ〉 =
∫

E

ϕdµ, µ ∈ M(E), ϕ ∈ C0(E). (20)

Definition 3.7 (Weakly? measurable functions). For a normed space X, a function ν : Ω → X?

is said to be weakly? measurable if the function

x 7→ 〈ν(x), ϕ〉 (21)

is measurable from Ω into R for every ϕ ∈ X. The vector space of weakly? measurable functions
is denoted L0

w?(Ω;X?). We define Lp
w?(Ω;X?) in the obvious way.

Remark 3.8. To make the notation clearer, for a weakly? measurable function ν and x ∈ Ω we
will often denote ν(x) by νx.

Theorem 3.9 (General duality theorem for Lebesgue spaces). Let X be a separable Banach space,
1 ≤ p <∞ and 1

p + 1
q = 1. Then

(Lp(Ω;X))? ∼= Lq
w?(Ω;X?) (22)

with equal norms, by the duality relation

〈〈ν, F 〉〉 =
∫

Ω

〈ν(x), F (x)〉dx, (23)

for ν ∈ Lq
w?(Ω;X?) and F ∈ Lp(Ω;X).

Remark 3.10. A reference for this powerful theorem is [3]. The weak? measurable condition can
be dropped if (but not only if) X is reflexive.

The isomorphism that interests us is: (L1(Ω;C0(Rm))? ∼= L∞w?(Ω;M(Rm)). With this we are
finally ready to prove the theorem introducing Young Measures.

Theorem 3.11 (Fundamental theorem for Young measures). Let Ω ⊂ Rn be bounded and measur-
able, and let {uj}j∈N be measurable functions from Ω into Rm satisfying the tightness condition

lim
M→∞

sup
j
|{x ∈ Ω : |uj(x)| ≥M}| = 0. (24)

Then there exists a subsequence {ujk
}k∈N and a weakly? measurable function ν : Ω → MP(Rm)

such that: If f is a Carathéodory function and {f(·, ujk
(·))}k∈N is uniformly integrable, then

lim
k→∞

∫
Ω

f(x, ujk
(x)) dx =

∫
Ω

f̄(x) dx, (25)
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where
f̄(x) = 〈νx, f(x, ·)〉 =

∫
Rm

f(x, λ) dνx(λ). (26)

Remarks 3.12. 1. The map ν : Ω → MP(Rm) is called the Young measure generated by (or
associated to) the sequence {ujk

}k∈N.

2. Condition (24) is very weak, and is equivalent to there being a continuous, non-decreasing
function g : [0,∞) → R with limt→∞ g(t) = +∞ such that supj

∫
Ω
g(|ujk

(x)|) dx <∞ [2].

Proof. To each uj assign a ν(j) ∈ L∞w?(Ω;M(Rm)) with

ν(j)
x = δuj(x) for a.e. x ∈ Ω. (27)

Then ‖ν(j)‖∞,M = ess supx∈Ω ‖δuj(x)‖M = 1. The sequence is therefore bounded in L∞w?(Ω;M(Rm)),
which is the dual of the separable Banach space L1(Ω;C0(Rm)) (Theorem 3.9). By the sequen-
tial version of the Banach-Alaoglu Theorem (Theorem A.3), there exists a weakly? convergent
subsequence:

ν(jk) ?
⇀ ν in L∞w?(Ω;M(Rm)). (28)

This is precisely statement (25), but only for f ∈ L1(Ω;C0(Rm)). In particular, if we let f(x, λ) =
g(x)ϕ(λ) for g ∈ L1(Ω; Rm) and ϕ ∈ C0(Rm) with g, ϕ ≥ 0, then:

0 ≤ lim
k→∞

∫
Ω

g(x)ϕ(ujk
(x)) dx =

∫
Ω

g(x)
∫

Rm

ϕ(λ) dνx(λ) dx. (29)

This shows that νx ≥ 0 for a.e. x ∈ Ω. We will show that νx ∈ MP(Rm) at the end of the proof.
Suppose that f is Carathéodory and {f(·, ujk

(·))}k∈N is UI. Without loss of generality we may
assume that f ≥ 0, because if f is UI then its positive and negative parts are also.

Now, by (24), we can find a sequence {Mi}i∈N such that

sup
k
|{|ujk

| ≥Mi}| ≤ i−2. (30)

For each α > 0 define the continuous cutoff function Γα : [0,∞) → [0, 1] by

Γα(t) = 1[0,α)(t) + (α+ 1− t)1[α,α+1)(t). (31)

Now for each i ∈ N consider the L1(Ω;C0(Rm)) functions:

fi(x, λ) = Γi(f(x, λ))ΓMi(|λ|)f(x, λ). (32)

Then

0 ≤
∫

Ω

f(x, ujk
(x))− fi(x, ujk

(x)) dx

≤
∫
{|ujk

|≥Mi}∪{f(x,ujk
(x))≥i}

f(x, ujk
(x)) dx

=
∫
{f(x,ujk

(x))≥i}
f(x, ujk

(x)) dx+
∫
{|ujk

|≥Mi}∩{f(x,ujk
(x))≤i}

f(x, ujk
(x)) dx

≤ sup
k

∫
{f(x,ujk

(x))≥i}
f(x, ujk

(x)) dx+ i sup
k
|{|ujk

| ≥Mi}| .
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The right hand side converges to 0 as i→∞, uniformly in k. This uniformity allows us to change
the order of limits in the following sequence:

lim
k→∞

∫
Ω

f(x, ujk
(x)) dx = lim

k→∞
lim

i→∞

∫
Ω

fi(x, ujk
(x)) dx

= lim
i→∞

lim
k→∞

∫
Ω

fi(x, ujk
(x)) dx

= lim
i→∞

∫
Ω

∫
Rm

fi(x, λ) dνx(λ) dx.

Note that 0 ≤ fi(x, λ) ↗ f(x, λ) as i → ∞ for a.e. (x, λ) ∈ Ω × Rm, and νx ≥ 0, so by the
Monotone Convergence Theorem we have (25) for the required f .

Now we show that νx ∈ MP(Rm). Let B be a measurable subset of Ω and consider (25) for
the function f(x, λ) = 1B(x). Then we have∫

B

‖νx‖M dx =
∫

Ω

〈νx,1B(x)〉dx

= lim
k→∞

∫
Ω

1B(x) dx

= |B|.

Since B was arbitrary, ‖νx‖M = 1 for a.e. x ∈ Ω.

We denote the set of all Young measures by Y(Ω; Rm), and if {uj}j∈N has a subsequence that
generates a Young measure ν, we write uj

Y→ ν. The fundamental property of Young measures is
given in (25), but ν is determined uniquely by its action on a dense subset of L1(Ω;C0(Rm)), so
to find ν generated by {uj}j∈N we need only compute the limits:

lim
j→∞

∫
B

ϕ(uj(x)) dx (33)

for all B ∈ B(Ω) and ϕ ∈ C0(Rm). In fact, it can be shown that all weakly? measurable functions
ν : Ω → MP(Rm) are Young measures in Y(Ω; Rm). In other words, there exists a sequence
of measurable functions {uj}j∈N such that uj

Y→ ν. This can be shown by construction of the
sequence, or using the Hahn-Banach Theorem [9].

Corollary 3.13 (Young measures capture weak limits). Let 1 ≤ p ≤ ∞ and suppose that uj ⇀ u

in Lp(Ω; Rm) (uj
?
⇀ u if p = ∞). Then uj

Y→ ν for some ν ∈ Y(Ω; Rm), and for any such Young
measure generated, u(x) is the expected value of νx for almost every x ∈ Ω:

u(x) =
∫

Rm

λ dνx(λ). (34)

Proof. The sequence {uj}j∈N satisfies the tightness condition by Remark 3.12, so let {ujk
}k∈N be

a subsequence generating a Young measure ν.
By Theorem 2.6 and Remark 2.3 {ujk

}k∈N is UI, so for any g ∈ Lq(Ω; Rm), {g · ujk
}k∈N is UI.

So if we let f(x, λ) = g(x) · λ, then by the Fundamental Theorem 3.11, we have:

lim
k→∞

∫
Ω

g(x) · ujk
(x) dx =

∫
Ω

g(x) ·
∫

Rm

λ dνx(λ) dx. (35)

By uniqueness of weak and weak? limits, u(x) =
∫

Rm λ dνx(λ) for a.e. x ∈ Ω.
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Corollary 3.14 (Young measures ignore concentrations). Let {uj}j∈N be measurable functions
from Ω into Rm. Then uj

m→ u if and only if {uj}j∈N generates the Young measure νx = δu(x).

Proof. First suppose that uj
m→ u and let ϕ ∈ C0(Rm). Note that ϕ is uniformly continuous, so that

for any ε > 0, there is a δ > 0 such that |{|ϕ(uj)− ϕ(u)| ≥ ε}| ≤ |{|uj − u| ≥ δ}| → 0 as j → 0.
Hence ϕ(uj(·))

m→ ϕ(u(·)) and so by the Dominated Convergence Theorem, for any B ∈ B(Ω),

lim
j→∞

∫
B

ϕ(uj(x)) dx =
∫

B

ϕ(u(x)) dx. (36)

Hence {uj}j∈N generates the Young measure νx = δu(x).
Now suppose that {uj}j∈N generates νx = δu(x). By Markov’s inequality, for any ε > 0,

|{x ∈ Ω : |uj(x)− u(x)| ≥ ε}| ≤ ε−1

∫
Ω

min {|uj(x)− u(x)|, ε} dx. (37)

If we consider the Carathéodory function f(x, λ) = min {|λ− u(x)|, ε}, for which {f(·, uj(·))}j∈N

is bounded and therefore UI, we see that this right hand side converges to zero as j →∞, so that
uj

m→ u.

Now we may ask, what is it that Young measures actually “measure”? Corollary 3.14 shows
that Young measures completely ignore concentrations. On the other hand, the following propo-
sition shows that Young measures do capture oscillations:

Proposition 3.15 (Young measure for Riemann-Lebesgue lemma). Let Q = (0, 1)n and u ∈
Lp(Q; Rm) for 1 ≤ p ≤ ∞. Define the sequence {uj}j∈N ⊂ Lp(Q; Rm) by uj(x) = u(jx), where u
is extended Q-periodically throughout Rn. Then {uj}j∈N generates the Young measure ν satisfying:

〈νx, ϕ〉 =
∫

Q

ϕ(u(y)) dy, ∀ϕ ∈ C0(Rm). (38)

Proof. Let g be smooth with compact support contained in Q and let ϕ ∈ C0(Rm). Then since u
is Q-periodic we have:∫

Q

g(x)ϕ(uj(x)) dx =
∫

Q

g(x)ϕ(u(jx)) dx

= (−1)n

∫
Q

∂1 · · · ∂ng(x)
(∫

xQ

ϕ(u(jy)) dy
)

dx

= (−1)n

∫
Q

∂1 · · · ∂ng(x)
(
j−n

∫
jxQ

ϕ(u(y)) dy
)

dx

= (−1)n

∫
Q

∂1 · · · ∂ng(x)
(
j−ndjx1e · · · djxne

∫
Q

ϕ(u(y)) dy

− j−n

∫
(djxe−jx)Q

ϕ(u(y)) dy

)
dx

→ (−1)n

∫
Q

∂1 · · · ∂ng(x)x1 · · ·xn

∫
Q

ϕ(u(y)) dy dx

=
∫

Q

g(x)
∫

Q

ϕ(u(y)) dy dx as j →∞.

By the density of the linear span of functions of the form (x, λ) 7→ g(x)ϕ(λ) in L1(Ω;C0(Rm)), we
have that {uj}j∈N generates the Young measure in (38).
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Remark 3.16. Note that this Young measure does not depend on x. When this happens, we say
that ν is a homogeneous Young measure.

Example 3.17 (Oscillation revisited). The sequence in Example 2.8 generates the homogeneous
Young measure ν = 1

2δ1 + 1
2δ−1.

Example 3.18 (Riemann-Lebesgue lemma). Let Ω = (0, 1) and define uj(x) = sin(2πjx). Then
{uj}j∈N generates the homogeneous Young measure ν satisfying:

〈ν, ϕ〉 =
∫ 1

0

ϕ(sin(2πy)) dy

= 2
∫ 1

−1

ϕ(y)
1
2π

(sin−1)′(y) dy

=
∫ 1

−1

ϕ(y)
dy

π
√

1− y2
.

In particular, sin(2πjx) ?
⇀ 0 in L∞(0, 1).

The approach we have taken so far has seen Young measures as being precisely the elements
of L∞w?(Ω;M(Rm)) that are almost everywhere probability measures. An issue with this setting is
that Y(Ω; Rm) is not a closed subset of L∞w?(Ω;M(Rm)) when equipped with the weak? topology.
Consider the sequence of Young measures {ν(j)

x }j∈N where ν(j)
x = δj , the Dirac delta measure at

j ∈ R, which converges weakly? to 0 /∈ Y(Ω; R).
A helpful alternative is to view Young measures as Radon measures on the product space

Ω× Rm. Specifically, for a given ν ∈ Y(Ω; Rm) and any B1 ∈ B(Ω), B2 ∈ B(Rm) we can define

κ(B1 ×B2) =
∫

B1

νx(B2) dx. (39)

By unique extension, this associates a κ ∈ M+(Ω × Rm) to each ν in an injective way with the
property

κ(B1 × Rm) = |B1|, (40)

because νx is a probability measure for almost every x ∈ Ω. In other words, the Ω-marginal of κ
is the Lebesgue measure on Ω, which we write as κ = | · |Ω⊗ ν where | · |Ω is the Lebesgue measure
on Ω. The following theorem, which we do not prove here (see [1, Ch. 4]), describes the converse.

Theorem 3.19 (Disintegration of measures). Let κ ∈ M+(Ω × E) for Ω ∈ B(Rn), E ∈ B(Rm)
and define the Ω-marginal µ(B1) = κ(B1 × E) for all B1 ∈ B(Ω). Then there exists a unique
weakly? µ-measurable function ν : Ω → MP(E) such that for all B1 ∈ B(Ω), B2 ∈ B(E)

κ(B1 ×B2) =
∫

B1

νx(B2) dµ(x). (41)

An immediate consequence of Theorem 3.19 and the preceding discussion is that Young mea-
sures ν ∈ Y(Ω; Rm) and product measures κ ∈ M+(Ω×Rm) whose Ω-marginals are the Lebesgue
measure are in one-to-one correspondence.

This leads to the probabilist’s approach to Young Measures, mirroring the discussion in Ap-
pendix A.2. The space of Young measures inherits the notion of narrow convergence from the
ambient space M+(Ω × Rm). Marginals are preserved under narrow convergence, so Y(Ω; Rm)
is closed when viewed a subset of M+(Ω × Rm) in the narrow topology. We now use this differ-
ent perspective to show the reader an alternative proof of the Fundamental Theorem of Young
Measures 3.11.
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Definition 3.20 (Tightness for Young measures). A sequence of Young measures {ν(j)}j∈N is said
to be tight if the associated measures {κj}j∈N ⊂ M+(Ω×Rm) are tight in the sense of Definition
A.7

It is straightforward to see that a sequence of Young measures is tight if and only if for all
ε > 0 there exists a compact set Kε ⊆ Rm such that

sup
j
κj(Ω× (Rm \Kε)) < ε. (42)

Further, this notion of tightness for Young measures corresponds precisely with the tightness
property in the conditions for the Fundamental Theorem of Young measures 3.11, a fact we prove
below:

Proposition 3.21. A sequence of measurable functions {uj}j∈N satisfies the tightness property if
and only if the associated Young measures ν(j) : x 7→ δuj(x) are tight.

Proof. First suppose that {uj}j∈N has the tightness property. Then for all ε > 0, there exists
Mε > 0 such that

sup
j
|{x ∈ Ω : |uj(x)| ≥Mε}| < ε. (43)

Let Kε = Ω× {λ ∈ Rm : |λ| < Mε}. Then if κj is the associated product measure to uj , we have

sup
j
κj(Ω× (Rm \Kε)) = sup

j

∫
Ω

1uj(x)/∈Kε
(x) dx

= sup
j
|{x ∈ Ω : |uj(x)| ≥Mε}|

< ε,

so the associated sequence of Young measures is tight. Now suppose that {ν(j)}j∈N associated
with {uj}j∈N is tight. Then for every ε > 0 there exists a compact set Kε ⊂ Rm such that

sup
j
κj(Ω× (Rm \Kε)) < ε. (44)

The tightness property for {uj}j∈N can now be demonstrated by selecting Mε such that Kε ⊆
{λ ∈ Rm : |λ| < Mε}.

Now let us reconsider the Fundamental Theorem 3.11. Prokhorov’s Theorem A.9 combined
with the above theorem implies that a sequence of measurable functions {uj}j∈N satisfying the
tightness property has a subsequence {ujk

}k∈N and a Young measure ν ∈ Y(Ω; Rm) such that:

lim
k→∞

∫
Ω

f(x, ujk
(x)) dx =

∫
Ω

∫
Rm

f(x, λ) dνx(λ) dx (45)

for all f ∈ Cb(Ω × Rm). In order to extend the result to all Carathéodory functions f such that
{f(·, ujk

(·))}k∈N is uniformly integrable, one can use the Scorza-Dragoni Theorem. We leave the
details to the reader.

Theorem 3.22 (Scorza-Dragoni). Let Ω be bounded and measurable, S ⊂ Rm be compact and
f : Ω × Rm → R be Carathéodory. Then for every ε > 0 there exists a compact set Kε ⊆ Ω such
that |Ω \Kε| ≤ ε and f restricted to Kε × S is continuous.

Remark 3.23. For a proof, see [4, p.76]. This theorem is a generalisation of Lusin’s theorem:
for a given measurable function u : Ω → Rm and all ε > 0, there exists a compact set Kε with
|Ω \Kε| ≤ ε, upon which u is continuous.
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4 Young Measures, Lower Semi-Continuity and Convexity

In this section we return to the question posed in the Introduction: What condition on a Carathéodory
function f : Ω× Rm × Rm×n → R can be imposed so that the integral functional

I(u) =
∫

Ω

f(x, u(x),∇u(x)) dx (46)

is weakly lower semi-continuous in W 1,p(Ω; Rm)? Young measures reveal a link between convex
functions and lower semicontinuity, leading to a weaker form of convexity known as quasiconvexity.

Theorem 4.1. Let f : Ω× Rm → R be a Carathéodory function that is bounded below. Then
for any sequence {uj}j∈N generating a Young measure ν, the following holds:

lim inf
j→∞

∫
Ω

f(x, uj(x)) dx ≥
∫

Ω

∫
Rm

f(x, λ) dνx(λ) dx. (47)

Proof. Without loss of generality we may assume that f is non-negative. For each i ∈ N define
fi(x, λ) = min {f(x, λ), i}, which is Carathéodory and 0 ≤ fi ↗ f a.e. in Rm. We also have that
0 ≤ fi ≤ i, so that {fi(·, uj(·))}j∈N is UI. Therefore, by the Fundamental Theorem 3.11,

lim inf
j→∞

∫
Ω

f(x, uj(x)) dx ≥ sup
i

lim inf
j→∞

∫
Ω

fi(x, uj(x)) dx

= sup
i

∫
Ω

∫
Rm

fi(x, λ) dνx(λ) dx

=
∫

Ω

∫
Rm

f(x, λ) dνx(λ) dx,

by the Monotone Convergence Theorem, since 0 ≤ fi(x, λ) ↗ f(x, λ) for a.e. (x, λ) ∈ Ω×Rm.

Theorem 4.2 (Jensen’s inequality). Let f : Rm → R be continuous and convex. Then∫
Rm

f(λ) dµ(λ) ≥ f

(∫
Rm

λ dµ(λ)
)

∀µ ∈ MP(Rm). (48)

Remark 4.3. The theorem is easy to prove from the existence of a subgradient at each x =∫
Rm λ dµ(λ). To prove the converse: For any a, b ∈ Rm, θ ∈ (0, 1) take µ = θδa + (1− θ)δb.

Theorem 4.4 (First lower semi-continuity result). Let f : Ω × Rm → R be a Carathéodory
function that is bounded below, and for 1 ≤ p ≤ ∞ define I : Lp(Ω; Rm) → R ∪ {+∞} by

I(u) =
∫

Ω

f(x, u(x)) dx. (49)

I is weakly lower semi-continuous (weakly? for p = ∞) if and only if λ 7→ f(x, λ) is convex.

Proof. First assume that f is convex in its second argument. Suppose that uj ⇀ u in Lp(Ω; Rm)
(uj

?
⇀ u if p = ∞) and take a subsequence so that lim infj→∞ I(uj) = limj→∞ I(uj). Take

a further subsequence so that {uj}j∈N generates ν ∈ Y(Ω; Rm). Note that by Corollary 3.13
u(x) =

∫
Rm λ dνx(λ), so by Theorem 4.1 and Jensen’s inequality we have

lim inf
j→∞

∫
Ω

f(x, uj(x)) dx ≥
∫

Ω

∫
Rm

f(x, λ) dνx(λ) dx

≥
∫

Ω

f

(
x,

∫
Rm

λ dνx(λ)
)

dx

=
∫

Ω

f(x, u(x)) dx.
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Now assume that I is weakly lower semi-continuous (weakly? if p = ∞). Let Q ⊂ Ω be a
hyper-cube with an affine bijection φ : Q→ (0, 1)n. Fix y ∈ Ω, then for any a, b ∈ Rm, θ ∈ (0, 1),
define ξ ∈ L∞(Q; Rm) by:

ξ(x) =

{
a if [φ(x)]1 ∈ [0, θ),
b if [φ(x)]1 ∈ [θ, 1).

Now extend ξ Q-periodically to Rn and define the sequence {uj}j∈N ⊂ L∞(Ω; Rm) by

uj(x) =

{
ξ(jx) if x ∈ Q,

θa+ (1− θ)b if x ∈ Ω \Q.
(50)

Then by Proposition 3.15 {uj}j∈N generates the Young measure νx = θδa + (1 − θ)δb for x ∈ Q

and νx = δθa+(1−θ)b for x ∈ Ω \ Q. Also, uj ⇀ u ≡ θa + (1 − θ)b in Lp(Ω; Rm) for all p ( ?
⇀ for

p = ∞), so by the lower semi-continuity assumption we have:∫
Q

f(x, θa+ (1− θ)b) dx =
∫

Ω

f(x, u(x)) dx−
∫

Ω\Q
f(x, θa+ (1− θ)b) dx

≤ lim inf
j→∞

∫
Ω

f(x, uj(x)) dx−
∫

Ω\Q
f(x, θa+ (1− θ)b) dx

=
∫

Ω

∫
Rm

f(x, λ) dνx(λ) dx−
∫

Ω\Q
f(x, θa+ (1− θ)b) dx

=
∫

Q

θf(x, a) + (1− θ)f(x, b) dx.

Since Q is an arbitrary cube, we have that f : λ 7→ f(x, λ) is convex for a.e. x ∈ Ω.

What happens if we replace u(x) with ∇u(x)? Consider the following example:

Example 4.5. Let Ω ⊂ R2 be a Lipschitz domain and I : W 1,∞(Ω; R2) → R be defined by

I(u) =
∫

Ω

det(∇u(x)) dx. (51)

Then I is weakly? continuous, but det is not a convex function on R2×2.

Proof. Suppose that uj
?
⇀ u in W 1,∞(Ω; R2) and define the sequence vj ∈W 1,∞(Ω; R2) by

vj(x) = u(x) + (uj(x)− u(x))Γ 1
j
(1 + dist(x, ∂Ω)), (52)

where Γα is the continuous cutoff function defined in (31). This choice of vj enjoys the property
that uj − vj ∈ W 1,∞

0 (Ω; R2) and ∇vj
m→ ∇u. Combining the former property with the result in

Lemma 4.6 and the latter property with Corollary 3.14 gives the following:∫
Ω

det(∇u(x)) dx = lim
j→∞

∫
Ω

det(∇vj(x)) dx

= lim
j→∞

∫
Ω

det(∇uj(x)) dx,

and we see that I is weakly? continuous. However,

det

(
1
2

(
1 3
0 1

)
+

1
2

(
−1 0
−2 −1

))
=

3
2
> 1 =

1
2

det

(
1 3
0 1

)
+

1
2

det

(
−1 0
−2 −1

)
,

so det is not convex.
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Lemma 4.6. For u ∈W 1,∞(Ω; Rn) where Ω is a Lipschitz domain, the integral of its Jacobian is
dependent only on boundary values of u, i.e.∫

Ω

det(∇u(x)) dx =
∫

Ω

det(∇v(x)) dx (53)

for all v ∈W 1,∞(Ω; Rn) such that u− v ∈W 1,∞
0 (Ω; Rn).

Proof. We first restrict ourselves to the case where u, v ∈ C∞(Ω; Rm). Using the language of
exterior algebras and differential forms, we have∫

Ω

det(∇u(x)) dx =
∫

Ω

du1 ∧ · · · ∧ dun

=
∫

Ω

d(u1 ∧ du2 ∧ · · · ∧ dun).

By Stokes’ Theorem, this is equal to∫
∂Ω

u1 ∧ du2 ∧ · · · ∧ dun =
∫

∂Ω

v1 ∧ du2 ∧ · · · ∧ dun

=
∫

Ω

dv1 ∧ du2 ∧ · · · ∧ dun.

By the anticommutativity of the wedge product, we can continue in the same way:∫
Ω

dv1 ∧ · · · ∧ dun = (−1)n−1

∫
Ω

du2 ∧ · · · ∧ dun ∧ dv1

= (−1)n−1

∫
Ω

dv2 ∧ · · · ∧ dun ∧ dv1

= (−1)2(n−1)

∫
Ω

du3 ∧ · · · ∧ dun ∧ dv1 ∧ dv2

· · ·

= (−1)n(n−1)

∫
Ω

dv1 ∧ · · · ∧ dvn

=
∫

Ω

det(∇v(x)) dx.

The full result follows by a density argument.

Remark 4.7. This result is related to the fact that the Jacobian is a null Lagrangian.

The underlying issue in Example 4.5 is that in general, not every function in Lp(Ω; Rm×n) is the
gradient of a W 1,p(Ω; Rm) function. Further, the class of Young measures generated by sequences
of W 1,p(Ω; Rm) gradients is in general strictly smaller than Y(Ω; Rm×n). We denote the set of
such gradient Young measures by GYp(Ω; Rm×n). The analogous proof of Theorem 4.4 would
fail because we wouldn’t be able to generate the appropriate Young measure in GYp(Ω; Rm×n)
to show the convexity of f .

It turns out that we would be able to show that f(θa+ (1− θ)b) ≤ θf(a) + (1− θ)f(b) for all
a, b such that a− b is a matrix of rank 1 i.e. that f is rank-one convex, but in general, rank-one
convexity is not sufficient for lower semi-continuity. It was Morrey in 1952 [7], who discovered the
necessary and sufficient condition for lower semi-continuity:
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Definition 4.8 (Quasiconvexity). A function f : Rm×n → R is called quasiconvex if for every
open, bounded set U ⊂ Rn with |∂U | = 0, we have:

f(A) ≤ 1
|U |

∫
U

f(A+∇ξ(y)) dy ∀ξ ∈W 1,∞
0 (U ; Rm). (54)

Lemma 4.9. A function f : Rm×n → R is quasiconvex if and only if there exists an open,
bounded set U ⊂ Rn with |∂U | = 0 such that (54) holds.

Proof. The case “only if” follows from the definition. The “if” case is a technical scaling and
covering argument, which can be found in [4, p.172].

Example 4.10 (Determinant is quasiaffine). The function f(A) = det(A) for A ∈ Rn×n is
quasiaffine i.e it satisfies the quasiconvex condition (54) with equality.

Proof. This is a direct consequence of Lemma 4.6 with u(y) = Ay and v(y) = Ay + ξ(y).

The following theorem demonstrates the intimate relationship between gradient Young mea-
sures and quasiconvexity.

Theorem 4.11 (Jensen’s inequality for gradient Young measures). Let uj ⇀ u in W 1,p(Ω; Rm)
for 1 ≤ p ≤ ∞, with {∇uj}j∈N generating ν ∈ GYp(Ω; Rm×n). If f : Rm×n → R is continuous,
quasiconvex, and if p <∞ there exists C > 0 with 0 ≤ f(A) ≤ C(1 + |A|p), then we have:∫

Rm×n

f(A) dνx(A) ≥ f

(∫
Rm×n

Adνx(A)
)

for a.e x ∈ Ω. (55)

Remark 4.12. This theorem is proved using some sophisticated techniques for Young measures,
called homogenisation and localisation. A reference for this theorem and its converse is [6].

Lemma 4.13. Let uj : Ω → Rm, vj : Ω → RM be a measurable functions such that uj
m→ u and

vj generates ν ∈ Y(Ω; RM ). Then (uj , vj) generates
(
x 7→ δu(x) ⊗ νx

)
∈ Y(Ω; Rm+M ).

Proof. Let ϕ ∈ C0(Rm), ψ ∈ C0(RM ) and B ∈ B(Ω). Then since by Corollary 3.14, {uj}j∈N

generates the Young measure x 7→ δu(x), we have:∣∣∣∣∫
B

ϕ(uj(x))ψ(vj(x)) dx−
∫

B

ϕ(u(x))〈νx, ψ〉dx
∣∣∣∣

≤
∣∣∣∣∫

B

(ϕ(uj(x))− ϕ(u(x)))ψ(vj(x)) dx
∣∣∣∣+ ∣∣∣∣∫

B

ϕ(u(x)) (ψ(vj(x))− 〈νx, ψ〉) dx
∣∣∣∣

≤ ‖ψ‖∞
∣∣∣∣∫

B

ϕ(uj(x))− ϕ(u(x)) dx
∣∣∣∣+ ‖ϕ‖∞

∣∣∣∣∫
B

ψ(vj(x))− 〈νx, ψ〉dx
∣∣∣∣→ 0 as j → 0.

Since the linear span of functions of the form (λ, ξ) 7→ ϕ(λ)ψ(ξ) is dense in C0(Rm × RM ), we
have the desired result.

Theorem 4.14 (Second lower semi-continuity result). Let 1 ≤ p ≤ ∞ and let f : Ω×Rm×Rm×n →
R be a Carathéodory function such that if p <∞ there exists C > 0 with

0 ≤ f(x, λ,A) ≤ C(1 + |A|p) for a.e. x ∈ Ω, ∀λ ∈ Rm, ∀A ∈ Rm×n. (56)

Then I : u 7→
∫
Ω
f(x, u(x),∇u(x)) dx is weakly lower semi-continuous in W 1,p(Ω; Rm) (weakly?

for p = ∞) if and only if A 7→ f(x, λ,A) is quasiconvex.
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Proof. First assume that A 7→ f(x, λ,A) is quasiconvex. Suppose that uj ⇀ u in W 1,p(Ω; Rm)
(uj

?
⇀ u if p = ∞) and take a subsequence so that lim infj→∞ I(uj) = limj→∞ I(uj). Take a fur-

ther subsequence so that {∇uj}j∈N generates ν ∈ GYp(Ω; Rm×n). By Lemma 4.13, {(uj ,∇uj)}j∈N

generates
(
x 7→ δu(x) ⊗ νx

)
∈ Y(Ω; Rm+mn), so that by Theorem 4.1:

lim inf
j→∞

∫
Ω

f(x, uj(x),∇uj(x)) dx ≥
∫

Ω

∫
Rm

f(x, u(x), A) dνx(A) dx. (57)

By Theorem 4.11 for the continuous function A 7→ f(x, u(x), A), we have:∫
Rm

f(x, u(x), A) dνx(A) ≥ f(x, u(x),∇u(x)). (58)

Now assume that I is weakly lower semi-continuous in W 1,p(Ω; Rm) (weakly? if p = ∞). For
M > 0 define the set SM to be the closed ball of radius M in Rm×Rm×n. Then by Theorem 3.22,
for every i ∈ N there exists a compact set KM

i ⊆ Ω such that |Ω \KM
i | ≤ 1

i and f is continuous
on KM

i × SM . Define the set:
Ω0 =

⋂
M∈N

⋃
i∈N

KM
i . (59)

Then |Ω \ Ω0| = 0. Now let x0 ∈ Ω0, u0 ∈ Rm be fixed and let U = (0, 1)n. We are going to
show, by defining an appropriate gradient Young measure, that for every A0 ∈ Rm×n and every
ξ ∈W 1,∞

0 (U ; Rm) the function defined by:

F (x) =
∫

U

f(x,A0(x− x0) + u0, A0 +∇ξ(y)) dy − f(x,A0(x− x0) + u0, A0) (60)

is non-negative at x = x0. This will show that A 7→ f(x0, u0, A) is quasiconvex for almost every
x0 ∈ Ω and every u0 ∈ Rm, by Lemma 4.9.

Now, let Q ⊂ Ω be a hyper-cube with affine bijection φ : Q→ U whose gradient is Λ ∈ Rn×n.
Then, extending ξ periodically throughout Rn, define {uj}j∈N ⊂W 1,∞(Ω; Rm) by:

uj(x) =

{
A0(x− x0) + u0 + 1

j ξ(jφ(x))Λ−1 if x ∈ Q,
A0(x− x0) + u0 if x ∈ Ω \Q.

(61)

Then we have:

∇uj(x) =

{
A0 +∇ξ(jφ(x)) if x ∈ Q,

A0 if x ∈ Ω \Q.
(62)

We see that uj → A0(· − x0) + u0 in L∞(Ω; Rm) and

∇uj
?
⇀

{
A0 +

∫
U
∇ξ(y) dy if x ∈ Q,

A0 if x ∈ Ω \Q.

}
= A0, (63)

by the Divergence Theorem, because ξ ∈ W 1,∞
0 (U ; Rm). So uj ⇀ u = A0(· − x0) + u0 in

W 1,p(Ω; Rm) for all p ( ?
⇀ if p = ∞). By Proposition 3.15, {∇uj}j∈N generates ν ∈ GY∞(Ω; Rm×n)

such that:

〈νx, ϕ〉 =

{ ∫
U
ϕ(A0 +∇ξ(y)) dy if x ∈ Q,

A0 if x ∈ Ω \Q,
(64)
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for all ϕ ∈ C0(Rm×n). Then by lower semi-continuity we have:∫
Q

f(x,A0(x− x0) + u0, A0) dx =
∫

Q

f(x, u(x),∇u(x)) dx

≤ lim inf
j→∞

∫
Q

f(x, uj(x),∇uj(x)) dx

=
∫

Q

∫
Rm×n

f(x,A0(x− x0) + u0, A) dνx(A) dx

=
∫

Q

∫
U

f(x,A0(x− x0) + u0, A0 +∇ξ(y)) dy dx.

Since Q was an arbitrary cube, F (x) ≥ 0 for almost all x ∈ Ω. For any A0 and ξ, there exists an
M ∈ N such that (A0(x − x0) + u0, A0 +∇ξ(y)) ∈ SM for all x ∈ Ω and y ∈ U . Since x0 ∈ KM

i

for some i, x0 is a point of continuity of F and so F (x0) ≥ 0 as desired.

Theorem 4.15 (Existence of minimisers). Let 1 < p <∞ and let f : Ω× Rm × Rm×n → R be a
quasiconvex Carathéodory function such that there exists c, C > 0, d ≥ 0 with:

c|A|p − d ≤ f(x, λ,A) ≤ C(1 + |A|p). (65)

Then
I : u 7→

∫
Ω

f(x, u(x),∇u(x)) dx (66)

has at least one minimiser over the set

A =
{
u ∈W 1,p(Ω; Rm) : u− g ∈W 1,p

0 (Ω; Rm)
}
. (67)

Proof. Combine Theorem 1.1, the discussion in the Introduction, and Theorem 4.14.

It is possible to use the same argument to prove Theorem 4.15 for p = ∞ (without any bounds
on f). Noting that the sequential version of the Banach-Alaoglu Theorem (Theorem A.3) holds
in W 1,∞(Ω; Rm), just with weak? convergence, and that A is weakly? closed, we can modify the
Direct Method Theorem 1.1 to show that Theorem 4.14 is sufficient for our needs.

The case p = 1 is tricky. If we just assume that for some c > 0, d ≥ 0:

f(x, λ,A) ≥ c|A| − d, (68)

then we deduce in the same way as in the Introduction that minimising sequences are bounded in
W 1,1(Ω; Rm). However, this does not imply the existence of a weakly convergence subsequence.
Indeed, consider an antiderivative of our concentration example (Example 2.9).

As compensation we found that the sequence converged weakly? in (C([0, 1]))? = M([0, 1]),
which leads to a possible solution: Consider the sequence in the space of bounded variation,
which consists of L1(Ω; Rm) functions whose distributional derivatives are in M(Ω; Rm), denoted
BV (Ω; Rm). We then have weak? compactness, but the theory of Young measures for sequences in
BV (Ω; Rm) is much more complicated than that for sequences in W 1,1(Ω; Rm). The definition has
to be extended to what are called generalised Young measures, which not only measure oscillations,
but also concentrations [10]. This is the reason why we used the word “classical” in the title.
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A Some Compactness Results

Compactness is one of the most important concepts in mathematical analysis. The form of com-
pactness we care about most, at least in this essay, is sequential compactness, that every sequence
has a convergent subsequence. In a metric space this distinction does not exist, but for general
topologies neither property implies the other in general.

A.1 The Banach-Alaoglu Theorem

The Banach-Alaoglu Theorem is usually referred to as “weak? compactness” for a Banach space,
or “weak compactness” in the case of a reflexive Banach space. There are several subtle variations
on the theorem which are clarified below.

Theorem A.1 (General Banach-Alaoglu). Let X be a Banach space and let A ⊂ X be uniformly
bounded in the norm on X. Then A is relatively compact for the weak? topology on X.

Remark A.2. Note that this theorem does not assert relative sequential compactness.

Theorem A.3 (Sequential Version of Banach-Alaolgu). Let X be a separable normed space.
Then any bounded sequence in X? has a weakly? convergent subsequence.

Corollary A.4. Let X be a separable, reflexive Banach space. Then any bounded sequence in X

has a weakly convergent subsequence.

Theorem A.5 (Eberlein-S̆mulian). Let A be a subset of a Banach space X. Then A is relatively
weakly compact if and only if every sequence {uj}j∈N ⊂ A has a weakly convergent subsequence.

Corollary A.6 (Sequential Version of Banach-Alaoglu 2). Let X be a reflexive space. Then any
bounded sequence in X has a weakly convergent subsequence.

A.2 Prokhorov’s Theorem

If a functional analyst were asked to give a topology on the space of probability measures on
E ⊆ Rn, MP(E), with good compactness properties, he/she may be inclined to say the induced
weak? topology from the space of Radon measures, M(E) and appeal to the Riesz-Alexandrov
Theorem 3.6 and the Banach-Alaoglu Theorem A.3. Then for any sequence of probability measures
{µj}j∈N, since they all have norm 1, we have a subsequence converging weakly? in M(E):

〈f, µn〉 → 〈f, µ〉 as n→∞, for all f ∈ C0(E). (69)

However, the limit µ is not necessarily a probability measure. Take E = R and µj = δj , whose
weak? limit is the zero measure. We call this “mass escaping to infinity”.

If a probabilist were asked of the same thing, he/she might say the weak topology, much to the
confusion of the functional analyst. The probabilist’s notion of weak convergence is not induced
from M(E) through its dual space; it is the convergence described by:

〈f, µj〉 → 〈f, µ〉 as j →∞, for all f ∈ Cb(E), (70)

where Cb(E) is the vector space of all bounded continuous functions on E. The space of probability
measures is closed in the weak topology, but it also has some good compactness properties:
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Definition A.7 (Tightness). A set of positive measures M ⊆ M+(E) is said to be tight if for
every ε > 0, there exists a compact set Kε ⊆ E such that

sup
µ∈M

µ(E \Kε) < ε (71)

Remark A.8. If E is compact, then every collection of probability measures is tight, since we can
take Kε = E.

Theorem A.9 (Prokhorov). A set of probability measures M ⊆ MP(E) is relatively sequentially
compact in the weak topology if and only if it is tight.

The probabilist’s weak topology is sometimes called the narrow topology, in an attempt to
reduce confusion. A reference for this subsection is [1, Ch. 4].
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