Computing Complex Singularities of Differential Equations with Chebfun

Motivation

« There has been scientific interest over the years in problems associated with
complex singularities of solutions to differential equations.

« Weideman 2003 [5]| describes a strategy for the computation of singularities
of solutions to partial differential equations (PDEs).

« Our investigation was in this vein, but for the case of ordinary differential
equations (ODEs), focusing on the numerical methods used.

= Viswanath and Sahutoglu 2010 [3] presents an analytic treatment of the ODE
system called the Lorenz attractor. They consider time as a complex
variable and show the existence of branch point singularities.

= This motivated the consideration of similar examples from dynamical
systems for finding complex singularities.

Terminology

Singularity A point in C where a function is not analytic. The types
considered in this investigation are poles and branch points:

Pole A typical blow-up type singularity, for example 1/(2% + 1) at z = =4

and tan(z) at z = (2k + 1)7 for all integers k.

Branch point A singularity which may not necessarily entail blow-up but
where one must use a branch cut for the function to be well defined
(see Figure 2, top-right). E.g. log(z) and 22 at z = 0.

Chebfun

« Chebtun is an open-source software project lead by Nick Hale and Nick
Trefethen at Oxford University and Toby Driscoll at University of Delaware.

« It is an extension of MATLAB which overloads common vector and matrix
operations to instead manipulate functions and operators.

« The intention is that the commands should feel symbolic, but that the
underlying computations are numeric and therefore fast.

« We used Chebtun’s built in Chebop system and the overload of ode113 for
solving ODEs.

Rational Interpolation

= A rational function r of type (m, n) is a function such that » = p/q where p
and ¢ are polynomials of degrees m and n respectively.

« A rational interpolant of a tunction f for some points xg,...,zx € Cis a
rational function r such that r(x;) = f(x;) for each j.

« Two papers in 2011 |2],[1] describe an algorithm for rational interpolation
that is fast, stable and robust.

« This is important because rational interpolation and variants are #(l-posed
problems so algorithms for them are usually not robust; one almost always
finds spurious singularities in r that have no relevance to f, which is a
contributing factor to why rational approximation is not common practice.

= The algorithm is implemented in Chebfun as the function ratinterp.
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Aims

« Investigate the prospects of finding singularities for ODEs using Chebfun and
robust rational interpolation.

« Work with the Chebfun team, debugging and developing ratinterp.
« otudy examples of ODEs not normally studied with complex variables.

Method

o Solve ODE on real interval to return a chebfun u with degree V.

@ Use ratinterp to compute a type (m,n) rational interpolant » = p/q on

N + 1 points with m ~ %N and n sufficiently large.

® Compute the roots of ¢, which are precisely the singularities of r. There
should be no spurious poles if ratinterp is effective.

Elementary Examples
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Figure 1: Equation (1) (with appropriate boundary conditions) has solution tanh(z) = —i tan(iz),

which has poles at z = (2k 4 1)7¢ for all integers k. Contour plots of rational interpolant |r|

(left) and the same for |tanh| (right), coloured blue to red in the range |0, 5].
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Figure 2: Equation (2) (with appropriate boundary conditions) has solution f(z) =

log(1 + (z — 6)?), which has branch point singularities at 2 = 6 & 4.

Top-left: f on |0,10]. Top-right: 3D plot of the absolute value of f coloured by the argument
of f. The lines of disconinuity in colour are the branch cuts. Bottom-left: contour plot of the
rational interpolant |r| of the numerical solution to (2). Bottom:right: the same for |f|. The

contours are coloured blue to red in the range |0, 5].

Lorenz Attractor

This system was introduced by Lorenz, who derived it from the simplified equa-
tions of convection rolls arising in the equations of the atmosphere:
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Figure 3: Solution to system (3) with initial conditions: (z,y, z) = (=14, —15,20). Left: x,y
and z on |0, 5| coloured blue, green and red respectively. Middle: Trajectory of the solution in 3D
space. Right: Contour plot of a rational interpolant of the computed x-solution.

Dotted lines and stars are at plotted at the real parts of the complex singularities of the system.

Lotka-Volterra Predator Prey Model

A common population model for interacting species is the Lotka-Volterra
predator-prey model. w and v represent the populations of prey and preda-
tors respectively and «, 3,7y, 0 are positive constants.
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Figure 4: Here we use (o, 3,7,0) = (1,1,0.5,0.5) and initial conditions (u,v) = (2,3). These

figures are analogous to those in Figure 3.

Outcomes

« We developed a method for finding the singularities of a solution to an ODE,
while avoiding spurious poles, by using the degree of the chebfun to inform
our choice of m and n. The process can to some extent be automated.

« Among the ODEs studied were the three body problem, van der Pol
oscillator and Bessel’s equation. See [4] for the three body problem.
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