Orthogonal systems with a skew-symmetric differentiation matrix

Arieh Iserles (University of Cambridge) and Marcus Webb (KU Leuven) Preprint available at both authors' websites.

Motivation

Time-dependent PDEs on the real line, u(t,x), $t \in [0,\infty)$, $x \in \mathbb{R}$.

Diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(a(t, x, u) \frac{\partial u}{\partial x} \right), \qquad a \ge 0$$

Semi-classical Schrödinger

$$\mathrm{i}\varepsilon \frac{\partial u}{\partial t} = -\varepsilon^2 \frac{\partial^2 u}{\partial x^2} + V(t, x, u)u, \qquad 0 < \varepsilon \ll 1, \quad \mathrm{Imag}(V) = 0$$

Nonlinear advection equation

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + f(u), \qquad v \cdot f(v) \le 0$$

For the solutions to these PDEs, the $L_2(\mathbb{R})$ norm is nonincreasing or preserved:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} |u(t,x)|^2 \, \mathrm{d}x \le 0, \text{ for all } t \ge 0.$$

Can we design numerical methods which respect this L_2 stability property?

The importance of being skew-symmetric

Spectral methods: Take an orthonormal basis $\Phi = \{\varphi_n\}_{n \in \mathbb{Z}_+}$ of $L_2(\mathbb{R})$, and represent the solution by

$$u(t,\cdot) = \sum_{n=0}^{\infty} u_n(t)\varphi_n$$

Semi-discretised equations: The PDE in question is equivalent to an ODE for the coefficients $\mathbf{u} = (u_0, u_1, \ldots)$,

$$\mathbf{u}'(t) = \mathcal{D}\mathcal{A}\mathcal{D}\mathbf{u}(t)$$
$$i\varepsilon\mathbf{u}'(t) = -\varepsilon^2\mathcal{D}^2\mathbf{u}(t) + \mathcal{V}\mathbf{u}(t),$$

$$\mathbf{u}'(t) = \mathcal{D}\mathbf{u}(t) + \mathbf{f}(\mathbf{u}(t))$$
 (where $f_m(\mathbf{u}) = \langle \varphi_m, f(u(t, \cdot)) \rangle$)

Differentiation matrix: \mathcal{D} is an infinite-dimensional matrix encoding differentiation, and A is this for multiplication by a,

$$\varphi'_k(x) = \sum_{j=0}^{\infty} D_{k,j} \varphi_j(x), \qquad a(x) \varphi_k(x) = \sum_{j=0}^{\infty} A_{k,j} \varphi_j(x).$$

Discrete stability: The orthonormality of Φ ensures $||u(t,\cdot)||_{L_2(\mathbb{R})} = ||\mathbf{u}(t)||_{\ell_2}$. For nonlinear advection, we have

$$\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^2}^2}{\mathrm{d}t} = 2\mathbf{u}^T\mathbf{u}' = 2\mathbf{u}^T\mathcal{D}\mathbf{u} + 2\mathbf{u}^T\mathbf{f}(\mathbf{u}) \le 2\mathbf{u}^T\mathcal{D}\mathbf{u},$$

and similar for diffusion and Schrödinger. We see, ℓ_2 stability is achieved if \mathcal{D} is skew-symmetric, mimicking the differentiation operator itself.

Finite difference methods with skew-symmetric differentiation matrices yield analogous applications to Dirichlet problems on an interval, see Iserles 2014, 2016 and Hairer-Iserles 2015, 2016.

Previously known examples

- For periodic boundary conditions, the humble Fourier basis works perfectly: $\varphi_0(x) \equiv \frac{1}{(2\pi)^{1/2}}$, $\varphi_{2n}(x) = \frac{\cos nx}{\pi^{1/2}}$, $\varphi_{2n+1}(x) = \frac{\sin nx}{\pi^{1/2}}$
- The Hermite functions, $\varphi_n(x) = \frac{(-1)^n}{(2^n n!)^{1/2} \pi^{1/4}} e^{-x^2/2} H_n(x)$ are well-known to satisfy $\varphi_n'(x) = \sqrt{\frac{n}{2}}\varphi_{n-1}(x) - \sqrt{\frac{n+1}{2}}\varphi_{n+1}(x)$
- Scaled spherical Bessel functions $\varphi_n(x) = (n+1/2)^{1/2} j_n(x)$ also meet our requirements

Main theorems

Theorem 1 (Iserles-Webb 2018) A sequence $\Phi = \{\varphi_n\}_{n \in \mathbb{Z}_+}$ has a real, skew-symmetric, tridiagonal, irreducible, differentiation matrix if and only if

$$\varphi_n(x) = \frac{(-i)^n}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ix\xi} p_n(\xi) g(\xi) d\xi,$$

where $P = \{p_n\}_{n \in \mathbb{Z}_+}$ is an orthonormal polynomial system on the real line with respect to a symmetric probability measure $\mathrm{d}\mu$, and $g(\xi) = \frac{1}{\sqrt{2\pi}} \int \mathrm{e}^{-\mathrm{i}x\xi} \, \varphi_0(x) \, \mathrm{d}x$.

Sketch of proof: Since $\mathcal{F}[\varphi'](\xi) = -i\xi\mathcal{F}[\varphi]$,

$$\xi p_n(\xi) = b_{n-1}p_{n-1}(\xi) + b_n p_{n+1}(\xi)$$

$$\iff \varphi'_n(x) = -b_{n-1}\varphi_{n-1}(x) + b_n \varphi_{n+1}(x).$$

Theorem 2 (Iserles-Webb 2018) Such sequences Φ are orthonormal in $L_2(\mathbb{R})$ if and only if $d\mu(\xi) = |g(\xi)|^2 d\xi$.

Proof: Parseval's Theorem implies $\langle \varphi_m, \varphi_n \rangle = (-i)^{n-m} \int p_n(\xi) p_m(\xi) |g(\xi)|^2 d\xi$.

Theorem 3 (Iserles-Webb 2018) If polynomials are dense in $L_2(\mathbb{R}, d\mu)$, then such orthonormal sequences are complete in the Paley-Wiener space $\mathrm{PW}_{\Omega}(\mathbb{R})$, where $\Omega = \operatorname{supp}(\mathrm{d}\mu).$

Remark: Spherical Bessel functions and Hermite functions are derived by Fourier transforms of Legendre polynomials and Hermite functions (resp.)!

New examples

Chebyshev polynomials (2nd kind)

$$d\mu(\xi) = \chi_{[-1,1]}(\xi)\sqrt{1-\xi^2}d\xi$$

$$b_n = \frac{1}{2} \text{ for all } n \in \mathbb{Z}_+$$

$$\varphi_0(x) \propto \int_{-1}^1 (1 - \xi^2)^{1/4} e^{ix\xi} d\xi \propto \frac{J_1(x)}{x}$$

$$\varphi_1(x) \propto \int_{-1}^1 \xi (1 - \xi^2)^{1/4} e^{ix\xi} d\xi \propto \frac{J_2(x)}{x}$$

 φ_2 is more complicated...

Freud polynomials (basic)

$$d\mu(\xi) = e^{-t^4} d\mu(\xi)$$

Recursion for b_n known

$$\varphi_{0}(x) \propto \int_{-1}^{1} (1 - \xi^{2})^{1/4} e^{ix\xi} d\xi \propto \frac{J_{1}(x)}{x} \qquad \varphi_{0}(x) \propto 2\pi_{0} F_{2} \left[\frac{-;}{\frac{1}{2}, \frac{3}{4};} \frac{x^{4}}{128} \right]$$

$$\varphi_{1}(x) \propto \int_{-1}^{1} \xi (1 - \xi^{2})^{1/4} e^{ix\xi} d\xi \propto \frac{J_{2}(x)}{x} \qquad -x^{2} \Gamma^{2} \left(\frac{3}{4} \right) {}_{0} F_{2} \left[\frac{-;}{\frac{5}{4}, \frac{3}{2};} \frac{x^{4}}{128} \right]$$

 φ_1 is more complicated...

Carlitz polynomials (modified)

$$\mathrm{d}\mu = \mathrm{sech}^2(\pi\xi)\,\mathrm{d}\xi$$

$$\varphi_0(x) = \operatorname{sech}(x)$$

$$\varphi_1(x) = -\sqrt{3} \tanh(x) \operatorname{sech}(x)$$

$$\varphi_2(x) = \frac{\sqrt{5}}{2} \left(2 \operatorname{sech}(x) - 3 \operatorname{sech}^3(x) \right)$$

Laguerre polynomials

$$d\mu(\xi) = \chi_{[0,\infty)}(\xi) e^{-\xi} d\xi$$

$$\varphi_n(x) = i^n \frac{(1-2ix)^n}{(1+2ix)^{n+1}}$$

$$\varphi'_n = -n\varphi_{n-1} + i(2n+1)\varphi_n + (n+1)\varphi_{n+1}$$

Nonsymmetric $\mu \implies$ skew-Hermitian $\mathcal D$

Directions for this research

- lacktriangle Computation and convergence for approximating functions in Φ bases
- Interesting special features of $\varphi_n(x)$? E.g. interlacing roots
- \blacksquare Can functions of \mathcal{D} be effectively approximated?
- \blacksquare Can new, improved, practical, L₂ stable spectral methods for time-dependent PDEs be developed following this work?