Computing Complex Singularities of Differential Equations with Chebfun

Marcus Webb
Worcester College, Oxford University (webb@maths.ox.ac.uk)

Motivation

- There has been scientific interest over the years in problems associated with complex singularities of solutions to differential equations.
- Weideman 2003 [5] describes a strategy for the computation of singularities of solutions to partial differential equations (PDEs).
- Our investigation was in this vein, but for the case of ordinary differential equations (ODEs), focusing on the numerical methods used.
- Viswanath and Sahutoglu 2010 [3] presents an analytic treatment of the ODE system called the Lorenz attractor. They consider time as a complex variable and show the existence of branch point singularities.
- This motivated the consideration of similar examples from dynamical systems for finding complex singularities.

Terminology

Singularity A point in \mathbb{C} where a function is not analytic. The types considered in this investigation are poles and branch points:
Pole A typical blow-up type singularity, for example $1 /\left(z^{2}+1\right)$ at $z= \pm i$ and $\tan (z)$ at $z=(2 k+1) \frac{\pi}{2}$ for all integers k.
Branch point A singularity which may not necessarily entail blow-up but where one must use a branch cut for the function to be well defined (see Figure 2, top-right). E.g. $\log (z)$ and $z^{\frac{1}{2}}$ at $z=0$.

Chebfun

- Chebfun is an open-source software project lead by Nick Hale and Nick Trefethen at Oxford University and Toby Driscoll at University of Delaware. - It is an extension of MATLAB which overloads common vector and matrix operations to instead manipulate functions and operators.
- The intention is that the commands should feel symbolic, but that the underlying computations are numeric and therefore fast.
- We used Chebfun's built in Chebop system and the overload of ode113 for solving ODEs.

Rational Interpolation

- A rational function r of type (m, n) is a function such that $r=p / q$ where p and q are polynomials of degrees m and n respectively.
- A rational interpolant of a function f for some points $x_{0}, \ldots, x_{K} \in \mathbb{C}$ is a rational function r such that $r\left(x_{j}\right)=f\left(x_{j}\right)$ for each j.
- Two papers in 2011 [2],[1] describe an algorithm for rational interpolation that is fast, stable and robust.
- This is important because rational interpolation and variants are ill-posed problems so algorithms for them are usually not robust; one almost always finds spurious singularities in r that have no relevance to f, which is a contributing factor to why rational approximation is not common practice. - The algorithm is implemented in Chebfun as the function ratinterp.
- Investigate the prospects of finding singularities for ODEs using Chebfun and robust rational interpolation.
- Work with the Chebfun team, debugging and developing ratinterp.
- Study examples of ODEs not normally studied with complex variables.
Method
(1) Solve ODE on real interval to return a chebfun u with degree N.
(2Use ratinterp to compute a type (m, n) rational interpolant $r=p / q$ on
$N+1$ points with $m \approx \frac{1}{2} N$ and n sufficiently large.
© Compute the roots of q, which are precisely the singularities of r. There
should be no spurious poles if ratinterp is effective.

Elementary Examples

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}+2 u \frac{d u}{d x}=0 \tag{1}
\end{equation*}
$$

Figure 1: Equation (1) (with appropriate boundary conditions) has solution $\tanh (z)=-i \tan (i z)$, which has poles at $z=(2 k+1) \frac{\pi}{2} i$ for all integers k. Contour plots of rational interpolant $|r|$ (left) and the same for $|\tanh |$ (right), coloured blue to red in the range $[0,5]$.

$\frac{d u}{d x}+2(6-x) \exp (-u)=0$
Figure 2: Equation (2) (with appropriate boundary conditions) has solution $f(z)=$
$\log \left(1+(z-6)^{2}\right)$, which has branch point singularities at $z=6 \pm i$.
Top-left: f on $[0,10]$. Top-right: 3D plot of the absolute value of f coloured by the argument of f. The lines of disconinuity in colour are the branch cuts. Bottom-left: contour plot of the rational interpolant $|r|$ of the numerical solution to (2). Bottom:right: the same for $|f|$. The contours are coloured blue to red in the range $[0,5]$.

Lorenz Attractor

This system was introduced by Lorenz, who derived it from the simplified equations of convection rolls arising in the equations of the atmosphere:

$$
\begin{equation*}
\frac{d x}{d t}=10(y-x), \quad \frac{d y}{d t}=28 x-y-x z, \quad \frac{d z}{d t}=-\frac{8}{3} z+x y \tag{3}
\end{equation*}
$$

Figure 3: Solution to system (3) with initial conditions: $(x, y, z)=(-14,-15,20)$. Left: x, y and z on $[0,5]$ coloured blue, green and red respectively. Middle: Trajectory of the solution in 3D space. Right: Contour plot of a rational interpolant of the computed x-solution.
Dotted lines and stars are at plotted at the real parts of the complex singularities of the system.
Lotka-Volterra Predator Prey Model
A common population model for interacting species is the Lotka-Volterra predator-prey model. u and v represent the populations of prey and predators respectively and $\alpha, \beta, \gamma, \delta$ are positive constants.

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u-\beta u v, \quad \frac{d v}{d t}=-\gamma v+\delta u v . \tag{4}
\end{equation*}
$$

Figure 4: Here we use $(\alpha, \beta, \gamma, \delta)=(1,1,0.5,0.5)$ and initial conditions $(u, v)=(2,3)$. These figures are analogous to those in Figure 3.

Outcomes

- We developed a method for finding the singularities of a solution to an ODE, while avoiding spurious poles, by using the degree of the chebfun to inform our choice of m and n. The process can to some extent be automated - Among the ODEs studied were the three body problem, van der Pol oscillator and Bessel's equation. See [4] for the three body problem.

Acknowledgements \& References
This project was supervised by Prof. Lloyd N. Trefethen FRS and supported by an EPSRC
Undergraduate Vacation Bursary.
[1] P. GonNet, R. Pachón, AND L.N. Trefethen, Robust rational interpolation and least-squares, Electronic Transactions on Numerical Analysis, 38 (2011), pp. 146-167.
2] R. Pachón, P. Gonnet, and J. Van Deun, Fast and stable rational interpolation in roots of unity and Chebyshev points, SIAM J. Numer. Anal., submitted.
[3] D. Viswanath and S. Sahutoglu, Complex singularities and the Lorenz attractor, SIAM Review, B] D. Viswanath and S.
52 (2010), pp. 294-314.
[4] M. WeBB, Computing complex singularities of differential equations with Chebfun, SIAM Undergraduate Research Online (SIURO), to be submitted.
[5] J.A.C. WEIDEMAN, Computing the dynamics of complex singularities of nonlinear PDEs, SIAM J. Appl. Dyn. Syst, 2 (2003), pp. 171-186.

