The plunge region in frame-based approximation

Marcus Webb (FWO and KU Leuven, Belgium)
Collaborators (KU Leuven): Daan Huybrechs, Vincent Coppé, Roel Matthysen龱 marcus.webb@cs.kuleuven.be

Frames

Definition: A set $\Phi=\left\{\phi_{k}: k \in I\right\} \subset \mathcal{H}$ (Hilbert space) is a frame if the synthesis operator,

$$
\mathcal{T}: \mathbf{c} \mapsto \sum_{k \in I} c_{k} \phi_{k}
$$

is continuous and onto as a linear operator from $\ell^{2}(I)$ to \mathcal{H}.
Benefits: A frame generalises an orthonormal basis, but the set Φ does not need to be linearly independent. This gives us more freedom to define a frame for our purposes.
Challenges: The redundancy of a frame leads to ill-conditioned linear systems, but despite this, stable and fast algorithms are possible for frames with a plunge region.

Fourier extension

Fourier extension: To approximate a function on an arbitrary domain Ω, use a Fourier series which is periodic on a larger domain Γ (idea due to Bruno and Boyd '03).

Connection to frames: This is equivalent to approximating using the following (linearly dependent) frame $\Phi=\left\{\exp (i \pi \mathbf{k} \cdot \mathbf{x}): \mathbf{k} \in \mathbb{Z}^{d}\right\} \subset L^{2}(\Omega)[1]$.

Above: two smooth functions, which each extend to periodic Fourier series on a larger domain.
Least-squares interpolation: The underlying linear system is $A c=b$, where

$$
A_{k, j}=\phi_{j}\left(x_{k}\right), \quad b_{k}=f\left(x_{k}\right), \quad\left\{x_{k}\right\} \subset \Omega
$$

We use many more samples x_{k} than desired number of coefficients, which gives a tall, skinny matrix A, and increases the stability of the solution [2].
Plunge region: The collocation matrix A has a distinctive SVD profile, with three parts. Any solution vector c can be decomposed into these three spaces:

Fast algorithm: The modification $\left(I-A A^{*}\right) A$ "kills" all singular vectors of A such $\sigma \approx 1$ and $\sigma \approx 0$. There are the only $\mathcal{O}(\log (N))$ "plunge region" singular vectors remaining [3]!

1. Solve $\left(I-A A^{*}\right) A p=\left(I-A A^{*}\right) b$
2. Solve $q=A^{*}(b-A p)$.
3. Solution: $c=p+q$.
A and A^{*} can be applied fast using the FFT. A (regularised) pseudoinverse of $\left(I-A A^{*}\right) A$ can be computed fast using randomised SVD with rank $\mathcal{O}(\log (N))[4]$. A quick calculation shows that $A c-b=\left(I-A A^{*}\right)(A p-b)$, which is made small by step 1. Overall complexity: $\mathcal{O}\left(N \log ^{2}(N)\right)$ for N coefficients in the 1D setting.

Generalisation: Weighted sums of trig-like bases

Generalisation: Fourier extensions is a special case of the following frames [5]:

$$
\Phi=\left\{w_{1} \cdot e_{0}, w_{1} \cdot e_{1}, w_{1} \cdot e_{2}, \ldots\right\} \cup \cdots \cup\left\{w_{n} \cdot e_{0}, w_{n} \cdot e_{1}, w_{n} \cdot e_{2}, \ldots\right\}
$$

where w_{i} is a BV function and $\left\{e_{0}, e_{1}, e_{2}, \ldots\right\}$ is a "trig-like" basis. Fourier extensions have just $w_{1}=\chi_{\Omega}$ and $\left\{e_{k}\right\}=$ Fourier basis.
Trig-like bases: Technical definition [5]. Examples include Fourier series, Jacobi polynomials, cosine series, sine series.
Application: How can you approximate a function of the form
$f(x)=g(x)+|x|^{1 / 2} h(x)$, where g and h are smooth? Both a polynomial basis, and a weighted polynomial basis will have slow convergence. We suggest you use the frame,

$$
\Phi=\left\{T_{0}(x), T_{1}(x), T_{2}(X), \ldots\right\} \cup\left\{|x|^{1 / 2} T_{0}(x),|x|^{1 / 2} T_{1}(x),|x|^{1 / 2} T_{2}(x) \ldots\right\},
$$

where T_{k} is the k th Chebyshev polynomial.

Least squares collocation: Just like the Fourier extension, we use oversampled least-squares collocation on a suitable grid.
Plunge region: Just like the Fourier extension, the collocation matrix A has a distinctive SVD profile, with 3 parts:

Fast algorithm: Since the singular values of A do not necessarily cluster at 1 like in the Fourier extension case, we cannot simply use $\left(I-A A^{*}\right) A$ to isolate the plunge region. We can, however, find a matrix Z such that $\left(I-A Z^{*}\right) A$ has approximate rank $\mathcal{O}(\log (N))$. For such Z, we can proceed just as in the Fourier extension case:

1. Solve $\left(I-A Z^{*}\right) A p=\left(I-A Z^{*}\right) b$ using randomised SVD with rank $\mathcal{O}(\log (N))$. 2. Solve $q=Z^{*}(b-A p)$.
2. Solution: $c=p+q$.

This is performed fast in a similar way to the Fourier extension. Overall complexity $\mathcal{O}\left(N \log ^{2}(N)\right)$ for N coefficients in the 1D setting [6].

Future goals

Fast algorithm: The generalised fast algorithm is still under investigation [6].
Full generalisation: In [5], only the 1D case is considered. We would like to generalise to higher dimensional weighted sum-frames.

Differential equations: we intend to develop these approximation techniques into spectral methods for problems with complicated geometry and singularities.

References

[1] Huybrechs D., On the Fourier extension of nonperiodic functions, SIAM J. Numer. Anal., 2010.
[2] Adcock B., Huybrechs D., Frames and numerical approximation, arXiv:1612.04464, 2017.
[2] Adcock B., Huybrechs D., Frames and numerical approximation, arXiv:1612.04464, 2017.
[3] Matthysen R., Huybrechs D., Fast Algorithms for the computation of Fourier Extensions of arbitrary length, SIAM
4] Liberty et al., Randomized algorithms for the low-rank approximation of matrices, 2007.
[5] Webb M., The plunge region in frame-based approximation (in prep.).
[6] Coppé V., Huybrechs D., Matthysen R., Webb M., Fast and stable algorithms for frame-based approximation (in prep.).

