

The plunge region in frame-based approximation

Marcus Webb (FWO and KU Leuven, Belgium)

Collaborators (KU Leuven): Daan Huybrechs, Vincent Coppé, Roel Matthysen

marcus.webb@cs.kuleuven.be

Frames

Definition: A set $\Phi = \{\phi_k : k \in I\} \subset \mathcal{H}$ (Hilbert space) is a frame if the synthesis operator,

 $\mathcal{T}: \mathbf{c} \mapsto \sum_{k \in I} c_k \phi_k$

is continuous and onto as a linear operator from $\ell^2(I)$ to \mathcal{H} .

Benefits: A frame generalises an orthonormal basis, but the set Φ does not need to be linearly independent. This gives us *more freedom* to define a frame for our purposes.

Challenges: The redundancy of a frame leads to ill-conditioned linear systems, but despite this, *stable and fast algorithms are possible* for frames with a *plunge region*.

Generalisation: Weighted sums of trig-like bases

Generalisation: Fourier extensions is a special case of the following frames [5]:

 $\Phi = \{ w_1 \cdot e_0, \, w_1 \cdot e_1, \, w_1 \cdot e_2, \ldots \} \cup \cdots \cup \{ w_n \cdot e_0, \, w_n \cdot e_1, \, w_n \cdot e_2, \ldots \},\$

where w_i is a BV function and $\{e_0, e_1, e_2, \ldots\}$ is a "trig-like" basis. Fourier extensions have just $w_1 = \chi_{\Omega}$ and $\{e_k\}$ = Fourier basis.

Trig-like bases: Technical definition [5]. Examples include Fourier series, Jacobi polynomials, cosine series, sine series.

Application: How can you approximate a function of the form $f(x) = g(x) + |x|^{1/2}h(x)$, where g and h are smooth? Both a polynomial basis, and a

Fourier extension

Fourier extension: To approximate a function on an arbitrary domain Ω , use a Fourier series which is periodic on a larger domain Γ (idea due to Bruno and Boyd '03).

Connection to frames: This is equivalent to approximating using the following (linearly dependent) frame $\Phi = \{ \exp(i\pi \mathbf{k} \cdot \mathbf{x}) : \mathbf{k} \in \mathbb{Z}^d \} \subset L^2(\Omega)$ [1].

weighted polynomial basis will have slow convergence. We suggest you use the frame,

$\Phi = \{T_0(x), T_1(x), T_2(X), \ldots\} \cup \{|x|^{1/2} T_0(x), |x|^{1/2} T_1(x), |x|^{1/2} T_2(x) \ldots\},\$

where T_k is the kth Chebyshev polynomial.

Least squares collocation: Just like the Fourier extension, we use oversampled least-squares collocation on a suitable grid.

Plunge region: Just like the Fourier extension, the collocation matrix A has a distinctive SVD profile, with 3 parts:

Above: two smooth functions, which each extend to periodic Fourier series on a larger domain.

Least-squares interpolation: The underlying linear system is Ac = b, where

 $A_{k,j} = \phi_j(x_k), \quad b_k = f(x_k), \quad \{x_k\} \subset \Omega.$

We use many more samples x_k than desired number of coefficients, which gives a tall, skinny matrix A, and increases the stability of the solution [2].

Plunge region: The collocation matrix A has a distinctive SVD profile, with three parts. Any solution vector c can be decomposed into these three spaces:

Fast algorithm: Since the singular values of A do not necessarily cluster at 1 like in the Fourier extension case, we cannot simply use $(I - AA^*)A$ to isolate the plunge region. We can, however, find a matrix Z such that $(I - AZ^*)A$ has approximate rank $\mathcal{O}(\log(N))$. For such Z, we can proceed just as in the Fourier extension case:

Solve (I − AZ*)Ap = (I − AZ*)b using randomised SVD with rank O(log(N)).
Solve q = Z*(b − Ap).
Solution: c = p + q.

This is performed fast in a similar way to the Fourier extension. Overall complexity: $\mathcal{O}(N \log^2(N))$ for N coefficients in the 1D setting [6].

Future goals

Fast algorithm: The generalised fast algorithm is still under investigation [6].

Full generalisation: In [5], only the 1D case is considered. We would like to generalise to higher dimensional weighted sum-frames.

Fast algorithm: The modification $(I - AA^*)A$ "kills" all singular vectors of A such $\sigma \approx 1$ and $\sigma \approx 0$. There are the only $O(\log(N))$ "plunge region" singular vectors remaining [3]!

- 1. Solve $(I AA^*)Ap = (I AA^*)b$
- 2. Solve $q = A^*(b Ap)$.
- 3. Solution: c = p + q.

A and A^* can be applied fast using the FFT. A (regularised) pseudoinverse of $(I - AA^*)A$ can be computed fast using randomised SVD with rank $\mathcal{O}(\log(N))$ [4]. A quick calculation shows that $Ac - b = (I - AA^*)(Ap - b)$, which is made small by step 1. Overall complexity: $\mathcal{O}(N \log^2(N))$ for N coefficients in the 1D setting.

Differential equations: we intend to develop these approximation techniques into spectral methods for problems with complicated geometry and singularities.

References

- [1] Huybrechs D., On the Fourier extension of nonperiodic functions, SIAM J. Numer. Anal., 2010.
- [2] Adcock B., Huybrechs D., *Frames and numerical approximation*, arXiv:1612.04464, 2017.
- [3] Matthysen R., Huybrechs D., Fast Algorithms for the computation of Fourier Extensions of arbitrary length, SIAM J. Sci. Comput., 2016.
- [4] Liberty et al., Randomized algorithms for the low-rank approximation of matrices, 2007.
- [5] Webb M., The plunge region in frame-based approximation (in prep.).
- [6] Coppé V., Huybrechs D., Matthysen R., Webb M., *Fast and stable algorithms for frame-based approximation* (in prep.).

