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1. A Tale of Two Bases: Chebyshev & Legendre

• To approximate a function (e.g. a signal), we can expand in Chebyshev
or Legendre polynomial series and work with the vector of coefficients:

f (x) =

N∑
k=0

cchebk Tk(x) =

N∑
k=0

clegk Pk(x), x ∈ [−1, 1].

• The Chebyshev polynomials Tk(x) = cos(k cos−1(x)) have good approx-
imation properties and fast transforms, due to their link to Fourier series.

• The Legendre polynomials Pk(x) are orthogonal in L2 inner product:∫ 1

−1

Pj(x)Pk(x) dx = 0 if j 6= k.

• Hence Legendre is better than Chebyshev in some situations:

– Fourier transform of Pk(x) is simpler −→ signal processing

– Faster algorithms for convolution of Legendre expansions −→ smooth-
ing a signal, sums of random variables

– Pk(x) has a rapidly decaying Cauchy transform −→ Riemann-Hilbert
problems, random matrix theory and integrable systems

2. Legendre-to-Chebyshev Conversion Matrix

• To convert from Chebyshev coefficients to Legendre coefficients, we compute
a matrix-vector multiplication:

ccheb = Mcleg, Mjk =


1
πΛ
(
k
2

)2
, 0 = j ≤ k ≤ N, j even,

2
πΛ
(
k−j

2

)
Λ
(
k+j

2

)
, 0 < j ≤ k ≤ N, k − j even,

0, otherwise,

where Λ(z) = Γ(z + 1/2)/Γ(z + 1), Γ(z) is the gamma function.

• Directly computing Mcleg would take O(N 2) operations. Too slow!

• There are quasi-linear algorithms (i.e. O(N(logN)k) operations) due
to Orszag (1986), Alpert-Rokhlin (1991), Potts-Steidl-Tasche (1998), Keiner
(2009), Iserles (2011) and Hale-Townsend (2013).

• Our O(N(logN)2) algorithm is based on decomposing the matrix M :

M = D(T ◦H), D = diag(1/π, 2/π, . . . , 2/π)

Hjk = Λ
(
j+k

2

)
, Tjk =

Λ
(
k−j

2

)
, 0 ≤ j ≤ k ≤ N, k − j even,

0, otherwise,

where ◦ is the Hadamard product (elementwise product). T is a
Toeplitz matrix and H is a Hankel matrix.

3. Overview of New Fast Algorithm

• Fact 1: The Toeplitz matrix T in box 2 can be applied to a vector in quasilinear
operations using the Fast Fourier Transform (FFT).

• Fact 2: Note the following identity for the Hadamard product of a matrix A
with a rank 1 matrix v wT , (where v = (v0, v1, . . . , vN)T ):

A ◦ v wT = DvADw,

where Dv = diag(v0, v1, . . . , vN). Diagonal matrices can be applied to a vector
in linear time, so matrix-vector multiplication for A ◦ v wT can be computed
in quasilinear operations if and only if it can for be for A.

Steps for computing ccheb = Mcleg Cost
1. Decompose M into M = D(T ◦H) (see box 2) O(N)

2. Calculate low rank approx. H ≈
∑K

j=1 ar vj v
T
j (see box 4) O(N(logN)2)

3. Compute w = (T ◦H)cleg (using Fact 1 and Fact 2) O(N(logN)2)

4. Compute ccheb = Dw O(N)

4. Computing Low Rank Approximations by
Pivoted Gaussian Elimination

• Pivoted GE: For a matrix A, repeat the following iteration:

1. j, k = argmax
0≤s,t≤N

|Ast| (choose pivot)

2. A←− A− (Aj,k)
−1 (A∗,kAj,∗) (subtract rank 1 update)

• At each iteration, the sum of those rank 1 updates is a low rank approx-
imation to the original matrix A.

• Theorem: the approximate rank of the Hankel matrixH in box 2 isO(logN).

• For a symmetric, positive definite matrix (like H in box 2), we can find a rank
K approximant in O(K2N) operations. For our H , K = O(logN).
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Left: Pivoted GE’s low rank approximants are close to optimal Singular Value
Decomposition (SVD). Right: But they are much faster to compute!

5. Comparison with State of the Art
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Left: Observed errors computing ccheb = Mcleg with various decay rates in cleg.
Hale-Townsend (2013) method has O(N) error growth for O(n0) decay rate.
Right: Execution times between the direct (yellow), Hale-Townsend (2013)
asymptotics method (red), and the new algorithm (blue).

6. Chebyshev-to-Legendre Conversion and
More Polynomial Transforms

• The Chebyshev-to-Legendre conversion matrix cleg = Lccheb has a similar
structure:

Ljk =


1, j = k = 0,
√
π

2Λ(j), 0 < j = k ≤ N,

−k(j + 1
2)

Λ
(
k−j−2

2

)
k−j ·

Λ
(
j+k−1

2

)
j+k+1 , 0 ≤ j < k ≤ N, k − j even,

and so we can use the same techniques.

• Converting between Ultraspherical (Gegenbauer) polynomials Cλ1
k (x) and

Cλ2
k (x) also has this structure (cf. Keiner (2009), Cantero-Iserles (2013)):

Ajk =

cλ1,λ2(j + λ2)
Γ
(
k−j

2 +λ1−λ2

)
Γ
(
k−j

2 +1
) ·

Γ
(
k+j

2 +λ1

)
Γ
(
k+j

2 +λ2+1
), 0 ≤ j ≤ k, k − j even,

0, otherwise.

• Converting between Jacobi polynomial expansions can also be computed in
O(N(logN)2) operations with this approach! (cf. Wang-Huybrechs (2015))

Funded by LMS Cecil King Travel Scholarship and Cambridge Centre for Analysis EPSRC Studentship.


