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Motivation: Chebfun technology

e |n 2003 Battles and Trefethen invented

For the user

e Feels like symbolic computation

e |t's actually fun!
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>> 10 = chebfun(@(x) besselj(e,x),[0 1e0])
Jo =

chebfun column (1 smooth piece)

interval length endpoint values
[ 0, 1le+02] 89 1 0.02
vertical scale = 1

>> diff(Je)
ans =
chebfun column (1 smooth piece)
interval length endpoint values
[ 0, 1le+02] 88 -5.1e-14 0.077

vertical scale = 0.57

x >> plot(Jo)|

Bessel function JO
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Descendents: Chebfun?,
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In the code

e Robust, automatic polynomial approximation

e Rigorous theory

Approximation Theory
and Approximation
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AN EXTENSION OF MATLAB TO CONTINUOUS FUNCTIONS
AND OPERATORS*
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Abstract. An object-oriented MATLAB system is described for performing numerical linear
algebra on continuous functions and operators rather than the usual discrete vectors and matrices.
About eighty MATLAB functions from plot and sun to svd and cond have been overloaded so that
one can work with our “chebfun” objects using almost exactly the usual MATLAB syntax. All
functions live on [~1,1] and are represented by values at sufficiently many Chebyshev points for
the polynomial interpolant to be accurate to close to machine precision. Each of our overloaded
operations raises questions about the proper generalization of familiar notions to the continuous
context and about appropriate methods of interpolation, differentiation, integration, zerofinding, or

jons i imation theory and numerical analysis are explored, and possible
extensions for more substantial problems of scientific computing are mentioned.
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1. Introduction. Numerical linear algebra and functional analysis are two faces
of the same subject, the study of linear mappings from one vector space to another.
But it could not be said that mathematicians have settled on a language and notation
that blend the discrete and continuous worlds gracefully. Numerical analysts favor
a concrete, basis-dependent matrix-vector notation that may be quite foreign to the
functional analysts. Sometimes the difference may seem very minor between, say, ex-
pressing an inner product as (u,v) or as uTv. At other times it seems more substantial,
as, for example, in the case of Gram-Schmidt orthogonalization, which a numerical
analyst would interpret as an algorithm, and not necessarily the best one, for com-
puting a matrix factorization A = QR. Though experts see the links, the discrete and
continuous worlds have remained superficially quite separate; and, of course, some-
times there are good mathematical reasons for this, such as the distinction between

and ej that arises for but not matrices.

The purpose of this article is to explore some bridges that may be built be-
tween discrete and continuous linear algebra. In particular we describe the “cheb-
fun” software system in object-oriented MATLAB, which extends many MATLAB
operations on vectors and matrices to functions and operators. This system con-
sists of about eighty M-files taking up about 100KB of storage. It can be down-
loaded from http://www.comlab.ox.ac.uk/oucl /work/nick.trefethen/, and we assure
the reader that going through this paper with a computer at hand is much more fun.

Core MATLAB contains hundreds of functions. We have found that this collection
has an extraordinary power to focus the imagination. We simply asked ourselves, for
one MATLAB operation after another, what is the “right” analogue of this operation
in the continuous case? The question comes in two parts, conceptual and algorithmic.
‘What should each operation mean? And how should one compute it?
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in Julia), RKToolbox...



Chebyshev vs Legendre

e Jo approximate a function, we can expand in a Chebyshev or
Legendre polynomial expansion:

N N
fn(x) =) at*Ti(z) = ) ay*Pu(a)
k=0 k=0
Chebyshev polynomials Legendre polynomials
1
Ty (x) = cos(k Cos_l(a;)) T = COS <%T) . Orthogonal:/ Pij(x)Py(x)dx =01if j # k
—1
« Change of variables from Cosine series, so » Fourier transform is nice: Py, (£) = 2(—1)"ji ()
(fN (x0)7 fN (wl), ceey fN (IN)) e Fast O(N?) convolution algorithms (Hale-
Townsend 2014)
DCT [ O(NlogN)
cheb  cheb cheb * Cauchy transform has rapidly decaying series
(aO y A1 e, AN ) (Olver 2012). Riemann-Hilbert problems.

 Many nice results inherited from Fourier series . . .
» Connections to spherical harmonics

« Both have fast, accurate algorithms for derivatives, integration, root finding,
optimisation (but Chebyshev is often faster)



State of the art conversion algorithms

* Timeline for Chebyshev—Legendre conversion

Year Authors Complexity Comments

<1970S  Piessens, Gallagher, Wise, Allen O(NQ) Direct
1986 Orszag O(Nlog(N)2/loglog N)  Slow asymptotic expansion
1991 Alpert, Rokhlin O(Nlog(N)?)  Hierarchical data structures
1998 Potts, Steidl, Tasche O(N log(N)?) Divide-and-conquer
1999 Mori, Suda, Sugihara O(Nlog N) Unstable for large N
2011 Iserles O(N lOg N) Values in the complex plane
2013 Hale, Townsend O(Nlog(N)2/loglog N)  Fast asymptotic expansion

e Fast algorithms for ultrapherical, Jacobi polynomials:
Cantero-lserles 2012, Wang-Huybrechs 2014, Slevinsky 2016

* First, we tackle Leg-to-Cheb. Then generalise.

e New method is O(Nlog(N)?) and has added benefits. Hence
now used in Chebfun and ApproxFun



Connection coefticient matrix

* For any two polynomial bases (degree-graded)

there is a connection coefficients matrix,

( acheb \
Cheb 0
agheb p— O

\ )\

/ Coo €Co1 Co2
C11 Ci12
C29

)

* The entries satisty Fu(=

* [he problem is reduced to computing b= Ca,

e Naive method is O(N?). Best for N < 1000

k
=) cipTi(x

J

=0

\
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g
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| eg-to-Cheb matrix

* The connection coefficients are (Gegenbauer 1884):

o T ("5 +3) T (5 +3)
Cik = — . .
: WF(’%Url) F(%Jrl)

,1f0< 9 <EkE<N,j3—keven

and the first row is halved. Other entries =0.

* Thisis a Hadamard product C = D(T o H)

( 1 \ ( Yo 0 v 0 4 \ ( Yo M1 Y2 V3 4 \
| 2 Y 0 v 0 Y12 Y3 Y4 s
D = - 2 , 1T = Yo O v |, H=] 7% 73 7% 7%
2 Y O Y3 Y4 V5 V6 7

\ 2) K Yo ) \’74 Y5 Y6 V7 8 )
T(3+3) - - -

T ) Toeplitz matrix Hankel matrix



Hadamard products and low-rank matrices

* A-dot-rank-1:
app YoWo Ap1 VoW1 Qo2 YoWw2
Ao ?}’UJT — aAijo 1wy aAd11V1W1 aA12 V1W2

a0 V2Wo G271 VW1 A22 VW2

Uo apo 4ap1r aop2 Wy
DQADE - U1 aiop a1 ai12 w1
U2 a0 a21 a22 w2

R R R
e A-dot-rank-R: Ao (Z vkwif) =) (Aowwf)=> Dy ADy,

k=1 k=1 k=1

* Joeplitz matrix can be applied in O(Nlog(N)) operations using
Fast Fourier Transform (FFT)

e Joeplitz-dot-rank-R can be applied in O(RN log(N)) operations.



The algorithm

Input: a'°& ¢ CN+t1
Output: a®"® = Ca'*8 = D(T o H)a'8
r(1/2) r() Tr(3/2) T1(2) r(N+1/2)
@ Compute the vector ( F(D) * T(3/2) T(2) * F(5/2) - *» T(N+1) )
o Use [(z+ 1) = zl(z) to get O(N) operations (or asymptotics)
e This vector implicitly defines H and T.

@ Compute the low-rank approximation H = Zle zkzz.

e Requires O(R?N) operations (see later)

© Compute the matrix-vector product Z k—1 Dv, Tka_
e Use the FFT to apply T in O(N log N) operations.

@ Multiply by D = diag(+, 2, 2,...,2) in O(N) operations.

7r’7r’7r’

e Total operations: O(R*N + RN log N) = O(N(log N)?).



Comparison with state-of-the-art

* Only about 3-5 times faster
than Hale-Townsend 2013
asymptotics method

* We prove and observe better
error growth

Execution time (seconds)

* New algorithm is simpler and
can do arbitrary precision
with little modification
(BigFloat in Julia)




Low-rank matrix approximations

* Singular Value Decomposition (SVD) computes optimal low-rank

approximations

R
A= g Okysz O = min
P rank(B)=k

|A — B2 O(N?)

* Randomised SVD (Liberty et al. 2007) : for rank R, “O(N log(N))*
matrices, it requires O(RN log(N)) operations.

e Cholesky decomposition with partial
pivoting. (Harbrecht-Peters-Schilder
2011): for symmetric positive-semi-
definite, rank R matrices, it requires
O(R*N) operations.

« Forarank R = O(log(N)) matrix, both
require O(N(log(N))?) operations.
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Pivoted Cholesky vs SVD Low Rank Approximations (N=2000)
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Low rank approximations to
our RHankel matrix

5 10 15 20 5 10 15 20 5 10 15 20
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Why Is the Hankel matrix low rank®

Technically not low rank. The singular values decay
exponentially (Beckermann-Townsend 2016)

oor(Hy) < cp M 18N | Hiv || rank. (Hy) = O(log(N)log(e 1))

Proof ideas: Positive semi-definite Hankel matrices can be written
as a product of Krylov matrices

H=K'K K = (Q,AQ,A2Q,...,A‘N—1Q)

Krylov matrices have with displacement structure,

1
1
AK — K() =rank 1 ©= )

Ratio of singular values is bounded by a rational Zolotarev
problem

0i+k(K) < Zp(o(A),o(Q))o;(K)



Cheb-to-Leg matrix

kGt o) ()
4 r(k;f’ : 1) r(’“;j : %)

0<3<N, 1<EkEZN, j3—keven, copy=1

* [he situation is almost the same!

C — Dl(TOH)DQ



Ultraspherical-to-
ultraspherical matrices

 Orthogonal w.r.t:  w(z) = (1 —z?)2*+

. F( 5 T . .
Cil = {Cd)q,)\z(] + )\2) P(%—Fl) . F(%+A2+1)7 0 S i S k, k — ] €evell,

0, otherwise.

 Same situation. However, if |A1 — X2| > 1, then the
Hankel matrix is not approx. low rank.

* We must perform several integer conversions,
which takes O(N ||\ — X2 |) andthen |[X;, — X, <1



Jacobi-to-dacobil matrix

o Orthogonal w.rt:  w(z) = (1 —2)*(1 + )"

* \We do not have the diagonally scaled Toeplitz-dot-Hankel
structure, but if we only convert in one direction, then we do:

(ap—ep _ 2tjty+B+1) Dk+F+1) TG+y+B+1)
" F( -7) T+a+p+
Tk—j+a—9)T

(
Ck—j+1) T(k+j+v+B+2)

(’7 B)%(Waé‘) 1 k— j (6 7)%(577)

O(B)=(7:8) — o(@.B)=(.8) o (v:8)—=(7,9)



summary

* In Chebfun technology, it is sometimes necessary to
change polynomial basis. E.g. sometimes Legendre better

* Connection coefficient matrix converts coefficients a™" = Ca'*®

* For classical orthogonal polynomials they can be written
as a diagonally scaled Hadamard product:

C'=D+.(ToH)Ds T Toeplitz H Hankel (approx. low rank)

* Fast-dot-low-rank matrices are also “fast” matrices. E.g.
nonuniform FFT. Any other matrices like this?

Fast polynomial transforms based on Toeplitz and Hankel Matrices
Townsend A., Webb M., Olver S., to appear in Math. Comp.



