Fast polynomial transforms by low-rank approximation of Hankel matrices and the FFT

Marcus Webb
KU Leuven
Joint work with
Alex Townsend (Cornell) and Sheehan Olver (Imperial)

NUMA internal seminar
9 March 2017

Overview

- Motivation
- The algorithm (for Legendre-to-Chebyshev)
- Low rank matrix approximations
- Generalise to other polynomial bases

Motivation: Chebfun technology

- In 2003 Battles and Trefethen invented

For the user

- Feels like symbolic computation
- It's actually fun!

In the code

- Robust, automatic polynomial approximation
- Rigorous theory

Descendents: Chebfun2, ApproxFun (in Julia), RKToolbox...

Chebyshev vs Legendre

- To approximate a function, we can expand in a Chebyshev or Legendre polynomial expansion:

$$
f_{N}(x)=\sum_{k=0}^{N} a_{k}^{\text {cheb }} T_{k}(x)=\sum_{k=0}^{N} a_{k}^{\operatorname{leg}} P_{k}(x)
$$

Chebyshev polynomials

$$
T_{k}(x)=\cos \left(k \cos ^{-1}(x)\right) \quad x_{k}=\cos \left(\frac{k \pi}{N}\right)
$$

- Change of variables from Cosine series, so

$$
\begin{gathered}
\left(f_{N}\left(x_{0}\right), f_{N}\left(x_{1}\right), \ldots, f_{N}\left(x_{N}\right)\right) \\
D C T \mathfrak{\imath}(N \log N) \\
\left(a_{0}^{\text {cheb }}, a_{1}^{\text {cheb }}, \ldots, a_{N}^{\text {cheb }}\right)
\end{gathered}
$$

- Many nice results inherited from Fourier series

Legendre polynomials

- Orthogonal: $\int_{-1}^{1} P_{j}(x) P_{k}(x) \mathrm{d} x=0$ if $j \neq k$
- Fourier transform is nice: $\hat{P}_{k}(\xi)=2(-i)^{k} j_{k}(\xi)$
- Fast $\mathcal{O}\left(N^{2}\right)$ convolution algorithms (HaleTownsend 2014)
- Cauchy transform has rapidly decaying series (Olver 2012). Riemann-Hilbert problems.
- Connections to spherical harmonics
- Both have fast, accurate algorithms for derivatives, integration, root finding, optimisation (but Chebyshev is often faster)

State of the art conversion algorithms

- Timeline for Chebyshev—Legendre conversion
Year
≤ 1970 s
1986
1991
1998
1999
2011
2013
Authors
Piessens, Gallagher, wise, Allen
Orszag
Alpert, Rokhlin
Potts, Steidl, Tasche
Mori, Suda, Sugihara
Iserles
Hale, Townsend
Complexity
$\mathcal{O}\left(N^{2}\right)$
$\mathcal{O}\left(N \log (N)^{2} / \log \log N\right)$
$\mathcal{O}\left(N \log (N)^{2}\right)$
$\mathcal{O}\left(N \log (N)^{2}\right)$
$\mathcal{O}(N \log N)$
$\mathcal{O}(N \log N)$
$\mathcal{O}\left(N \log (N)^{2} / \log \log N\right)$

Comments

Direct
Slow asymptotic expansion
Hierarchical data structures
Divide-and-conquer
Unstable for large N
Values in the complex plane
Fast asymptotic expansion

- Fast algorithms for ultrapherical, Jacobi polynomials: Cantero-Iserles 2012, Wang-Huybrechs 2014, Slevinsky 2016
- First, we tackle Leg-to-Cheb. Then generalise.
- New method is $\mathcal{O}\left(N \log (N)^{2}\right)$, and has added benefits. Hence now used in Chebfun and ApproxFun

Connection coefficient matrix

- For any two polynomial bases (degree-graded) there is a connection coefficients matrix,

$$
\left(\begin{array}{c}
a_{0}^{\text {cheb }} \\
a_{1}^{\text {cheb }} \\
a_{2}^{\text {hheb }} \\
\vdots
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
c_{00} & c_{01} & c_{02} & \cdots \\
0 & c_{11} & c_{12} & \cdots \\
0 & 0 & c_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)}_{C}\left(\begin{array}{c}
a_{0}^{\log } \\
a_{1}^{\log } \\
a_{2}^{\log } \\
\vdots
\end{array}\right)
$$

- The entries satisfy $P_{k}(x)=\sum_{j=0}^{k} c_{j k} T_{k}(x)$
- The problem is reduced to computing $\underline{b}=C \underline{a}, \quad \underline{a} \in \mathbb{C}^{N+1}$
- Naïve method is $\mathcal{O}\left(N^{2}\right)$. Best for $N<1000$

Leg-to-Cheb matrix

- The connection coefficients are (Gegenbauer 1884):

$$
c_{j k}=\frac{2}{\pi} \frac{\Gamma\left(\frac{k-j}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{k-j}{2}+1\right)} \frac{\Gamma\left(\frac{k+j}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{k+j}{2}+1\right)}, \text { if } 0 \leq j \leq k \leq N, j-k \text { even }
$$

and the first row is halved. Other entries $=0$.

- This is a Hadamard product $C=D(T \circ H)$

$$
\begin{aligned}
& D=\frac{1}{\pi}\left(\begin{array}{lllll}
1 & & & \\
& 2 & & \\
& & 2 & & \\
& & & 2 & \\
& & & & 2
\end{array}\right), T=\left(\begin{array}{ccccc}
\gamma_{0} & 0 & \gamma_{2} & 0 & \gamma_{4} \\
& \gamma_{0} & 0 & \gamma_{2} & 0 \\
& & \gamma_{0} & 0 & \gamma_{2} \\
& & & \gamma_{0} & 0 \\
& & & & \gamma_{0}
\end{array}\right), \quad H=\left(\begin{array}{lllll}
\gamma_{0} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} \\
\gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{5} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{5} & \gamma_{6} \\
\gamma_{3} & \gamma_{4} & \gamma_{5} & \gamma_{6} & \gamma_{7} \\
\gamma_{4} & \gamma_{5} & \gamma_{6} & \gamma_{7} & \gamma_{8}
\end{array}\right) \\
& \gamma_{k}=\frac{\Gamma\left(\frac{k}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{k}{2}+1\right)} \quad \text { Toeplitz matrix }
\end{aligned}
$$

Hadamard products and low-rank matrices

- A-dot-rank-1:

$$
\begin{gathered}
A \circ \underline{v w}^{T}=\left(\begin{array}{lll}
a_{00} v_{0} w_{0} & a_{01} v_{0} w_{1} & a_{02} v_{0} w_{2} \\
a_{10} v_{1} w_{0} & a_{11} v_{1} w_{1} & a_{12} v_{1} w_{2} \\
a_{20} v_{2} w_{0} & a_{21} v_{2} w_{1} & a_{22} v_{2} w_{2}
\end{array}\right) \\
D_{\underline{v}} A D_{\underline{w}}=\left(\begin{array}{lll}
v_{0} & & \\
& v_{1} & \\
& & v_{2}
\end{array}\right)\left(\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{lll}
w_{0} & & \\
& w_{1} & \\
& & w_{2}
\end{array}\right)
\end{gathered}
$$

- A-dot-rank-R: $A \circ\left(\sum_{k=1}^{R} \underline{v}_{k} \underline{w}_{k}^{T}\right)=\sum_{k=1}^{R}\left(A \circ \underline{v}_{k} \underline{w}_{k}^{T}\right)=\sum_{k=1}^{R} D_{\underline{v}_{k}} A D_{\underline{w}_{k}}$
- Toeplitz matrix can be applied in $\mathcal{O}(N \log (N))$ operations using Fast Fourier Transform (FFT)
- Toeplitz-dot-rank-R can be applied in $\mathcal{O}(R N \log (N))$ operations.

The algorithm

Input: $\underline{a}^{\operatorname{leg}} \in \mathbb{C}^{N+1}$
Output: $\underline{a}^{\text {cheb }}=C \underline{a}^{l e g}=D(T \circ H) \underline{a}^{\text {leg }}$
(1) Compute the vector $\left(\frac{\Gamma(1 / 2)}{\Gamma(1)}, \frac{\Gamma(1)}{\Gamma(3 / 2)}, \frac{\Gamma(3 / 2)}{\Gamma(2)}, \frac{\Gamma(2)}{\Gamma(5 / 2)}, \ldots, \frac{\Gamma(N+1 / 2)}{\Gamma(N+1)}\right)$.

- Use $\Gamma(z+1)=z \Gamma(z)$ to get $\mathcal{O}(N)$ operations (or asymptotics)
- This vector implicitly defines H and T.
(2) Compute the low-rank approximation $H=\sum_{k=1}^{R} \underline{v}_{k} \underline{v}_{k}^{\top}$.
- Requires $\mathcal{O}\left(R^{2} N\right)$ operations (see later)
(3) Compute the matrix-vector product $\sum_{k=1}^{R} D_{\underline{v}_{k}} T D_{\underline{v}_{k}} \underline{a}^{\text {leg }}$
- Use the FFT to apply T in $\mathcal{O}(N \log N)$ operations.
(4) Multiply by $D=\operatorname{diag}\left(\frac{1}{\pi}, \frac{2}{\pi}, \frac{2}{\pi}, \ldots, \frac{2}{\pi}\right)$ in $\mathcal{O}(N)$ operations.
- Total operations: $\mathcal{O}\left(R^{2} N+R N \log N\right)=\mathcal{O}\left(N(\log N)^{2}\right)$.

Comparison with state-of-the-art

- Only about 3-5 times faster than Hale-Townsend 2013 asymptotics method
- We prove and observe better error growth
- New algorithm is simpler and can do arbitrary precision with little modification
 (BigFloat in Julia)

Low-rank matrix approximations

- Singular Value Decomposition (SVD) computes optimal low-rank approximations

$$
\begin{equation*}
A=\sum_{k=0}^{R} \sigma_{k} \underline{v}_{k} \underline{w}_{k}^{T} \quad \sigma_{k}=\min _{\operatorname{rank}(B)=k}\|A-B\|_{2} \tag{3}
\end{equation*}
$$

- Randomised SVD (Liberty et al. 2007) : for rank R, "O $(N \log (N))$ " matrices, it requires $\mathcal{O}(R N \log (N))$ operations.
- Cholesky decomposition with partial pivoting. (Harbrecht-Peters-Schilder 2011): for symmetric positive-semidefinite, rank R matrices, it requires $\mathcal{O}\left(R^{2} N\right)$ operations.
- For a rank $R=\mathcal{O}(\log (N))$ matrix, both require $\mathcal{O}\left(N(\log (N))^{2}\right)$ operations.

Low rank approximations to our Hankel matrix

$\begin{array}{llll}5 & 10 & 15 & 20\end{array}$

Why is the Hankel matrix low rank?

- Technically not low rank. The singular values decay exponentially (Beckermann-Townsend 2016)

$$
\sigma_{2 k}\left(H_{N}\right) \leq c \rho^{-k / \log (N)}\left\|H_{N}\right\|_{2} \quad \operatorname{rank}_{\varepsilon}\left(H_{N}\right)=\mathcal{O}\left(\log (N) \log \left(\varepsilon^{-1}\right)\right)
$$

- Proof ideas: Positive semi-definite Hankel matrices can be written as a product of Krylov matrices

$$
H=K^{T} K, \quad K=\left(\underline{w}, A \underline{w}, A^{2} \underline{w}, \ldots, A^{N-1} \underline{w}\right)
$$

- Krylov matrices have with displacement structure,

$$
A K-K Q=\operatorname{rank} 1
$$

$$
Q=\left(\begin{array}{l}
0 \tag{array}\\
1
\end{array}\right.
$$

- Ratio of singular values is bounded by a rational Zolotarev problem

$$
\sigma_{j+k}(K) \leq Z_{k}(\sigma(A), \sigma(Q)) \sigma_{j}(K)
$$

Cheb-to-Leg matrix

$$
\begin{gathered}
c_{j k}=\frac{-k\left(j+\frac{1}{2}\right)}{4} \frac{\Gamma\left(\frac{k-j}{2}-\frac{1}{2}\right)}{\Gamma\left(\frac{k-j}{2}+1\right)} \frac{\Gamma\left(\frac{k+j}{2}\right)}{\Gamma\left(\frac{k+j}{2}+\frac{3}{2}\right)} \\
0 \leq j \leq N, \quad 1 \leq k \leq N, \quad j-k \text { even, } \quad c_{00}=1
\end{gathered}
$$

- The situation is almost the same!

$$
C=D_{1}(T \circ H) D_{2}
$$

Ultraspherical-toultraspherical matrices

- Orthogonal w.r.t: $\quad w(x)=\left(1-x^{2}\right)^{\frac{1}{2}+\lambda}$

$$
c_{j k}= \begin{cases}\omega_{\lambda_{1}, \lambda_{2}}\left(j+\lambda_{2}\right) \frac{\Gamma\left(\frac{k-j}{2}+\lambda_{1}-\lambda_{2}\right)}{\Gamma\left(\frac{k-j}{2}+1\right)} \cdot \frac{\Gamma\left(\frac{k+j}{2}+\lambda_{1}\right)}{\Gamma\left(\frac{k+j}{2}+\lambda_{2}+1\right)}, & 0 \leq j \leq k, k-j \text { even }, \\ 0, & \text { otherwise } .\end{cases}
$$

- Same situation. However, if $\left|\lambda_{1}-\lambda_{2}\right|>1$, then the Hankel matrix is not approx. low rank.
- We must perform several integer conversions, which takes $\mathcal{O}\left(N\left\lfloor\left|\lambda_{1}-\lambda_{2}\right|\right\rfloor\right)$ and then $\left|\tilde{\lambda}_{1}-\tilde{\lambda}_{2}\right|<1$

Jacobi-to-Jacobi matrix

- Orthogonal w.r.t: $\quad w(x)=(1-x)^{\alpha}(1+x)^{\beta}$
- We do not have the diagonally scaled Toeplitz-dot-Hankel structure, but if we only convert in one direction, then we do:

$$
\begin{array}{r}
c_{j k}^{(\alpha, \beta) \rightarrow(\gamma, \beta)}=\frac{(2+j+\gamma+\beta+1)}{\Gamma(\alpha-\gamma)} \frac{\Gamma(k+\beta+1)}{\Gamma(k+\alpha+\beta+1)} \frac{\Gamma(j+\gamma+\beta+1)}{\Gamma(j+\beta+1)} \\
\cdot \frac{\Gamma(k-j+\alpha-\gamma)}{\Gamma(k-j+1)} \frac{\Gamma(k+j+\alpha+\beta+1)}{\Gamma(k+j+\gamma+\beta+2)} \\
c_{j k}^{(\gamma, \beta) \rightarrow(\gamma, \delta)}=(-1)^{k-j} c_{j k}^{(\beta, \gamma) \rightarrow(\delta, \gamma)} \\
\quad C^{(\alpha, \beta) \rightarrow(\gamma, \delta)}=C^{(\alpha, \beta) \rightarrow(\gamma, \beta)} C^{(\gamma, \beta) \rightarrow(\gamma, \delta)}
\end{array}
$$

Summary

- In Chebfun technology, it is sometimes necessary to change polynomial basis. E.g. sometimes Legendre better
- Connection coefficient matrix converts coefficients $\underline{a}^{\text {cheb }}=C \underline{a}^{\text {leg }}$
- For classical orthogonal polynomials they can be written as a diagonally scaled Hadamard product:
$C=D_{1}(T \circ H) D_{2} \quad T$ Toeplitz $\quad H$ Hankel (approx. low rank)
- Fast-dot-low-rank matrices are also "fast" matrices. E.g. nonuniform FFT. Any other matrices like this?

Fast polynomial transforms based on Toeplitz and Hankel Matrices Townsend A., Webb M., Olver S., to appear in Math. Comp.

