FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ AND HANKEL MATRICES

1. A Tale of Two Bases: Chebyshev & Legendre

e To approximate a function (e.g. a signal), we can expand in Chebyshev
or Legendre polynomial series and work with the vector of coefficients:
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e The Chebyshev polynomials T}(x) = cos(k cos™!(x)) have good approx-
imation properties and fast transforms, due to their link to Fourier series.

e The Legendre polynomials P,(x) are orthogonal in L? inner product:
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e Hence Legendre is better than Chebyshev in some situations:

— Fourier transform of Py(x) is simpler — signal processing

— Faster algorithms for convolution of Legendre expansions — smooth-
ing a signal, sums of random variables

— Pi(z) has a rapidly decaying Cauchy transform — Riemann-Hilbert
problems, random matrix theory and integrable systems

2. Legendre-to-Chebyshev Conversion Matrix

e To convert from Chebyshev coefficients to Legendre coefficients, we compute
a matrix-vector multiplication:
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where A(z) =T'(2+1/2)/T(2 4+ 1), I'(2) is the gamma function.
e Directly computing M9 would take O(N?) operations. Too slow!

e There are quasi-linear algorithms (i.e. O(N(log N)¥) operations) due
to Orszag (1986), Alpert-Rokhlin (1991), Potts-Steidl-Tasche (1998), Keiner
(2009), Iserles (2011) and Hale-Townsend (2013).

e Our O(N(log N)?) algorithm is based on decomposing the matrix M:

M=D(ToH)  D=dagl/m 2/m,...,2/7)
k—j . .
ij:/\<j%k), T — A(Tj), 0<j<k<N,k—jeven,
0, otherwise,
where o is the Hadamard product (elementwise product). T is a
Toeplitz matrix and H is a Hankel matrix.
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3. Overview of New Fast Algorithm

e Fact 1: The Toeplitz matrix T"in box 2 can be applied to a vector in quasilinear
operations using the Fast Fourier Transform (FFT).

e Fact 2: Note the following identity for the Hadamard product of a matrix A
with a rank 1 matrix v w!, (where v = (vg, v1, ..., v5)"):

Aovw! = D,AD,,

where D, = diag(vg, vy, . .., vy). Diagonal matrices can be applied to a vector
in linear time, so matrix-vector multiplication for A ovw?! can be computed
in quasilinear operations if and only if it can for be for A.

Steps for computing ¢’ = Ml Cost

. Decompose M into M = D(T o H) (see box 2) O(N)

. Calculate low rank approx. H = Zfil a,v; v (see box 4) O(N(log N)?)
. Compute w = (T o H )gleg (using Fact 1 and Fact 2) O(N(log N)?)
O(N)

. Compute ¢ = Dw

4. Computing Low Rank Approximations by
Pivoted Gaussian Elimination

e Pivoted GE: For a matrix A, repeat the following iteration:

1. 7,k = argmax| Ay (choose pivot)

0<s,t<N

2. A— A— (A1) (AurA)L) (subtract rank 1 update)

e At each iteration, the sum of those rank 1 updates is a low rank approx-
imation to the original matrix A.

e Theorem: the approximate rank of the Hankel matrix H in box 2 is O(log N).

e For a symmetric, positive definite matrix (like H in box 2), we can find a rank
K approximant in O(K?N) operations. For our H, K = O(log N).

GE’s near-best approximants GE’s execution time
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Left: Pivoted GE’s low rank approximants are close to optimal Singular Value
Decomposition (SVD). Right: But they are much faster to compute!
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5. Comparison with State of the Art

—
O_A

—_
o
o
Immaasi

—
<
o
—
e

Absolute error
8_'.
)

Execution time (seconds)
=)

o I
10717 ; 10-4,1
10 10

Left: Observed errors computing ¢ = Mc/® with various decay rates in .

Hale-Townsend (2013) method has O(N) error growth for O(n’) decay rate.
Right: Execution times between the direct (yellow), Hale-Townsend (2013)
asymptotics method (red), and the new algorithm (blue).

6. Chebyshev-to-Legendre Conversion and
More Polynomial Transforms

e The Chebyshev-to-Legendre conversion matrix ¢® = Lc™ has a similar
structure:

Ljp =4 0<jg=k<N,

+k—1
M)
JHE+L

0<j3< k<N, k—jeven,
and so we can use the same techniques.

e Converting between Ultraspherical (Gegenbauer) polynomials C’,?l () and
C’?Q(az) also has this structure (cf. Keiner (2009), Cantero-Iserles (2013)):

( F(%—l—)\l—)\g)

)
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0, otherwise.
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C)q,)xg(.j + )\2) 0< ] < ka k _] evel,

Ajj. = 4
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e Converting between Jacobi polynomial expansions can also be computed in
O(N (log N)?) operations with this approach! (cf. Wang-Huybrechs (2015))
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