Orthogonal systems with a skew-symmetric differentiation matrix

Arieh Iserles (University of Cambridge) and Marcus Webb (KU Leuven)

marcus.webb@cs.kuleuven.be
Preprint available at both authors' websites.

Motivation

Time-dependent PDEs on the real line, $u(t, x), t \in[0, \infty), x \in \mathbb{R}$.
Diffusion equation

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(a(t, x, u) \frac{\partial u}{\partial x}\right), \quad a \geq 0
$$

Semi-classical Schrödinger

$$
\mathrm{i} \varepsilon \frac{\partial u}{\partial t}=-\varepsilon^{2} \frac{\partial^{2} u}{\partial x^{2}}+V(t, x, u) u, \quad 0<\varepsilon \ll 1, \quad \operatorname{Imag}(V)=0
$$

Nonlinear advection equation

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}+f(u), \quad v \cdot f(v) \leq 0
$$

For the solutions to these PDEs, the $L_{2}(\mathbb{R})$ norm is nonincreasing or preserved:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{-\infty}^{\infty}|u(t, x)|^{2} \mathrm{~d} x \leq 0, \text { for all } t \geq 0
$$

Can we design numerical methods which respect this L_{2} stability property?

The importance of being skew-symmetric

Spectral methods: Take an orthonormal basis $\Phi=\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}}$of $L_{2}(\mathbb{R})$, and represent the solution by

$$
u(t, \cdot)=\sum_{n=0}^{\infty} u_{n}(t) \varphi_{n}
$$

Semi-discretised equations: The PDE in question is equivalent to an ODE for the coefficients $\mathbf{u}=\left(u_{0}, u_{1}, \ldots\right)$,

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathcal{A D} \mathbf{u}(t) \\
\mathrm{i} \varepsilon \mathbf{u}^{\prime}(t)=-\varepsilon^{2} \mathcal{D}^{2} \mathbf{u}(t)+\mathcal{V} \mathbf{u}(t), \\
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathbf{u}(t)+\mathbf{f}(\mathbf{u}(t)) \quad\left(\text { where } f_{m}(\mathbf{u})=\left\langle\varphi_{m}, f(u(t, \cdot))\right\rangle\right)
\end{gathered}
$$

Differentiation matrix: \mathcal{D} is an infinite-dimensional matrix encoding differentiation, and \mathcal{A} is this for multiplication by a,

$$
\varphi_{k}^{\prime}(x)=\sum_{j=0}^{\infty} D_{k, j} \varphi_{j}(x), \quad a(x) \varphi_{k}(x)=\sum_{j=0}^{\infty} A_{k, j} \varphi_{j}(x)
$$

Discrete stability: The orthonormality of Φ ensures $\|u(t, \cdot)\|_{\mathrm{L}_{2}(\mathbb{R})}=\|\mathbf{u}(t)\|_{\ell_{2}}$. For nonlinear advection, we have

$$
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{T} \mathbf{u}^{\prime}=2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}+2 \mathbf{u}^{T} \mathbf{f}(\mathbf{u}) \leq 2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}
$$

and similar for diffusion and Schrödinger. We see, ℓ_{2} stability is achieved if \mathcal{D} is skew-symmetric, mimicking the differentiation operator itself,
Finite difference methods with skew-symmetric differentiation matrices yield analogous applications to Dirichlet problems on an interval, see Iserles 2014, 2016 and Hairer-Iserles 2015, 2016.

Previously known examples

- For periodic boundary conditions, the humble Fourier basis works perfectly: $\varphi_{0}(x) \equiv \frac{1}{(2 \pi)^{1 / 2}}, \varphi_{2 n}(x)=\frac{\cos n x}{\pi^{1 / 2}}, \varphi_{2 n+1}(x)=\frac{\sin n x}{\pi^{1 / 2}}$
- The Hermite functions, $\varphi_{n}(x)=\frac{(-1)^{n}}{\left(2^{n} n!\right)^{1 / 2} \pi^{1 / 4}} \mathrm{e}^{-x^{2} / 2} \mathrm{H}_{n}(x)$ are well-known to satisfy $\varphi_{n}^{\prime}(x)=\sqrt{\frac{n}{2}} \varphi_{n-1}(x)-\sqrt{\frac{n+1}{2}} \varphi_{n+1}(x)$
- Scaled spherical Bessel functions $\varphi_{n}(x)=(n+1 / 2)^{1 / 2} \mathrm{j}_{n}(x)$ also meet our requirements

Main theorems

Theorem 1 (Iserles-Webb 2018) A sequence $\Phi=\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}}$has a real, skew-symmetric, tridiagonal, irreducible, differentiation matrix if and only if

$$
\varphi_{n}(x)=\frac{(-\mathrm{i})^{n}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} x \xi} p_{n}(\xi) g(\xi) \mathrm{d} \xi,
$$

where $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$is an orthonormal polynomial system on the real line with respect to a symmetric probability measure $\mathrm{d} \mu$, and $g(\xi)=\frac{1}{\sqrt{2 \pi}} \int \mathrm{e}^{-\mathrm{i} x \xi} \varphi_{0}(x) \mathrm{d} x$. Sketch of proof: Since $\mathcal{F}\left[\varphi^{\prime}\right](\xi)=-\mathrm{i} \xi \mathcal{F}[\varphi]$,

$$
\begin{aligned}
\xi p_{n}(\xi) & =b_{n-1} p_{n-1}(\xi)+b_{n} p_{n+1}(\xi) \\
\Longleftrightarrow \quad \varphi_{n}^{\prime}(x) & =-b_{n-1} \varphi_{n-1}(x)+b_{n} \varphi_{n+1}(x) .
\end{aligned}
$$

Theorem 2 (Iserles-Webb 2018) Such sequences Φ are orthonormal in $L_{2}(\mathbb{R})$ if and only if $\mathrm{d} \mu(\xi)=|g(\xi)|^{2} \mathrm{~d} \xi$.
Proof: Parseval's Theorem implies $\left\langle\varphi_{m}, \varphi_{n}\right\rangle=(-\mathrm{i})^{n-m} \int p_{n}(\xi) p_{m}(\xi)|g(\xi)|^{2} \mathrm{~d} \xi$.
Theorem 3 (Iserles-Webb 2018) If polynomials are dense in $\mathrm{L}_{2}(\mathbb{R}, \mathrm{~d} \mu)$, then such orthonormal sequences are complete in the Paley-Wiener space $\mathrm{PW}_{\Omega}(\mathbb{R})$, where $\Omega=\operatorname{supp}(\mathrm{d} \mu)$.
Remark: Spherical Bessel functions and Hermite functions are derived by Fourier transforms of Legendre polynomials and Hermite functions (resp.)!

New examples

Chebyshev polynomials (2nd kind)
$\mathrm{d} \mu(\xi)=\chi_{[-1,1]}(\xi) \sqrt{1-\xi^{2}} \mathrm{~d} \xi$
$b_{n}=\frac{1}{2}$ for all $n \in \mathbb{Z}_{+}$
$\varphi_{0}(x) \propto \int_{-1}^{1}\left(1-\xi^{2}\right)^{1 / 4} \mathrm{e}^{\mathrm{i} x \xi} \mathrm{~d} \xi \propto \frac{\mathrm{~J}_{1}(x)}{x}$
$\varphi_{1}(x) \propto \int_{-1}^{1} \xi\left(1-\xi^{2}\right)^{1 / 4} \mathrm{e}^{\mathrm{i} x \xi} \mathrm{~d} \xi \propto \frac{\mathrm{~J}_{2}(x)}{x}$
φ_{2} is more complicated.

Carlitz polynomials (modified)
$\mathrm{d} \mu=\operatorname{sech}^{2}(\pi \xi) \mathrm{d} \xi$
$\varphi_{0}(x)=\operatorname{sech}(x)$
$\varphi_{1}(x)=-\sqrt{3} \tanh (x) \operatorname{sech}(x)$
$\varphi_{2}(x)=\frac{\sqrt{5}}{2}\left(2 \operatorname{sech}(x)-3 \operatorname{sech}^{3}(x)\right)$

Freud polynomials (basic)
$\mathrm{d} \mu(\xi)=e^{-t^{4}} \mathrm{~d} \mu(\xi)$
Recursion for b_{n} known

$$
\begin{aligned}
\varphi_{0}(x) \propto 2 \pi_{0} F_{2} & {\left[\begin{array}{l}
\frac{1}{2}, \frac{3}{4} ; \frac{x^{4}}{128}
\end{array}\right] } \\
& -x^{2} \Gamma^{2}\left(\frac{3}{4}\right)_{0} F_{2}\left[\begin{array}{l}
-\frac{x^{4}}{4}, \frac{3}{2} ;
\end{array}\right]
\end{aligned}
$$

φ_{1} is more complicated.

Laguerre polynomials
$\mathrm{d} \mu(\xi)=\chi_{[0, \infty)}(\xi) \mathrm{e}^{-\xi} \mathrm{d} \xi$
$\varphi_{n}(x)=\mathrm{i}^{n} \frac{(1-2 \mathrm{ix})^{n}}{(1+2 \mathrm{i})^{n+1}}$
$\varphi_{n}^{\prime}=-n \varphi_{n-1}+\mathrm{i}(2 n+1) \varphi_{n}+(n+1) \varphi_{n+1}$ Nonsymmetric $\mu \Longrightarrow$ skew-Hermitian \mathcal{D}

Directions for this research

[^0]
[^0]: - Computation and convergence for approximating functions in Φ bases
 $■$ Interesting special features of $\varphi_{n}(x)$? E.g. interlacing roots
 - Can functions of \mathcal{D} be effectively approximated?
 - Can new, improved, practical, L_{2} stable spectral methods for time-dependent PDEs be developed following this work?

