Approximation of singular functions using frames

Marcus Webb
Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven
25 Oct 2018

Approximation of singular functions using frames

Marcus Webb
Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven
25 Oct 2018

Approximation of singular functions using frames

Marcus Webb
Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven
25 Oct 2018

Motivation: why singular functions?

- Some differential equations naturally have solutions with singularities:
- Boundary layers
- Corner singularities
- Endpoint singularities
- Discontinuous media: fractures/interfaces
- Singular integral equations/fractional differential equations

Motivation: why singular functions?

- Some differential equations naturally have solutions with singularities:
- Boundary layers
- Corner singularities
- Endpoint singularities
- Discontinuous media: fractures/interfaces
- Singular integral equations/fractional differential equations
- Location and nature of singularities known

Motivation: why singular functions?

- Some differential equations naturally have solutions with singularities:
- Boundary layers
- Corner singularities
- Endpoint singularities
- Discontinuous media: fractures/interfaces
- Singular integral equations/fractional differential equations
- Location and nature of singularities known
- Example methodologies for dealing with these:
- Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
- Rational collocation (Weidemann 1998)
- Enriched finite elements (Belytschko et al 1999)

Motivation: why singular functions?

- Some differential equations naturally have solutions with singularities:
- Boundary layers
- Corner singularities
- Endpoint singularities
- Discontinuous media: fractures/interfaces
- Singular integral equations/fractional differential equations
- Location and nature of singularities known
- Example methodologies for dealing with these:
- Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
- Rational collocation (Weidemann 1998)
- Enriched finite elements (Belytschko et al 1999)
- Traditional spectral methods struggle in these situations.

Model problem

- Consider a function u of the form $u(x)=f(x)+|x|^{1 / 2} g(x)$
- f and g are smooth functions
- We can only sample u

- More generally, $u(x)=w_{1}(x) f_{1}(x)+\cdots+w_{p}(x) f_{p}(x)$

Approximating $u(x)=f(x)+|x|^{1 / 2} g(x)$

1. $u(x) \approx \sum_{k=0}^{N-1} a_{k} T_{k}(x)$
2. $u(x) \approx \sum_{k=0}^{N-1} b_{k}|x|^{1 / 2} T_{k}(x)$
3. $u(x) \approx \sum_{k=0}^{N / 2-1} c_{2 k} T_{k}(x)+c_{2 k+1}|x|^{1 / 2} T_{k}(x)$

Approximating $u(x)=f(x)+|x|^{1 / 2} g(x)$

1. $u(x) \approx \sum_{k=0}^{N-1} a_{k} T_{k}(x)$
2. $u(x) \approx \sum_{k=0}^{N-1} b_{k}|x|^{1 / 2} T_{k}(x)$
3. $u(x) \approx \sum_{k=0}^{N / 2-1} c_{2 k} T_{k}(x)+c_{2 k+1}|x|^{1 / 2} T_{k}(x)$

What are we computing?

- We seek the N coefficients $\mathbf{c} \in \mathbb{R}^{N}$ which form the least squares interpolant at $M=\gamma N$ Gauss-Chebyshev nodes $\left\{x_{1, M}, \ldots, x_{M, M}\right\}$:

$$
\left.\underset{\mathbf{c} \in \mathbb{R}^{N}}{\arg \min } \sum_{k=1}^{M}\left|\sum_{j=0}^{N / 2-1} c_{2 j} T_{j}\left(x_{k, M}\right)+c_{2 j+1}\right| x_{k, M}\right|^{1 / 2} T_{j}\left(x_{k, M}\right)-\left.f\left(x_{k, M}\right)\right|^{2}
$$

What are we computing?

- We seek the N coefficients $\mathbf{c} \in \mathbb{R}^{N}$ which form the least squares interpolant at $M=\gamma N$ Gauss-Chebyshev nodes $\left\{x_{1, M}, \ldots, x_{M, M}\right\}$:
$\left.\underset{\mathbf{c} \in \mathbb{R}^{N}}{\arg \min } \sum_{k=1}^{M}\left|\sum_{j=0}^{N / 2-1} c_{2 j} T_{j}\left(x_{k, M}\right)+c_{2 j+1}\right| x_{k, M}\right|^{1 / 2} T_{j}\left(x_{k, M}\right)-\left.f\left(x_{k, M}\right)\right|^{2}$
- AKA oversampled collocation

What are we computing?

- We seek the N coefficients $\mathbf{c} \in \mathbb{R}^{N}$ which form the least squares interpolant at $M=\gamma N$ Gauss-Chebyshev nodes $\left\{x_{1, M}, \ldots, x_{M, M}\right\}$:
$\left.\underset{\mathbf{c} \in \mathbb{R}^{N}}{\arg \min } \sum_{k=1}^{M}\left|\sum_{j=0}^{N / 2-1} c_{2 j} T_{j}\left(x_{k, M}\right)+c_{2 j+1}\right| x_{k, M}\right|^{1 / 2} T_{j}\left(x_{k, M}\right)-\left.f\left(x_{k, M}\right)\right|^{2}$
- AKA oversampled collocation
- Equivalent to the least squares solution of the tall, skinny linear system, $A \mathbf{c}=\mathbf{b}$, where $A \in \mathbb{R}^{M \times N}$,

$$
\begin{gathered}
A_{k, 2 j}=T_{j}\left(x_{k, M}\right), \quad A_{k, 2 j+1}=\left|x_{k, M}\right|^{1 / 2} T_{j}\left(x_{k, M}\right), \\
b_{k}=f\left(x_{k, M}\right), \quad k=1,2, \ldots, M, j=0,1, \ldots, N / 2-1 .
\end{gathered}
$$

FrameFun vs ApproxFun (Chebfun)

- The collocation matrix A is a transform between coefficients \mathbf{c} and values of the function with those coefficients.

FrameFun vs ApproxFun (Chebfun)

- The collocation matrix A is a transform between coefficients \mathbf{c} and values of the function with those coefficients. Just like Chebfun!
- A and A^{*} can be applied to a vector fast using a DCT.

FrameFun vs ApproxFun (Chebfun)

- The collocation matrix A is a transform between coefficients \mathbf{c} and values of the function with those coefficients. Just like Chebfun!
- A and A^{*} can be applied to a vector fast using a DCT. Just like Chebfun!

FrameFun vs ApproxFun (Chebfun)

- The collocation matrix A is a transform between coefficients \mathbf{c} and values of the function with those coefficients. Just like Chebfun!
- A and A^{*} can be applied to a vector fast using a DCT. Just like Chebfun!
- A is exponentially ill-conditioned $\left(\kappa(A) \geq 4^{N}\right)$. Sad!

FrameFun vs ApproxFun (Chebfun)

- The collocation matrix A is a transform between coefficients \mathbf{c} and values of the function with those coefficients. Just like Chebfun!
- A and A^{*} can be applied to a vector fast using a DCT. Just like Chebfun!
- A is exponentially ill-conditioned $\left(\kappa(A) \geq 4^{N}\right)$. Sad!?

FrameFun vs ApproxFun (Chebfun)

- The collocation matrix A is a transform between coefficients \mathbf{c} and values of the function with those coefficients. Just like Chebfun!
- A and A^{*} can be applied to a vector fast using a DCT. Just like Chebfun!
- A is exponentially ill-conditioned $\left(\kappa(A) \geq 4^{N}\right)$. Sad!?
- Coefficient size and error correlation:

FrameFun vs ApproxFun (Chebfun)

- The collocation matrix A is a transform between coefficients \mathbf{c} and values of the function with those coefficients. Just like Chebfun!
- A and A^{*} can be applied to a vector fast using a DCT. Just like Chebfun!
- A is exponentially ill-conditioned $\left(\kappa(A) \geq 4^{N}\right)$. Sad!?
- Coefficient size and error correlation:

Adaptivity and frames: Coppé-Huybrechs (in prep.)

Solving ill-conditioned systems

- III-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}, \mathbf{b} \in \mathbb{R}^{M}$ $(M=\gamma N)$,

$$
\underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min }\|A \mathbf{x}-b\|_{2}^{2}
$$

Solving ill-conditioned systems

- III-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}, \mathbf{b} \in \mathbb{R}^{M}$ $(M=\gamma N)$,

$$
\underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min }\|A \mathbf{x}-b\|_{2}^{2}
$$

- Many solutions with small residual.

Solving ill-conditioned systems

- III-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}, \mathbf{b} \in \mathbb{R}^{M}$ $(M=\gamma N)$,

$$
\underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min }\|A \mathbf{x}-b\|_{2}^{2}
$$

- Many solutions with small residual. The ε-regularised SVD solution is,

where $\sigma_{k}<\varepsilon \Longleftrightarrow k>r$.

Solving ill-conditioned systems

- III-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}, \mathbf{b} \in \mathbb{R}^{M}$ $(M=\gamma N)$,

$$
\underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min }\|A \mathbf{x}-b\|_{2}^{2}
$$

- Many solutions with small residual. The ε-regularised SVD solution is,

where $\sigma_{k}<\varepsilon \Longleftrightarrow k>r$.
- Backslash computes the ε-regularised pivoted-QR solution

Solving ill-conditioned systems

- III-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}, \mathbf{b} \in \mathbb{R}^{M}$ $(M=\gamma N)$,

$$
\underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min }\|A \mathbf{x}-b\|_{2}^{2}
$$

- Many solutions with small residual. The ε-regularised SVD solution is,

where $\sigma_{k}<\varepsilon \Longleftrightarrow k>r$.
- Backslash computes the ε-regularised pivoted-QR solution
- $O\left(N^{3}\right)$ flops - very slow!

Adcock-Huybrechs Theorems

Oversampled Collocation Theorem (Adcock-Huybrechs 2018) Let $\Phi=\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ be a frame for $L^{2}(\Omega)$ and let $\left\{w_{k, M} f\left(x_{k, M}\right)\right\}_{k=1}^{M}$ be "good" samples for any $f \in L^{2}(\Omega)$.
If the entries of $A \in \mathbb{R}^{M \times N}$ are $a_{k, j}=w_{k, M} \varphi_{j}\left(x_{k, M}\right)$, and $b_{k}=w_{k, M} u\left(x_{k, M}\right)$, then the ε-regularised solution $u^{\varepsilon, M, N}(x)$ satisfies

$$
\left\|u^{\varepsilon, M, N}-u\right\|_{L^{2}(\Omega)} \leq C_{M, N}^{\varepsilon}\left(\left\|\sum_{k=1}^{N} v_{k} \varphi_{k}-u\right\|_{L^{2}(\Omega)}+\varepsilon\|\mathbf{v}\|_{2}\right),
$$

for any $\mathbf{v} \in \ell^{2}$, where $\sup _{N} \limsup _{M \rightarrow \infty} C_{M, N}^{\varepsilon} \leq C<\infty$.

Adcock-Huybrechs Theorems

Oversampled Collocation Theorem (Adcock-Huybrechs 2018) Let $\Phi=\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ be a frame for $L^{2}(\Omega)$ and let $\left\{w_{k, M} f\left(x_{k, M}\right)\right\}_{k=1}^{M}$ be "good" samples for any $f \in L^{2}(\Omega)$.
If the entries of $A \in \mathbb{R}^{M \times N}$ are $a_{k, j}=w_{k, M} \varphi_{j}\left(x_{k, M}\right)$, and $b_{k}=w_{k, M} u\left(x_{k, M}\right)$, then the ε-regularised solution $u^{\varepsilon, M, N}(x)$ satisfies

$$
\left\|u^{\varepsilon, M, N}-u\right\|_{L^{2}(\Omega)} \leq C_{M, N}^{\varepsilon}\left(\left\|\sum_{k=1}^{N} v_{k} \varphi_{k}-u\right\|_{L^{2}(\Omega)}+\varepsilon\|\mathbf{v}\|_{2}\right),
$$

for any $\mathbf{v} \in \ell^{2}$, where $\sup \lim \sup C_{M, N}^{\varepsilon} \leq C<\infty$.

$$
N \quad M \rightarrow \infty
$$

Furthermore, the RHS converges to $\mathcal{O}(\varepsilon)$ as $N \rightarrow \infty$, with sufficient oversampling M.

What is a frame?

- A frame is a set of functions $\Phi=\left\{\varphi_{k}\right\}_{k=1}^{\infty} \subset \mathcal{H}$ (inner product space) such that

$$
f \mapsto\left\|\left(\left\langle\varphi_{k}, f\right\rangle\right)_{k=1}^{\infty}\right\|_{\ell^{2}} \quad \text { and } \quad f \mapsto\|f\|_{\mathcal{H}}
$$

are equivalent norms on \mathcal{H}.

What is a frame?

- A frame is a set of functions $\Phi=\left\{\varphi_{k}\right\}_{k=1}^{\infty} \subset \mathcal{H}$ (inner product space) such that

$$
f \mapsto\left\|\left(\left\langle\varphi_{k}, f\right\rangle\right)_{k=1}^{\infty}\right\|_{\ell^{2}} \quad \text { and } \quad f \mapsto\|f\|_{\mathcal{H}}
$$

are equivalent norms on \mathcal{H}.

- The set $\varphi_{2 k}=T_{k}, \varphi_{2 k+1}=w \cdot T_{k}$, satisfies

$$
\|f\|^{2} \inf _{x \in[-1,1]}\left|1+|w(x)|^{2}\right| \leq \sum_{k=0}^{\infty}\left|\left\langle\varphi_{k}, f\right\rangle\right|^{2} \leq\|f\|^{2} \sup _{x \in[-1,1]}\left|1+|w(x)|^{2}\right|
$$

What is a frame?

- A frame is a set of functions $\Phi=\left\{\varphi_{k}\right\}_{k=1}^{\infty} \subset \mathcal{H}$ (inner product space) such that

$$
f \mapsto\left\|\left(\left\langle\varphi_{k}, f\right\rangle\right)_{k=1}^{\infty}\right\|_{\ell^{2}} \quad \text { and } \quad f \mapsto\|f\|_{\mathcal{H}}
$$

are equivalent norms on \mathcal{H}.

- The set $\varphi_{2 k}=T_{k}, \varphi_{2 k+1}=w \cdot T_{k}$, satisfies

$$
\|f\|^{2} \inf _{x \in[-1,1]}\left|1+|w(x)|^{2}\right| \leq \sum_{k=0}^{\infty}\left|\left\langle\varphi_{k}, f\right\rangle\right|^{2} \leq\|f\|^{2} \sup _{x \in[-1,1]}\left|1+|w(x)|^{2}\right|
$$

- We have a frame if $1+|w(x)|^{2}$ is bounded above and below

Dual frames

- Typical focus: dual frame or "inversion of the frame operator"
- A dual frame $\tilde{\Phi}=\left\{\tilde{\varphi}_{k}\right\}_{k=1}^{\infty}$ satisfies

$$
f=\sum_{k=1}^{\infty}\left\langle\tilde{\varphi}_{k}, f\right\rangle \varphi_{k}
$$

Dual frames

- Typical focus: dual frame or "inversion of the frame operator"
- A dual frame $\tilde{\Phi}=\left\{\tilde{\varphi}_{k}\right\}_{k=1}^{\infty}$ satisfies

$$
f=\sum_{k=1}^{\infty}\left\langle\tilde{\varphi}_{k}, f\right\rangle \varphi_{k}
$$

$$
\begin{aligned}
& \Phi=\left\{T_{k}(x)\right\}_{k=1}^{\infty} \cup\left\{w(x) T_{k}(x)\right\}_{k=1}^{\infty} \\
& \tilde{\Phi}=\left\{\frac{T_{k}(x)}{1+|w(x)|^{2}}\right\}_{k=1}^{\infty} \cup\left\{\frac{w(x) T_{k}(x)}{1+|w(x)|^{2}}\right\}_{k=1}^{\infty}
\end{aligned}
$$

- These coefficients, $c_{k}=\left\langle\tilde{\varphi}_{k}, f\right\rangle$, converge too slowly! ROC gives better approximations.

Aside: Solving a low-rank system fast

Aside: Solving a low-rank system fast

- Let $A \in \mathbb{R}^{M \times r}$, where $r \ll M$. Then the SVD of A can be computed and inverted in $\mathcal{O}\left(M r^{2}\right)$ operations.

Aside: Solving a low-rank system fast

- Let $A \in \mathbb{R}^{M \times r}$, where $r \ll M$. Then the SVD of A can be computed and inverted in $\mathcal{O}\left(M r^{2}\right)$ operations.
- What about if $A \in \mathbb{R}^{M \times N}$ has rank r ?

Aside: Solving a low-rank system fast

- Let $A \in \mathbb{R}^{M \times r}$, where $r \ll M$. Then the SVD of A can be computed and inverted in $\mathcal{O}\left(M r^{2}\right)$ operations.
- What about if $A \in \mathbb{R}^{M \times N}$ has rank r ?

Randomised least squares solver for $A \mathbf{x}=\mathbf{b}$

1. $W=\operatorname{randn}(N, r+20)$
2. Least squares solve for $\mathbf{y} \in \mathbb{R}^{r+20}:(A W) \mathbf{y}=\mathbf{b}$
3. $\mathbf{x}=W \mathbf{y} \in \mathbb{R}^{N}$

Aside: Solving a low-rank system fast

- Let $A \in \mathbb{R}^{M \times r}$, where $r \ll M$. Then the SVD of A can be computed and inverted in $\mathcal{O}\left(M r^{2}\right)$ operations.
- What about if $A \in \mathbb{R}^{M \times N}$ has rank r ?

Randomised least squares solver for $A \mathbf{x}=\mathbf{b}$

1. $W=\operatorname{randn}(N, r+20)$
2. Least squares solve for $\mathbf{y} \in \mathbb{R}^{r+20}:(A W) \mathbf{y}=\mathbf{b}$
3. $\mathbf{x}=W \mathbf{y} \in \mathbb{R}^{N}$

Theorem (Using techniques in Halko, Martinsson, Tropp 2011)
The computed solution x satisfies,

$$
\|A \mathbf{x}-b\|_{2} \leq\|A \mathbf{v}-b\|_{2}+\kappa_{r, N} \cdot\left(\sum_{k>r} \sigma_{k}^{2}\right)^{1 / 2} \cdot\|\mathbf{v}\|_{2}, \quad \forall \mathbf{v} \in \mathbb{R}^{N}
$$

where $\kappa_{r, N}$ is a random variable such that
$\mathbb{P}\left[\kappa_{r, N}>16+5 \sqrt{r}\right]<2.89 \times 10^{-9}$.

The plunge region

- Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\left\{T_{k}\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x)\right\}_{k=0}^{N / 2-1}$.

The plunge region

- Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\left\{T_{k}\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x)\right\}_{k=0}^{N / 2-1}$.

The plunge region

- Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\left\{T_{k}\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x)\right\}_{k=0}^{N / 2-1}$.

- For weighted sums of trigonometric bases, the number of singular values in $(\varepsilon, 1-\varepsilon)$ is $\mathcal{O}(\log (N))$ (see Adcock-Huybrechs FNA paper and Webb (in prep.)).
- The big- \mathcal{O} depends on ε and the BV norms of the weights. Precise dependence is an open problem.

Dual frame isolates plunge region

Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\left\{T_{k}\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x)\right\}_{k=0}^{N / 2-1}$. Let $Z \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated dual frame,

$$
\left\{T_{k}(x) /(1+|x|)\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x) /(1+|x|)\right\}_{k=0}^{N / 2-1}
$$

Dual frame isolates plunge region

Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\left\{T_{k}\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x)\right\}_{k=0}^{N / 2-1}$.
Let $Z \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated dual frame,

$$
\left\{T_{k}(x) /(1+|x|)\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x) /(1+|x|)\right\}_{k=0}^{N / 2-1}
$$

Dual frame isolates plunge region

Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\left\{T_{k}\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x)\right\}_{k=0}^{N / 2-1}$. Let $Z \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated dual frame, $\left\{T_{k}(x) /(1+|x|)\right\}_{k=0}^{N / 2-1} \cup\left\{|x|^{1 / 2} T_{k}(x) /(1+|x|)\right\}_{k=0}^{N / 2-1}$. (I-AZ')A

The AZ algorithm - $A, Z \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$

AZ Algorithm for a least squares solution to $A \mathbf{x}=b$:

1. Solve $\left(I-A Z^{*}\right) A \mathbf{x}_{1}=\left(I-A Z^{*}\right) b$
2. $\mathbf{x}_{2}=Z^{*}\left(b-A \mathbf{x}_{1}\right)$
3. $\mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2}$

The AZ algorithm - $A, Z \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$

AZ Algorithm for a least squares solution to $A \mathbf{x}=b$:

1. Solve $\left(I-A Z^{*}\right) A \mathbf{x}_{1}=\left(I-A Z^{*}\right) b$
2. $\mathbf{x}_{2}=Z^{*}\left(b-A \mathbf{x}_{1}\right)$
3. $\mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2}$

- Residual: $\quad b-A \mathbf{x}=b-A \mathbf{x}_{1}-A \mathbf{x}_{2}$

$$
\begin{aligned}
& =b-A \mathbf{x}_{1}-A Z^{*}\left(b-A \mathbf{x}_{1}\right) \\
& =\left(I-A Z^{*}\right)\left(b-A \mathbf{x}_{1}\right) .
\end{aligned}
$$

The AZ algorithm - $A, Z \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$

AZ Algorithm for a least squares solution to $A \mathbf{x}=b$:

1. Solve $\left(I-A Z^{*}\right) A \mathbf{x}_{1}=\left(I-A Z^{*}\right) b$
2. $\mathbf{x}_{2}=Z^{*}\left(b-A \mathbf{x}_{1}\right)$
3. $\mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2}$

- Residual: $\quad b-A \mathbf{x}=b-A \mathbf{x}_{1}-A \mathbf{x}_{2}$

$$
\begin{aligned}
& =b-A \mathbf{x}_{1}-A Z^{*}\left(b-A \mathbf{x}_{1}\right) \\
& =\left(I-A Z^{*}\right)\left(b-A \mathbf{x}_{1}\right) .
\end{aligned}
$$

- If $\operatorname{rank}_{\varepsilon}\left(\left(I-A Z^{*}\right) A\right)=\operatorname{rk}_{N}$, and $A \mathbf{v}, Z^{*} \mathbf{w}$ require mul_{N} operations, then, in total,

$$
\mathcal{O}\left(\operatorname{mul}_{N} \cdot \mathrm{rk}_{N}+N \cdot \mathrm{rk}_{N}^{2}\right) \text { operations. }
$$

The AZ algorithm - $A, Z \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$

AZ Algorithm for a least squares solution to $A \mathbf{x}=b$:

1. Solve $\left(I-A Z^{*}\right) A \mathbf{x}_{1}=\left(I-A Z^{*}\right) b$
2. $\mathbf{x}_{2}=Z^{*}\left(b-A \mathbf{x}_{1}\right)$
3. $\mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2}$

- Residual: $\quad b-A \mathbf{x}=b-A \mathbf{x}_{1}-A \mathbf{x}_{2}$

$$
\begin{aligned}
& =b-A \mathbf{x}_{1}-A Z^{*}\left(b-A \mathbf{x}_{1}\right) \\
& =\left(I-A Z^{*}\right)\left(b-A \mathbf{x}_{1}\right) .
\end{aligned}
$$

- If $\operatorname{rank}_{\varepsilon}\left(\left(I-A Z^{*}\right) A\right)=\operatorname{rk}_{N}$, and $A \mathbf{v}, Z^{*} \mathbf{w}$ require mul_{N} operations, then, in total,

$$
\mathcal{O}\left(\operatorname{mul}_{N} \cdot \mathrm{rk}_{N}+N \cdot \mathrm{rk}_{N}^{2}\right) \text { operations. }
$$

- Our model problem: $\mathcal{O}\left(N \log ^{2}(N)\right)$

The AZ algorithm - $A, Z \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$

AZ Algorithm for a least squares solution to $A \mathbf{x}=b$:

1. Solve $\left(I-A Z^{*}\right) A \mathbf{x}_{1}=\left(I-A Z^{*}\right) b$
2. $\mathbf{x}_{2}=Z^{*}\left(b-A \mathbf{x}_{1}\right)$
3. $\mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2}$

- Residual: $\quad b-A \mathbf{x}=b-A \mathbf{x}_{1}-A \mathbf{x}_{2}$

$$
\begin{aligned}
& =b-A \mathbf{x}_{1}-A Z^{*}\left(b-A \mathbf{x}_{1}\right) \\
& =\left(I-A Z^{*}\right)\left(b-A \mathbf{x}_{1}\right) .
\end{aligned}
$$

- If $\operatorname{rank}_{\varepsilon}\left(\left(I-A Z^{*}\right) A\right)=\operatorname{rk}_{N}$, and $A \mathbf{v}, Z^{*} \mathbf{w}$ require mul_{N} operations, then, in total,

$$
\mathcal{O}\left(\operatorname{mul}_{N} \cdot \mathrm{rk}_{N}+N \cdot \mathrm{rk}_{N}^{2}\right) \text { operations. }
$$

- Our model problem: $\mathcal{O}\left(N \log ^{2}(N)\right)$
- See Coppé-Huybrechs-Matthysen-Webb (in prep.)

Discussion

Effective algorithms:

- Adcock-Huybrechs: for frames use regularised oversampled collocation
- Coefficients and adaptivity don't behave like in ApproxFun/Chebfun

Fast algorithms:

- Plunge region
- Fast randomised linear algebra
- The AZ algorithm
- Implemented in Julia package FrameFun

Discussion

Effective algorithms:

- Adcock-Huybrechs: for frames use regularised oversampled collocation
- Coefficients and adaptivity don't behave like in ApproxFun/Chebfun

Fast algorithms:

- Plunge region
- Fast randomised linear algebra
- The AZ algorithm
- Implemented in Julia package FrameFun

Several papers in prep.!

