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Motivation

•There has been scientific interest over the years in problems associated with
complex singularities of solutions to differential equations.

•Weideman 2003 [5] describes a strategy for the computation of singularities
of solutions to partial differential equations (PDEs).

•Our investigation was in this vein, but for the case of ordinary differential
equations (ODEs), focusing on the numerical methods used.

•Viswanath and Sahutoglu 2010 [3] presents an analytic treatment of the ODE
system called the Lorenz attractor. They consider time as a complex
variable and show the existence of branch point singularities.

•This motivated the consideration of similar examples from dynamical
systems for finding complex singularities.

Terminology

SingularityA point in C where a function is not analytic. The types
considered in this investigation are poles and branch points:

PoleA typical blow-up type singularity, for example 1/(z2 + 1) at z = ±i
and tan(z) at z = (2k + 1)π2 for all integers k.

Branch pointA singularity which may not necessarily entail blow-up but
where one must use a branch cut for the function to be well defined
(see Figure 2, top-right). E.g. log(z) and z 1

2 at z = 0.

Chebfun

•Chebfun is an open-source software project lead by Nick Hale and Nick
Trefethen at Oxford University and Toby Driscoll at University of Delaware.

• It is an extension of MATLAB which overloads common vector and matrix
operations to instead manipulate functions and operators.

•The intention is that the commands should feel symbolic, but that the
underlying computations are numeric and therefore fast.

•We used Chebfun’s built in Chebop system and the overload of ode113 for
solving ODEs.

Rational Interpolation

•A rational function r of type (m,n) is a function such that r = p/q where p
and q are polynomials of degrees m and n respectively.

•A rational interpolant of a function f for some points x0, . . . , xK ∈ C is a
rational function r such that r(xj) = f (xj) for each j.

•Two papers in 2011 [2],[1] describe an algorithm for rational interpolation
that is fast, stable and robust.

•This is important because rational interpolation and variants are ill-posed
problems so algorithms for them are usually not robust; one almost always
finds spurious singularities in r that have no relevance to f , which is a
contributing factor to why rational approximation is not common practice.

•The algorithm is implemented in Chebfun as the function ratinterp.

Aims

• Investigate the prospects of finding singularities for ODEs using Chebfun and
robust rational interpolation.

•Work with the Chebfun team, debugging and developing ratinterp.
• Study examples of ODEs not normally studied with complex variables.

Method

1 Solve ODE on real interval to return a chebfun u with degree N .
2 Use ratinterp to compute a type (m,n) rational interpolant r = p/q on
N + 1 points with m ≈ 1

2N and n sufficiently large.
3 Compute the roots of q, which are precisely the singularities of r. There
should be no spurious poles if ratinterp is effective.

Elementary Examples
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Figure 1: Equation (1) (with appropriate boundary conditions) has solution tanh(z) = −i tan(iz),
which has poles at z = (2k + 1)π2i for all integers k. Contour plots of rational interpolant |r|
(left) and the same for |tanh| (right), coloured blue to red in the range [0, 5].
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+ 2(6− x) exp(−u) = 0 (2)

Figure 2: Equation (2) (with appropriate boundary conditions) has solution f (z) =
log(1 + (z − 6)2), which has branch point singularities at z = 6± i.
Top-left: f on [0, 10]. Top-right: 3D plot of the absolute value of f coloured by the argument
of f . The lines of disconinuity in colour are the branch cuts. Bottom-left: contour plot of the
rational interpolant |r| of the numerical solution to (2). Bottom:right: the same for |f |. The
contours are coloured blue to red in the range [0, 5].

Lorenz Attractor

This system was introduced by Lorenz, who derived it from the simplified equa-
tions of convection rolls arising in the equations of the atmosphere:

dx

dt
= 10(y − x), dy

dt
= 28x− y − xz, dz

dt
= −8

3
z + xy. (3)

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

40

50

t

x
(t

),
 y

(t
),

 z
(t

)

−20
−10

0
10

20

−40

−20

0

20

40

10

20

30

40

y(t)

x(t)

z
(t

)

Re(t)

Im
(t

)

0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 3: Solution to system (3) with initial conditions: (x, y, z) = (−14,−15, 20). Left: x, y
and z on [0, 5] coloured blue, green and red respectively. Middle: Trajectory of the solution in 3D
space. Right: Contour plot of a rational interpolant of the computed x-solution.
Dotted lines and stars are at plotted at the real parts of the complex singularities of the system.

Lotka-Volterra Predator Prey Model

A common population model for interacting species is the Lotka-Volterra
predator-prey model. u and v represent the populations of prey and preda-
tors respectively and α, β, γ, δ are positive constants.

du

dt
= αu− βuv, dv

dt
= −γv + δuv. (4)
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Figure 4: Here we use (α, β, γ, δ) = (1, 1, 0.5, 0.5) and initial conditions (u, v) = (2, 3). These
figures are analogous to those in Figure 3.

Outcomes

•We developed a method for finding the singularities of a solution to an ODE,
while avoiding spurious poles, by using the degree of the chebfun to inform
our choice of m and n. The process can to some extent be automated.

•Among the ODEs studied were the three body problem, van der Pol
oscillator and Bessel’s equation. See [4] for the three body problem.
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