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Overview

• Motivation 

• The algorithm (for Legendre-to-Chebyshev) 

• Low rank matrix approximations 

• Generalise to other polynomial bases



Motivation: Chebfun technology
• In 2003 Battles and Trefethen invented 

• Robust, automatic polynomial approximation 

• Rigorous theory

In the code

• Feels like symbolic computation 

• It’s actually fun!

For the user

Descendents: Chebfun2, ApproxFun (in Julia), RKToolbox…



Chebyshev vs Legendre
• To approximate a function, we can expand in a Chebyshev or 

Legendre polynomial expansion:

• Change of variables from Cosine series, so

• Orthogonal: 

• Fourier transform is nice: 

• Fast              convolution algorithms (Hale-
Townsend 2014) 

• Cauchy transform has rapidly decaying series 
(Olver 2012). Riemann-Hilbert problems. 

• Connections to spherical harmonics 
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• Both have fast, accurate algorithms for derivatives, integration, root finding, 
optimisation (but Chebyshev is often faster)
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• Many nice results inherited from Fourier series
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State of the art conversion algorithms

Year Authors Complexity Comments

1970s Piessens, Gallagher, Wise, Allen O(N2) Direct
1986 Orszag O(N log(N)

2/ log log N) Slow asymptotic expansion
1991 Alpert, Rokhlin O(N log(N)2) Hierarchical data structures
1998 Potts, Steidl, Tasche O(N log(N)2) Divide-and-conquer
1999 Mori, Suda, Sugihara O(N logN) Unstable for large N
2011 Iserles O(N logN) Values in the complex plane

2013 Hale, Townsend O(N log(N)

2/ log log N) Fast asymptotic expansion

• Timeline for Chebyshev—Legendre conversion

• Fast algorithms for ultrapherical, Jacobi polynomials: 
Cantero-Iserles 2012, Wang-Huybrechs 2014, Slevinsky 2016 

• First, we tackle Leg-to-Cheb. Then generalise. 

• New method is                       , and has added benefits. Hence 
now used in Chebfun and ApproxFun
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Connection coefficient matrix
• For any two polynomial bases (degree-graded) 

there is a connection coefficients matrix,
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• The entries satisfy 

• The problem is reduced to computing  

• Naïve method is           . Best for
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Leg-to-Cheb matrix
• The connection coefficients are (Gegenbauer 1884):

and the first row is halved. Other entries =0.

• This is a Hadamard product                       
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Hadamard products and low-rank matrices
• A-dot-rank-1:

• A-dot-rank-R: 

• Toeplitz matrix can be applied in                    operations using 
Fast Fourier Transform (FFT) 

• Toeplitz-dot-rank-R can be applied in                      operations.
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The algorithm



Comparison with state-of-the-art

• Only about 3-5 times faster 
than Hale-Townsend 2013 
asymptotics method 

• We prove and observe better 
error growth

• New algorithm is simpler and 
can do arbitrary precision 
with little modification 
(BigFloat in Julia)



Low-rank matrix approximations

• Cholesky decomposition with partial 
pivoting. (Harbrecht-Peters-Schilder 
2011): for symmetric positive-semi-
definite, rank R matrices, it requires                
.             operations. 

• For a rank                           matrix, both 
require                         operations.
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Pivoted Cholesky vs SVD Low Rank Approximations (N=2000)

• Singular Value Decomposition (SVD) computes optimal low-rank 
approximations 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• Randomised SVD (Liberty et al. 2007) : for rank R, “                   “ 
matrices, it requires                        operations.



Low rank approximations to 
our Hankel matrix
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Why is the Hankel matrix low rank?
• Technically not low rank. The singular values decay 

exponentially (Beckermann-Townsend 2016)

• Proof ideas: Positive semi-definite Hankel matrices can be written 
as a product of Krylov matrices  

• Krylov matrices have with displacement structure, 
 

• Ratio of singular values is bounded by a rational Zolotarev 
problem
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Cheb-to-Leg matrix

• The situation is almost the same!
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Ultraspherical-to-
ultraspherical matrices
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• Same situation. However, if                  , then the 
Hankel matrix is not approx. low rank. 

• We must perform several integer conversions, 
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Jacobi-to-Jacobi matrix

• We do not have the diagonally scaled Toeplitz-dot-Hankel 
structure, but if we only convert in one direction, then we do:
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Summary
• In Chebfun technology, it is sometimes necessary to 

change polynomial basis. E.g. sometimes Legendre better 

• Connection coefficient matrix converts coefficients 

• For classical orthogonal polynomials they can be written 
as a diagonally scaled Hadamard product:  
 

• Fast-dot-low-rank matrices are also “fast” matrices. E.g. 
nonuniform FFT. Any other matrices like this?

Fast polynomial transforms based on Toeplitz and Hankel Matrices 
Townsend A., Webb M., Olver S., to appear in Math. Comp.

acheb = Caleg

C = D1(T �H)D2 T HToeplitz Hankel (approx. low rank)


