Fast Polynomial Transforms Based on Toeplitz and Hankel Matrices

Alex Townsend¹ ^{1}MIT

Marcus Webb²

Sheehan Olver³

²University of Cambridge

³University of Sydney

1. A Tale of Two Bases: Chebyshev & Legendre

• To approximate a function (e.g. a signal), we can expand in Chebyshev or Legendre polynomial series and work with the vector of coefficients:

$$f(x) = \sum_{k=0}^{N} c_k^{cheb} T_k(x) = \sum_{k=0}^{N} c_k^{leg} P_k(x), \qquad x \in [-1, 1].$$

- The Chebyshev polynomials $T_k(x) = \cos(k \cos^{-1}(x))$ have good approximation properties and fast transforms, due to their **link to Fourier series**.
- The **Legendre polynomials** $P_k(x)$ are **orthogonal** in L^2 inner product:

$$\int_{-1}^{1} P_j(x) P_k(x) \, \mathrm{d}x = 0 \text{ if } j \neq k.$$

- Hence Legendre is **better** than Chebyshev in **some situations**:
 - Fourier transform of $P_k(x)$ is simpler \longrightarrow signal processing
 - Faster algorithms for convolution of Legendre expansions \longrightarrow **smooth**ing a signal, sums of random variables
 - $-P_k(x)$ has a rapidly decaying Cauchy transform \longrightarrow Riemann-Hilbert problems, random matrix theory and integrable systems

2. Legendre-to-Chebyshev Conversion Matrix

• To **convert** from Chebyshev coefficients to Legendre coefficients, we compute a matrix-vector multiplication:

$$\underline{c}^{cheb} = M\underline{c}^{leg}, \quad M_{jk} = \begin{cases} \frac{1}{\pi} \Lambda \left(\frac{k}{2}\right)^2, & 0 = j \le k \le N, \ j \text{ even}, \\ \frac{2}{\pi} \Lambda \left(\frac{k-j}{2}\right) \Lambda \left(\frac{k+j}{2}\right), & 0 < j \le k \le N, \ k-j \text{ even}, \\ 0, & \text{otherwise}, \end{cases}$$

where $\Lambda(z) = \Gamma(z+1/2)/\Gamma(z+1)$, $\Gamma(z)$ is the gamma function.

- Directly computing $M\underline{c}^{leg}$ would take $\mathcal{O}(N^2)$ operations. **Too slow!**
- There are quasi-linear algorithms (i.e. $\mathcal{O}(N(\log N)^k)$ operations) due to Orszag (1986), Alpert-Rokhlin (1991), Potts-Steidl-Tasche (1998), Keiner (2009), Iserles (2011) and Hale-Townsend (2013).
- Our $\mathcal{O}(N(\log N)^2)$ algorithm is based on **decomposing the matrix** M:

$$M = D(T \circ H), \qquad D = \operatorname{diag}(1/\pi, 2/\pi, \dots, 2/\pi)$$

$$H_{jk} = \Lambda\left(\frac{j+k}{2}\right), \qquad T_{jk} = \begin{cases} \Lambda\left(\frac{k-j}{2}\right), & 0 \le j \le k \le N, k-j \text{ even,} \\ 0, & \text{otherwise,} \end{cases}$$

where \circ is the **Hadamard product** (elementwise product). T is a Toeplitz matrix and H is a Hankel matrix.

3. Overview of New Fast Algorithm

- Fact 1: The Toeplitz matrix T in box 2 can be applied to a vector in quasilinear operations using the **Fast Fourier Transform** (FFT).
- Fact 2: Note the following identity for the Hadamard product of a matrix A with a rank 1 matrix $\underline{v}\underline{w}^T$, (where $\underline{v} = (v_0, v_1, \dots, v_N)^T$):

$$A \circ \underline{v} \, \underline{w}^T = D_v A D_w,$$

where $D_v = \text{diag}(v_0, v_1, \dots, v_N)$. Diagonal matrices can be applied to a vector in linear time, so matrix-vector multiplication for $A \circ \underline{v} \, \underline{w}^T$ can be **computed** in quasilinear operations if and only if it can for be for A

Steps for computing $\underline{c}^{cheb} = M\underline{c}^{leg}$ \mathbf{Cost} Decompose M into $M = D(T \circ H)$ (see box 2) $\mathcal{O}(N)$ 2. Calculate low rank approx. $H \approx \sum_{j=1}^{K} a_r \underline{v}_j \underline{v}_j^T$ (see box 4) $\mathcal{O}(N(\log N)^2)$ 3. Compute $\underline{w} = (T \circ H)\underline{c}^{leg}$ (using Fact 1 and Fact 2) $\mathcal{O}(N(\log N)^2)$ Compute $\underline{c}^{cheb} = D\underline{w}$ $\mathcal{O}(N)$

4. Computing Low Rank Approximations by Pivoted Gaussian Elimination

• **Pivoted GE:** For a matrix A, repeat the following iteration:

$$1. j, k = \underset{0 \le s, t \le N}{\operatorname{argmax}} |A_{st}| \tag{c}$$

2.
$$A \leftarrow A - (A_{j,k})^{-1} (A_{*,k} A_{j,*})$$
 (subtract rank 1 update)

- At each iteration, the sum of those rank 1 updates is a low rank approx**imation** to the original matrix A.
- **Theorem:** the approximate rank of the Hankel matrix H in box 2 is $\mathcal{O}(\log N)$.
- For a symmetric, positive definite matrix (like H in box 2), we can find a rank K approximant in $\mathcal{O}(K^2N)$ operations. For our $H, K = \mathcal{O}(\log N)$.

Left: Pivoted GE's low rank approximants are close to optimal Singular Value Decomposition (SVD). Right: But they are much faster to compute!

5. Comparison with State of the Art

Left: Observed errors computing $\underline{c}^{cheb} = M\underline{c}^{leg}$ with various decay rates in \underline{c}^{leg} . Hale-Townsend (2013) method has $\mathcal{O}(N)$ error growth for $\mathcal{O}(n^0)$ decay rate. Right: Execution times between the direct (yellow), Hale-Townsend (2013) asymptotics method (red), and the new algorithm (blue).

6. Chebyshev-to-Legendre Conversion and More Polynomial Transforms

• The Chebyshev-to-Legendre conversion matrix $\underline{c}^{leg} = L\underline{c}^{cheb}$ has a similar structure:

$$L_{jk} = \begin{cases} 1, & j = k = 0, \\ \frac{\sqrt{\pi}}{2\Lambda(j)}, & 0 < j = k \le N, \\ -k(j + \frac{1}{2}) \frac{\Lambda(\frac{k-j-2}{2})}{k-j} \cdot \frac{\Lambda(\frac{j+k-1}{2})}{j+k+1}, & 0 \le j < k \le N, \ k-j \text{ even}, \end{cases}$$

and so we can use the same techniques.

• Converting between Ultraspherical (Gegenbauer) polynomials $C_k^{\lambda_1}(x)$ and $C_k^{\lambda_2}(x)$ also has this structure (cf. Keiner (2009), Cantero-Iserles (2013)):

$$A_{jk} = \begin{cases} c_{\lambda_1, \lambda_2}(j + \lambda_2) \frac{\Gamma\left(\frac{k-j}{2} + \lambda_1 - \lambda_2\right)}{\Gamma\left(\frac{k-j}{2} + 1\right)} \cdot \frac{\Gamma\left(\frac{k+j}{2} + \lambda_1\right)}{\Gamma\left(\frac{k+j}{2} + \lambda_2 + 1\right)}, & 0 \le j \le k, \ k - j \text{ even,} \\ 0, & \text{otherwise.} \end{cases}$$

• Converting between Jacobi polynomial expansions can also be computed in $\mathcal{O}(N(\log N)^2)$ operations with this approach! (cf. Wang-Huybrechs (2015))

Funded by LMS Cecil King Travel Scholarship and Cambridge Centre for Analysis EPSRC Studentship.