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Motivation

Time-dependent PDEs on the real line, u(t, x), t ∈ [0,∞), x ∈ R.

Diffusion equation

∂u

∂t
=

∂

∂x

(
a(t, x, u)

∂u

∂x

)
, a ≥ 0

Semi-classical Schrödinger

iε
∂u

∂t
= −ε2 ∂

2u

∂x2
+ V (t, x, u)u, 0 < ε� 1, Imag(V ) = 0

Nonlinear advection equation

∂u

∂t
=
∂u

∂x
+ f(u), v · f(v) ≤ 0

For the solutions to these PDEs, the L2(R) norm is nonincreasing or preserved:

d

dt

∫ ∞
−∞
|u(t, x)|2 dx ≤ 0, for all t ≥ 0.

Can we design numerical methods which respect this L2 stability property?

The importance of being skew-symmetric

Spectral methods: Take an orthonormal basis Φ = {ϕn}n∈Z+ of L2(R), and
represent the solution by

u(t, ·) =
∞∑
n=0

un(t)ϕn

Semi-discretised equations: The PDE in question is equivalent to an ODE for the
coefficients u = (u0, u1, . . .),

u′(t) = DADu(t)

iεu′(t) = −ε2D2u(t) + Vu(t),

u′(t) = Du(t) + f(u(t)) (where fm(u) = 〈ϕm, f(u(t, ·))〉)

Differentiation matrix: D is an infinite-dimensional matrix encoding differentiation,
and A is this for multiplication by a,

ϕ′k(x) =

∞∑
j=0

Dk,jϕj(x), a(x)ϕk(x) =

∞∑
j=0

Ak,jϕj(x).

Discrete stability: The orthonormality of Φ ensures ‖u(t, ·)‖L2(R) = ‖u(t)‖`2 . For
nonlinear advection, we have

d‖u‖2`2
dt

= 2uTu′ = 2uTDu + 2uT f(u) ≤ 2uTDu,

and similar for diffusion and Schrödinger. We see, `2 stability is achieved if D is
skew-symmetric, mimicking the differentiation operator itself.

Finite difference methods with skew-symmetric differentiation matrices yield
analogous applications to Dirichlet problems on an interval, see Iserles 2014, 2016 and
Hairer-Iserles 2015, 2016.

Previously known examples

For periodic boundary conditions, the humble Fourier basis works perfectly:
ϕ0(x) ≡ 1

(2π)1/2
, ϕ2n(x) = cosnx

π1/2 , ϕ2n+1(x) = sinnx
π1/2

The Hermite functions, ϕn(x) = (−1)n

(2nn!)1/2π1/4 e−x
2/2Hn(x) are well-known to

satisfy ϕ′n(x) =
√

n
2ϕn−1(x)−

√
n+1

2 ϕn+1(x)

Scaled spherical Bessel functions ϕn(x) = (n+ 1/2)1/2 jn(x) also meet our
requirements
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Hermite Functions
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Spherical Bessel Functions

Main theorems

Theorem 1 (Iserles-Webb 2018) A sequence Φ = {ϕn}n∈Z+
has a real,

skew-symmetric, tridiagonal, irreducible, differentiation matrix if and only if

ϕn(x) =
(−i)n√

2π

∫ ∞
−∞

eixξ pn(ξ) g(ξ) dξ,

where P = {pn}n∈Z+
is an orthonormal polynomial system on the real line with

respect to a symmetric probability measure dµ, and g(ξ) = 1√
2π

∫
e−ixξ ϕ0(x) dx.

Sketch of proof: Since F [ϕ′](ξ) = −iξF [ϕ],

ξpn(ξ) = bn−1pn−1(ξ) + bnpn+1(ξ)

⇐⇒ ϕ′n(x) = −bn−1ϕn−1(x) + bnϕn+1(x).

Theorem 2 (Iserles-Webb 2018) Such sequences Φ are orthonormal in L2(R) if and
only if dµ(ξ) = |g(ξ)|2 dξ.

Proof: Parseval’s Theorem implies 〈ϕm, ϕn〉 = (−i)n−m
∫
pn(ξ)pm(ξ)|g(ξ)|2 dξ.

Theorem 3 (Iserles-Webb 2018) If polynomials are dense in L2(R,dµ), then such
orthonormal sequences are complete in the Paley-Wiener space PWΩ(R), where
Ω = supp(dµ).

Remark: Spherical Bessel functions and Hermite functions are derived by
Fourier transforms of Legendre polynomials and Hermite functions (resp.)!

New examples

Chebyshev polynomials (2nd kind) Freud polynomials (basic)

dµ(ξ) = χ[−1,1](ξ)
√

1− ξ2dξ dµ(ξ) = e−t
4

dµ(ξ)

bn = 1
2 for all n ∈ Z+ Recursion for bn known

ϕ0(x) ∝
∫ 1

−1
(1− ξ2)1/4 eixξdξ ∝ J1(x)

x ϕ0(x) ∝ 2π0F2

[
—;
1
2 ,

3
4 ;

x4

128

]
ϕ1(x) ∝

∫ 1

−1
ξ (1− ξ2)1/4 eixξdξ ∝ J2(x)

x −x2Γ2
(

3
4

)
0F2

[
—;
5
4 ,

3
2 ;

x4

128

]
ϕ2 is more complicated... ϕ1 is more complicated...
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Carlitz polynomials (modified) Laguerre polynomials
dµ = sech2(πξ) dξ dµ(ξ) = χ[0,∞)(ξ)e

−ξ dξ

ϕ0(x) = sech(x) ϕn(x) = in (1−2ix)n

(1+2ix)n+1

ϕ1(x) = −
√

3tanh(x)sech(x) ϕ′n = −nϕn−1+i(2n+1)ϕn+(n+1)ϕn+1

ϕ2(x) =
√

5
2

(
2sech(x)− 3sech3(x)

)
Nonsymmetric µ =⇒ skew-Hermitian D
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Directions for this research

Computation and convergence for approximating functions in Φ bases

Interesting special features of ϕn(x)? E.g. interlacing roots

Can functions of D be effectively approximated?

Can new, improved, practical, L2 stable spectral methods for time-dependent PDEs be
developed following this work?


