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Introduction: Standard calculus

The differential calculus we all know and love was invented
independently by Newton and Leibniz in the 17th century

Newton used the notation x , ẋ , ẍ ...

Leibniz used the notation y ,
dy

dx
,

d2y

dx2
, ...

dny

dxn
, ...

The notion of a fractional version of this calculus was
discussed relatively soon after.
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Introduction: Leibniz-L’Hôpital correspondence

In 1695, Leibniz and L’Hôpital were discussing Leibniz’s newly
developed calculus when L’Hôpital asked:

“...and what if n be 1/2?”

Leibniz replied:

“It will lead to a paradox, from which one day useful
consequences will be drawn.”
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Introduction

This was the moment the fractional calculus was born.

The idea: Generalise the notion of differentiation and
integration of order n ∈ N to that of order s ∈ R.

I.e. find a natural and applicable definition for
d sy

dx s
.
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Overview

1 Work of Euler

2 Riemann-Liouville Fractional Calculus

3 Examples

4 Relationship to the Fourier Transform

5 Imbalance and Generalising to Higher Dimensions.

6 Applications: Anomalous Diffusion
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Work of Euler: Gamma function

Euler made the first step in the right direction in 1729 with
the Gamma function:

Γ(s) =

∫ ∞
0

ts−1e−t dt, (1)

which is defined for all s ∈ C \ {0, 1, 2, 3, ...}.
It is easy to see that Γ(1) = 1, and integration by parts
reveals the identity:

Γ(s + 1) = sΓ(s), ∀s. (2)

From these two facts we deduce that the Gamma function
extends the factorial function:

Γ(n) = (n − 1)!, ∀n ∈ N. (3)
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Euler’s Gamma function
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Work of Euler: fractional calculus on monomials

A year later (1730), Euler published some ideas for fractional
calculus using the Gamma function in a natural way.

Consider the nth derivative of a monomial for an integer m:

y(x) = xm. (4)

dny

dxn
=

{
m!

(m−n)! xm−n if m ≥ n,

0 if m < n.
(5)

Use the Gamma function to generalise to s, µ ∈ R≥0:

y(x) = xµ,
d sy

dx s
=

Γ(µ+ 1)

Γ(µ− s + 1)
xµ−s . (6)

Notice how the poles of Γ(µ− s + 1) take care of the case
µ− s ∈ {−1,−2,−3, ...}, which corresponds to m < n above.
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Examples

Fractional derivatives of constant functions are not necessarily
zero:

y(x) = 1,
d

1
2 y

dx
1
2

=
Γ(0 + 1)

Γ(0− 1
2 + 1)

x0− 1
2 =

2√
π

x−
1
2 . (7)

Think about why the derivative of a constant function is zero.

We can now see it as a consequence of the poles of
Γ(µ− s + 1) when µ− s ∈ {−1,−2,−3, ...}.
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Work of Euler: Notes

One can (and should) check that these fractional derivatives

can be composed i.e. d s

dx s

(
d ty
dx t

)
= d s+ty

dxs+t .

Assuming linearity of fractional differentiation, we can define
fractional derivatives for polynomials.

It is tempting to define fractional derivatives for all analytic
functions, i.e. those that can be represented by a power series
in some open set.

However, a fair bit of nontrivial justification is required to
show that this is well-defined. This leads to so-called
Taylor-Riemann series.

Note that by reversing the process, one can calculate some
fractional-order integrals too.
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Cauchy’s Formula for Repeated Integration

Now, let us consider an observation of Cauchy (1789–1857).

Let u be a Lebesgue integrable function defined on the
interval [a, b] i.e. u ∈ L1(a, b).

The integral operator Ia, for each x in [a, b] is defined to be:

Ia[u](x) :=

∫ x

a
u(t) dt. (8)

Cauchy showed that repeated application of this integral
operator can be expressed with a single integral:

Ina [u](x) =

∫ x

a

∫ tn

a
. . .

∫ t2

a
u(t1) dt1 . . . dt2 dtn (9)

=
1

(n − 1)!

∫ x

a
(x − t)n−1u(t) dt. (10)
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The Riemann-Liouville Fractional Integral

Integration of order n ∈ N is described by the operation:

Ina [u](x) =
1

(n − 1)!

∫ x

a
(x − t)n−1u(t) dt. (11)

The natural extension of such a definition to real order s > 0
is:

Isa [u](x) =
1

Γ(s)

∫ x

a
(x − t)s−1u(t) dt. (12)

This is called the Left Riemann-Liouville Fractional Integral of
order s (because we integrate to x from the left).

We will discuss the Right Riemann-Liouville Fractional
Integral later.
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The Riemann-Liouville Fractional Integral: Notes

This integral is very general; we can perform fractional
integrals on all Lebesgue integrable u, not just monomial
functions.
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The Riemann-Liouville Fractional Derivative

To define a fractional derivative we cannot just formally
replace s by −s in the Riemann-Liouville integral.

For a given u, we do not have a finite integral for all x ∈ [a, b]
(except if u is identically zero):

Ds
a[u](x) =? 1

Γ(−s)

∫ x

a
(x − t)−s−1u(t) dt. (13)

There is, however a nice trick we can use to get around this.
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The Riemann-Liouville Fractional Derivative

To define a fractional derivative of order s ∈ (0, 1] we
integrate to order 1− s then differentiate to order 1:

Ds
a[u](x) =

1

Γ(1− s)

d

dx

∫ x

a
(x − t)−su(t) dt. (14)

More generally, to define a fractional derivative of order
s ∈ (k − 1, k] for k ∈ N we integrate to order k − s then
differentiate to order k :

Ds
a[u](x) =

1

Γ(k − s)

dk

dxk

∫ x

a
(x − t)k−1−su(t) dt, (15)

This is the Left Riemann-Liouville Fractional Derivative.
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Riemann-Liouville Fractional Calculus: nonlocality

The parameter a being involved in the fractional derivative is
striking:

Ds
a[u](x) =

1

Γ(k − s)

dk

dxk

∫ x

a
(x − t)k−1−su(t) dt. (16)

We call this parameter the terminal of the derivative.

Note that the fractional derivative evaluated at x is dependent
on all the values of u between a and x .

This is strange as classical derivatives only depend locally on
the point of evaluation i.e. just the gradient of the graph.

Conclusion: Riemann-Liouville fractional derivatives are
nonlocal operators.
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Riemann-Liouville Fractional Calculus

Riemann and Liouville developed this calculus independently.

Liouville published a succession of papers around 1832, and he
used the terminal a = −∞.

Riemann developed the calculus in notebooks while still a
student around 1848, which were published posthumously. He
used the terminal a = 0.
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Example: monomials with a = 0

Let a = 0 and once again consider the following functions for
µ ≥ 0:

u(x) = xµ. (17)

Then for x , s > 0 we have the following:

Ds
a[u](x) =

Γ(µ+ 1)

Γ(µ− s + 1)
xµ−s . (18)

The Riemann-Liouville fractional derivative generalises the
early work of Euler!
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The choice a = −∞

We will see that Liouville’s choice of a = −∞ can be
considered the most natural.

For example, a deep relevance of the Gamma function is
revealed if we change variables t 7→ x − t:

Is−∞[u](x) =
1

Γ(s)

∫ x

−∞
(x − t)s−1u(t) dt (19)

=
1

Γ(s)

∫ ∞
0

ts−1u(x − t) dt (20)
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Example: The exponential function

If we set u(x) = eγx for γ > 0 we have:

Is−∞[u](x) =
1

Γ(s)

∫ ∞
0

ts−1eγ(x−t) dt (21)

= eγx
1

Γ(s)

∫ ∞
0

ts−1e−γt dt (22)

= γ−seγx
1

Γ(s)

∫ ∞
0

ts−1e−t dt (23)

= γ−seγx . (24)

Similarly:
Ds
−∞[u](x) = γseγx . (25)
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Derivatives and the Fourier Transform

Those familiar with the Fourier transform know that the
Fourier transform of a derivative can be expressed by the
following:

F
[

du

dx

]
(ξ) = (iξ)F [u], (26)

and more generally,

F
[

dku

dxk

]
(ξ) = (iξ)kF [u]. (27)

A similar identity holds for anti-derivatives if u is compactly
supported:

F
[
Ik−∞[u]

]
(ξ) = (iξ)−kF [u]. (28)
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Fractional Derivatives and the Fourier Transform

With what is a surprisingly technical derivation, one can show
that a similar identity holds for fractional derivatives:

F
[
Ds
−∞[u]

]
(ξ) = (iξ)sF [u]. (29)

F
[
Is−∞[u]

]
(ξ) = (iξ)−sF [u]. (30)

This suggests that the Riemann-Liouville fractional calculus
with a = −∞ is very natural indeed.
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We have not been very rigorous here at all.

The analysis involved with the fractional calculus can get very
technical. The two issues we have seen so far are:

Fractional derivatives are nonlocal.

Fractional derivatives have an awkward definition.

The plot thickens...
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Imbalances For Fractional Derivatives

By considering the integral operator Jb for u ∈ L1(a, b):

Jb[u](x) :=

∫ b

x
u(t) dt, (31)

We can derive the Right Riemann-Liouville Fractional
Derivative:

Ds
,b[u](x) =

(−1)k

Γ(k − s)

dk

dxk

∫ b

x
(t − x)k−1−su(t) dt. (32)

Unlike in the classical derivatives, the difference between
taking a fractional derivative from the left and from the right
is very different.

We see that the right fractional derivative depends on values
of u between x and b, rather than a and x .
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Symmetry and Higher Dimensions

This asymmetry causes problems for generalising to higher
dimensions.

A solution is to consider the operator satisfying:

Rs [u](x) = F−1 [|ξ|sF [u]] . (33)

This operator is called the Riesz Symmetric Fractional
Derivative or the Fractional Laplacian. (Note that R2 = −∆).

In one dimension, this operator has a simple form:

Rs = C (s)(Ds
a +Ds

,b), (34)

for some constant C (s) depending on s.
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Application: Anomalous Diffusion

In 1905, Einstein derived the diffusion equation from a
Brownian motion model of particles.

If you assume that particles diffuse by a random walk, and
take the average behaviour as the number of particles tends
to infinity and the time between steps tends to zero, one finds
that the diffusion equation models the probability distribution
u for the location of the particles:

ut = κ∆u (35)

However, a random walk is quite restrictive. The particles can
only take steps at regular allotted times, and the steps can
only be of a single given size. This is unrealistic, particularly if
the medium is very heterogeneous.

Marcus Webb Fractional Calculus: differentiation and integration of non-integer order



Levy Flights

There are several alternatives to Brownian motion that can
encode more properties into your diffusive process.

We won’t go into any details here, but what we are interested
in is a Levy Flight. The particles can have different jump sizes
and varying jump rates.

A Levy flight can be parametrised by a single parameter
s ∈ [1, 2].

s = 2 corresponds to Brownian motion with corresponding
probability distribution the Gaussian distribution.

s = 1 is an extreme Levy flight with corresponding probability
distribution the Cauchy distribution.

For other values of s we have something in between.
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Levy Flights

On the left we have a Brownian motion in two dimensions,
and on the right we have an extreme Levy flight with s = 1.

Note the multi-scale, or nonlocal nature of the Levy flight.
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Anomalous Diffusion Equation

If we take the average behaviour of the Levy flight as the step
sizes shrink to zero, then we have an interesting equation
modelling the probability distribution of the particles:

ut = −κ(−∆)s/2u, (36)

where
(−∆)s/2u = F−1 [|ξ|sF [u]] (37)

This is called the anomalous diffusion equation.

Skewing the Levy flight can produce various operators in the
fractional calculus.
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It turns out that Leibniz’s prophecy was correct!

In the last 40 years or so, many applications of this type of
theory have been found.

Diffusive processes are ubiquitous, and more often than not
they are in a heterogeneous medium:

Cell and tissue physiology

Contaminant transport in aquifers

Mathematical finance

Mathematical ecology, e.g. hunting and foraging

Unstable magnetic fields

The recorded phenomena in the literature is impressive, and
growing
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