
Approximation of singular functions using frames

Marcus Webb

Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven
25 Oct 2018

Approximation of singular functions using frames

Marcus Webb

Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven
25 Oct 2018

Approximation of singular functions using frames

Marcus Webb

Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven
25 Oct 2018

Motivation: why singular functions?

I Some differential equations naturally have solutions with
singularities:

I Boundary layers
I Corner singularities
I Endpoint singularities
I Discontinuous media: fractures/interfaces
I Singular integral equations/fractional differential equations

I Location and nature of singularities known

I Example methodologies for dealing with these:
I Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
I Rational collocation (Weidemann 1998)
I Enriched finite elements (Belytschko et al 1999)

I Traditional spectral methods struggle in these situations.

Motivation: why singular functions?

I Some differential equations naturally have solutions with
singularities:

I Boundary layers
I Corner singularities
I Endpoint singularities
I Discontinuous media: fractures/interfaces
I Singular integral equations/fractional differential equations

I Location and nature of singularities known

I Example methodologies for dealing with these:
I Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
I Rational collocation (Weidemann 1998)
I Enriched finite elements (Belytschko et al 1999)

I Traditional spectral methods struggle in these situations.

Motivation: why singular functions?

I Some differential equations naturally have solutions with
singularities:

I Boundary layers
I Corner singularities
I Endpoint singularities
I Discontinuous media: fractures/interfaces
I Singular integral equations/fractional differential equations

I Location and nature of singularities known

I Example methodologies for dealing with these:
I Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
I Rational collocation (Weidemann 1998)
I Enriched finite elements (Belytschko et al 1999)

I Traditional spectral methods struggle in these situations.

Motivation: why singular functions?

I Some differential equations naturally have solutions with
singularities:

I Boundary layers
I Corner singularities
I Endpoint singularities
I Discontinuous media: fractures/interfaces
I Singular integral equations/fractional differential equations

I Location and nature of singularities known

I Example methodologies for dealing with these:
I Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
I Rational collocation (Weidemann 1998)
I Enriched finite elements (Belytschko et al 1999)

I Traditional spectral methods struggle in these situations.

Model problem

I Consider a function u of the form u(x) = f(x) + |x|1/2g(x)

I f and g are smooth functions

I We can only sample u

-1.0 -0.5 0.0 0.5 1.0
x

-0.5

0.0

0.5

1.0

1.5

2.0

u(
x)

Moustache function

I More generally, u(x) = w1(x)f1(x) + · · ·+ wp(x)fp(x)

Approximating u(x) = f(x) + |x|1/2g(x)

1. u(x) ≈
N−1∑
k=0

akTk(x)

2. u(x) ≈
N−1∑
k=0

bk|x|1/2Tk(x)

3. u(x) ≈
N/2−1∑
k=0

c2kTk(x) + c2k+1|x|1/2Tk(x)

-1.0 -0.5 0.0 0.5 1.0

-0.04

-0.02

0.00

0.02

0.04

-1.0 -0.5 0.0 0.5 1.0

-0.04

-0.02

0.00

0.02

0.04

Approximating u(x) = f(x) + |x|1/2g(x)
1. u(x) ≈

N−1∑
k=0

akTk(x)

2. u(x) ≈
N−1∑
k=0

bk|x|1/2Tk(x)

3. u(x) ≈
N/2−1∑
k=0

c2kTk(x) + c2k+1|x|1/2Tk(x)

0 25 50 75 100
N

10 15

10 10

10 5

100

Su
p

er
ro

r

Chebyshev
Weighted Chebyshev
ROC on Cheb + Weighted Cheb
Chebyshev on f and g

What are we computing?

I We seek the N coefficients c ∈ RN which form the least squares
interpolant at M = γN Gauss-Chebyshev nodes {x1,M , . . . , xM,M}:

arg min
c∈RN

M∑
k=1

∣∣∣∣∣∣
N/2−1∑
j=0

c2jTj(xk,M) + c2j+1|xk,M |1/2Tj(xk,M)− f(xk,M)

∣∣∣∣∣∣
2

I AKA oversampled collocation

I Equivalent to the least squares solution of the tall, skinny linear
system, Ac = b, where A ∈ RM×N ,

Ak,2j = Tj(xk,M), Ak,2j+1 = |xk,M |1/2Tj(xk,M),

bk = f(xk,M), k = 1, 2, . . . ,M, j = 0, 1, . . . , N/2− 1.

What are we computing?

I We seek the N coefficients c ∈ RN which form the least squares
interpolant at M = γN Gauss-Chebyshev nodes {x1,M , . . . , xM,M}:

arg min
c∈RN

M∑
k=1

∣∣∣∣∣∣
N/2−1∑
j=0

c2jTj(xk,M) + c2j+1|xk,M |1/2Tj(xk,M)− f(xk,M)

∣∣∣∣∣∣
2

I AKA oversampled collocation

I Equivalent to the least squares solution of the tall, skinny linear
system, Ac = b, where A ∈ RM×N ,

Ak,2j = Tj(xk,M), Ak,2j+1 = |xk,M |1/2Tj(xk,M),

bk = f(xk,M), k = 1, 2, . . . ,M, j = 0, 1, . . . , N/2− 1.

What are we computing?

I We seek the N coefficients c ∈ RN which form the least squares
interpolant at M = γN Gauss-Chebyshev nodes {x1,M , . . . , xM,M}:

arg min
c∈RN

M∑
k=1

∣∣∣∣∣∣
N/2−1∑
j=0

c2jTj(xk,M) + c2j+1|xk,M |1/2Tj(xk,M)− f(xk,M)

∣∣∣∣∣∣
2

I AKA oversampled collocation

I Equivalent to the least squares solution of the tall, skinny linear
system, Ac = b, where A ∈ RM×N ,

Ak,2j = Tj(xk,M), Ak,2j+1 = |xk,M |1/2Tj(xk,M),

bk = f(xk,M), k = 1, 2, . . . ,M, j = 0, 1, . . . , N/2− 1.

FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients.

Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT. Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N). Sad!?

I Coefficient size and error correlation:

0 25 50 75 100
k

10 15

10 10

10 5

100

c_
k

FrameFun on u(x)
Chebyshev on f(x) and g(x)

Adaptivity and frames: Coppé-Huybrechs (in prep.)

FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients. Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT.

Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N). Sad!?

I Coefficient size and error correlation:

0 25 50 75 100
k

10 15

10 10

10 5

100

c_
k

FrameFun on u(x)
Chebyshev on f(x) and g(x)

Adaptivity and frames: Coppé-Huybrechs (in prep.)

FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients. Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT. Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N). Sad!?

I Coefficient size and error correlation:

0 25 50 75 100
k

10 15

10 10

10 5

100

c_
k

FrameFun on u(x)
Chebyshev on f(x) and g(x)

Adaptivity and frames: Coppé-Huybrechs (in prep.)

FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients. Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT. Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N). Sad!

?

I Coefficient size and error correlation:

0 25 50 75 100
k

10 15

10 10

10 5

100

c_
k

FrameFun on u(x)
Chebyshev on f(x) and g(x)

Adaptivity and frames: Coppé-Huybrechs (in prep.)

FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients. Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT. Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N). Sad!?

I Coefficient size and error correlation:

0 25 50 75 100
k

10 15

10 10

10 5

100

c_
k

FrameFun on u(x)
Chebyshev on f(x) and g(x)

Adaptivity and frames: Coppé-Huybrechs (in prep.)

FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients. Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT. Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N). Sad!?

I Coefficient size and error correlation:

0 25 50 75 100
k

10 15

10 10

10 5

100

c_
k

FrameFun on u(x)
Chebyshev on f(x) and g(x)

Adaptivity and frames: Coppé-Huybrechs (in prep.)

FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients. Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT. Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N). Sad!?

I Coefficient size and error correlation:

0 25 50 75 100
k

10 15

10 10

10 5

100

c_
k

FrameFun on u(x)
Chebyshev on f(x) and g(x)

Adaptivity and frames: Coppé-Huybrechs (in prep.)

Solving ill-conditioned systems

I Ill-conditioned least squares problem: A ∈ RM×N , b ∈ RM

(M = γN),
arg min
x∈RN

‖Ax− b‖22

I Many solutions with small residual. The ε-regularised SVD solution
is,

A = U


σ1

.
.
.

σr

.
.
.

σN

V ∗, x = V


σ
−1
1

.
.
.

σ
−1
r

.
.
.

0

U∗b

where σk < ε ⇐⇒ k > r.

I Backslash computes the ε-regularised pivoted-QR solution

I O(N3) flops – very slow!

Solving ill-conditioned systems

I Ill-conditioned least squares problem: A ∈ RM×N , b ∈ RM

(M = γN),
arg min
x∈RN

‖Ax− b‖22

I Many solutions with small residual.

The ε-regularised SVD solution
is,

A = U


σ1

.
.
.

σr

.
.
.

σN

V ∗, x = V


σ
−1
1

.
.
.

σ
−1
r

.
.
.

0

U∗b

where σk < ε ⇐⇒ k > r.

I Backslash computes the ε-regularised pivoted-QR solution

I O(N3) flops – very slow!

Solving ill-conditioned systems

I Ill-conditioned least squares problem: A ∈ RM×N , b ∈ RM

(M = γN),
arg min
x∈RN

‖Ax− b‖22

I Many solutions with small residual. The ε-regularised SVD solution
is,

A = U


σ1

.
.
.

σr

.
.
.

σN

V ∗, x = V


σ
−1
1

.
.
.

σ
−1
r

.
.
.

0

U∗b

where σk < ε ⇐⇒ k > r.

I Backslash computes the ε-regularised pivoted-QR solution

I O(N3) flops – very slow!

Solving ill-conditioned systems

I Ill-conditioned least squares problem: A ∈ RM×N , b ∈ RM

(M = γN),
arg min
x∈RN

‖Ax− b‖22

I Many solutions with small residual. The ε-regularised SVD solution
is,

A = U


σ1

.
.
.

σr

.
.
.

σN

V ∗, x = V


σ
−1
1

.
.
.

σ
−1
r

.
.
.

0

U∗b

where σk < ε ⇐⇒ k > r.

I Backslash computes the ε-regularised pivoted-QR solution

I O(N3) flops – very slow!

Solving ill-conditioned systems

I Ill-conditioned least squares problem: A ∈ RM×N , b ∈ RM

(M = γN),
arg min
x∈RN

‖Ax− b‖22

I Many solutions with small residual. The ε-regularised SVD solution
is,

A = U


σ1

.
.
.

σr

.
.
.

σN

V ∗, x = V


σ
−1
1

.
.
.

σ
−1
r

.
.
.

0

U∗b

where σk < ε ⇐⇒ k > r.

I Backslash computes the ε-regularised pivoted-QR solution

I O(N3) flops – very slow!

Adcock-Huybrechs Theorems

Oversampled Collocation Theorem (Adcock–Huybrechs 2018)
Let Φ = {ϕk}∞k=1 be a frame for L2(Ω) and let {wk,Mf(xk,M)}Mk=1 be
”good” samples for any f ∈ L2(Ω).
If the entries of A ∈ RM×N are ak,j = wk,Mϕj(xk,M), and
bk = wk,Mu(xk,M), then the ε-regularised solution uε,M,N (x) satisfies

‖uε,M,N − u‖L2(Ω) ≤ Cε
M,N

∥∥∥∥∥
N∑

k=1

vkϕk − u

∥∥∥∥∥
L2(Ω)

+ ε‖v‖2

 ,

for any v ∈ `2, where sup
N

lim sup
M→∞

Cε
M,N ≤ C <∞.

Furthermore, the RHS converges to O(ε) as N →∞, with sufficient
oversampling M .

Adcock-Huybrechs Theorems

Oversampled Collocation Theorem (Adcock–Huybrechs 2018)
Let Φ = {ϕk}∞k=1 be a frame for L2(Ω) and let {wk,Mf(xk,M)}Mk=1 be
”good” samples for any f ∈ L2(Ω).
If the entries of A ∈ RM×N are ak,j = wk,Mϕj(xk,M), and
bk = wk,Mu(xk,M), then the ε-regularised solution uε,M,N (x) satisfies

‖uε,M,N − u‖L2(Ω) ≤ Cε
M,N

∥∥∥∥∥
N∑

k=1

vkϕk − u

∥∥∥∥∥
L2(Ω)

+ ε‖v‖2

 ,

for any v ∈ `2, where sup
N

lim sup
M→∞

Cε
M,N ≤ C <∞.

Furthermore, the RHS converges to O(ε) as N →∞, with sufficient
oversampling M .

What is a frame?

I A frame is a set of functions Φ = {ϕk}∞k=1 ⊂ H (inner product
space) such that

f 7→ ‖ (〈ϕk, f〉)∞k=1 ‖`2 and f 7→ ‖f‖H

are equivalent norms on H.

I The set ϕ2k = Tk, ϕ2k+1 = w · Tk, satisfies

‖f‖2 inf
x∈[−1,1]

|1+|w(x)|2| ≤
∞∑
k=0

|〈ϕk, f〉|2 ≤ ‖f‖2 sup
x∈[−1,1]

|1+|w(x)|2|

I We have a frame if 1 + |w(x)|2 is bounded above and below

What is a frame?

I A frame is a set of functions Φ = {ϕk}∞k=1 ⊂ H (inner product
space) such that

f 7→ ‖ (〈ϕk, f〉)∞k=1 ‖`2 and f 7→ ‖f‖H

are equivalent norms on H.

I The set ϕ2k = Tk, ϕ2k+1 = w · Tk, satisfies

‖f‖2 inf
x∈[−1,1]

|1+|w(x)|2| ≤
∞∑
k=0

|〈ϕk, f〉|2 ≤ ‖f‖2 sup
x∈[−1,1]

|1+|w(x)|2|

I We have a frame if 1 + |w(x)|2 is bounded above and below

What is a frame?

I A frame is a set of functions Φ = {ϕk}∞k=1 ⊂ H (inner product
space) such that

f 7→ ‖ (〈ϕk, f〉)∞k=1 ‖`2 and f 7→ ‖f‖H

are equivalent norms on H.

I The set ϕ2k = Tk, ϕ2k+1 = w · Tk, satisfies

‖f‖2 inf
x∈[−1,1]

|1+|w(x)|2| ≤
∞∑
k=0

|〈ϕk, f〉|2 ≤ ‖f‖2 sup
x∈[−1,1]

|1+|w(x)|2|

I We have a frame if 1 + |w(x)|2 is bounded above and below

Dual frames

I Typical focus: dual frame or ”inversion of the frame operator”

I A dual frame Φ̃ = {ϕ̃k}∞k=1 satisfies

f =

∞∑
k=1

〈ϕ̃k, f〉ϕk

Φ = {Tk(x)}∞k=1 ∪ {w(x)Tk(x)}∞k=1

Φ̃ =

{
Tk(x)

1 + |w(x)|2

}∞
k=1

∪
{
w(x)Tk(x)

1 + |w(x)|2

}∞
k=1

I These coefficients, ck = 〈ϕ̃k, f〉, converge too slowly! ROC gives
better approximations.

Dual frames

I Typical focus: dual frame or ”inversion of the frame operator”

I A dual frame Φ̃ = {ϕ̃k}∞k=1 satisfies

f =

∞∑
k=1

〈ϕ̃k, f〉ϕk

Φ = {Tk(x)}∞k=1 ∪ {w(x)Tk(x)}∞k=1

Φ̃ =

{
Tk(x)

1 + |w(x)|2

}∞
k=1

∪
{
w(x)Tk(x)

1 + |w(x)|2

}∞
k=1

I These coefficients, ck = 〈ϕ̃k, f〉, converge too slowly! ROC gives
better approximations.

Aside: Solving a low-rank system fast

I Let A ∈ RM×r, where r �M . Then the SVD of A can be
computed and inverted in O(Mr2) operations.

I What about if A ∈ RM×N has rank r?

Randomised least squares solver for Ax = b

1. W = randn(N, r + 20)

2. Least squares solve for y ∈ Rr+20: (AW)y = b

3. x = Wy ∈ RN

Theorem (Using techniques in Halko, Martinsson, Tropp 2011)
The computed solution x satisfies,

‖Ax− b‖2 ≤ ‖Av − b‖2 + κr,N ·

(∑
k>r

σ2
k

)1/2

· ‖v‖2, ∀v ∈ RN ,

where κr,N is a random variable such that
P
[
κr,N > 16 + 5

√
r
]
< 2.89× 10−9.

Aside: Solving a low-rank system fast

I Let A ∈ RM×r, where r �M . Then the SVD of A can be
computed and inverted in O(Mr2) operations.

I What about if A ∈ RM×N has rank r?

Randomised least squares solver for Ax = b

1. W = randn(N, r + 20)

2. Least squares solve for y ∈ Rr+20: (AW)y = b

3. x = Wy ∈ RN

Theorem (Using techniques in Halko, Martinsson, Tropp 2011)
The computed solution x satisfies,

‖Ax− b‖2 ≤ ‖Av − b‖2 + κr,N ·

(∑
k>r

σ2
k

)1/2

· ‖v‖2, ∀v ∈ RN ,

where κr,N is a random variable such that
P
[
κr,N > 16 + 5

√
r
]
< 2.89× 10−9.

Aside: Solving a low-rank system fast

I Let A ∈ RM×r, where r �M . Then the SVD of A can be
computed and inverted in O(Mr2) operations.

I What about if A ∈ RM×N has rank r?

Randomised least squares solver for Ax = b

1. W = randn(N, r + 20)

2. Least squares solve for y ∈ Rr+20: (AW)y = b

3. x = Wy ∈ RN

Theorem (Using techniques in Halko, Martinsson, Tropp 2011)
The computed solution x satisfies,

‖Ax− b‖2 ≤ ‖Av − b‖2 + κr,N ·

(∑
k>r

σ2
k

)1/2

· ‖v‖2, ∀v ∈ RN ,

where κr,N is a random variable such that
P
[
κr,N > 16 + 5

√
r
]
< 2.89× 10−9.

Aside: Solving a low-rank system fast

I Let A ∈ RM×r, where r �M . Then the SVD of A can be
computed and inverted in O(Mr2) operations.

I What about if A ∈ RM×N has rank r?

Randomised least squares solver for Ax = b

1. W = randn(N, r + 20)

2. Least squares solve for y ∈ Rr+20: (AW)y = b

3. x = Wy ∈ RN

Theorem (Using techniques in Halko, Martinsson, Tropp 2011)
The computed solution x satisfies,

‖Ax− b‖2 ≤ ‖Av − b‖2 + κr,N ·

(∑
k>r

σ2
k

)1/2

· ‖v‖2, ∀v ∈ RN ,

where κr,N is a random variable such that
P
[
κr,N > 16 + 5

√
r
]
< 2.89× 10−9.

Aside: Solving a low-rank system fast

I Let A ∈ RM×r, where r �M . Then the SVD of A can be
computed and inverted in O(Mr2) operations.

I What about if A ∈ RM×N has rank r?

Randomised least squares solver for Ax = b

1. W = randn(N, r + 20)

2. Least squares solve for y ∈ Rr+20: (AW)y = b

3. x = Wy ∈ RN

Theorem (Using techniques in Halko, Martinsson, Tropp 2011)
The computed solution x satisfies,

‖Ax− b‖2 ≤ ‖Av − b‖2 + κr,N ·

(∑
k>r

σ2
k

)1/2

· ‖v‖2, ∀v ∈ RN ,

where κr,N is a random variable such that
P
[
κr,N > 16 + 5

√
r
]
< 2.89× 10−9.

The plunge region

I Let A ∈ RM×N be the collocation matrix in M Gauss-Chebyshev

points for the N -truncated frame, {Tk}N/2−1
k=0 ∪ {|x|1/2Tk(x)}N/2−1

k=0 .

0 50 100 150 200 250
k

0.00

0.25

0.50

0.75

1.00

1.25

kt
h

sin
gu

la
r v

al
ue

A

0 50 100 150 200 250
k

10 15

10 10

10 5

100

kt
h

sin
gu

la
r v

al
ue

A

I For weighted sums of trigonometric bases, the number of singular
values in (ε, 1− ε) is O(log(N)) (see Adcock-Huybrechs FNA paper
and Webb (in prep.)).

I The big-O depends on ε and the BV norms of the weights. Precise
dependence is an open problem.

The plunge region

I Let A ∈ RM×N be the collocation matrix in M Gauss-Chebyshev

points for the N -truncated frame, {Tk}N/2−1
k=0 ∪ {|x|1/2Tk(x)}N/2−1

k=0 .

0 50 100 150 200 250
k

0.00

0.25

0.50

0.75

1.00

1.25

kt
h

sin
gu

la
r v

al
ue

A

0 50 100 150 200 250
k

10 15

10 10

10 5

100

kt
h

sin
gu

la
r v

al
ue

A

I For weighted sums of trigonometric bases, the number of singular
values in (ε, 1− ε) is O(log(N)) (see Adcock-Huybrechs FNA paper
and Webb (in prep.)).

I The big-O depends on ε and the BV norms of the weights. Precise
dependence is an open problem.

The plunge region

I Let A ∈ RM×N be the collocation matrix in M Gauss-Chebyshev

points for the N -truncated frame, {Tk}N/2−1
k=0 ∪ {|x|1/2Tk(x)}N/2−1

k=0 .

0 50 100 150 200 250
k

0.00

0.25

0.50

0.75

1.00

1.25

kt
h

sin
gu

la
r v

al
ue

A

0 50 100 150 200 250
k

10 15

10 10

10 5

100

kt
h

sin
gu

la
r v

al
ue

A

I For weighted sums of trigonometric bases, the number of singular
values in (ε, 1− ε) is O(log(N)) (see Adcock-Huybrechs FNA paper
and Webb (in prep.)).

I The big-O depends on ε and the BV norms of the weights. Precise
dependence is an open problem.

Dual frame isolates plunge region

Let A ∈ RM×N be the collocation matrix in M Gauss-Chebyshev points

for the N -truncated frame, {Tk}N/2−1
k=0 ∪ {|x|1/2Tk(x)}N/2−1

k=0 .
Let Z ∈ RM×N be the collocation matrix in M Gauss-Chebyshev points
for the N -truncated dual frame,
{Tk(x)/(1 + |x|)}N/2−1

k=0 ∪ {|x|1/2Tk(x)/(1 + |x|)}N/2−1
k=0 .

Dual frame isolates plunge region

Let A ∈ RM×N be the collocation matrix in M Gauss-Chebyshev points

for the N -truncated frame, {Tk}N/2−1
k=0 ∪ {|x|1/2Tk(x)}N/2−1

k=0 .
Let Z ∈ RM×N be the collocation matrix in M Gauss-Chebyshev points
for the N -truncated dual frame,
{Tk(x)/(1 + |x|)}N/2−1

k=0 ∪ {|x|1/2Tk(x)/(1 + |x|)}N/2−1
k=0 .

0 50 100 150 200 250
k

0.00

0.25

0.50

0.75

1.00

1.25

kt
h

sin
gu

la
r v

al
ue

A

0 50 100 150 200 250
k

0.00

0.25

0.50

0.75

1.00

kt
h

sin
gu

la
r v

al
ue

Z

Dual frame isolates plunge region
Let A ∈ RM×N be the collocation matrix in M Gauss-Chebyshev points

for the N -truncated frame, {Tk}N/2−1
k=0 ∪ {|x|1/2Tk(x)}N/2−1

k=0 .
Let Z ∈ RM×N be the collocation matrix in M Gauss-Chebyshev points
for the N -truncated dual frame,
{Tk(x)/(1 + |x|)}N/2−1

k=0 ∪ {|x|1/2Tk(x)/(1 + |x|)}N/2−1
k=0 .

0 50 100 150 200 250
k

10 20

10 15

10 10

10 5

kt
h

sin
gu

la
r v

al
ue

(I-AZ')A

The AZ algorithm - A,Z ∈ RM×N , b ∈ RM

AZ Algorithm for a least squares solution to Ax = b:

1. Solve (I −AZ∗)Ax1 = (I −AZ∗)b
2. x2 = Z∗(b−Ax1)

3. x = x1 + x2

I Residual: b−Ax = b−Ax1 −Ax2

= b−Ax1 −AZ∗(b−Ax1)

= (I −AZ∗)(b−Ax1).

I If rankε((I −AZ∗)A) = rkN , and Av, Z∗w require mulN
operations, then, in total,

O(mulN · rkN +N · rk2
N) operations.

I Our model problem: O(N log2(N))

I See Coppé-Huybrechs-Matthysen-Webb (in prep.)

The AZ algorithm - A,Z ∈ RM×N , b ∈ RM

AZ Algorithm for a least squares solution to Ax = b:

1. Solve (I −AZ∗)Ax1 = (I −AZ∗)b
2. x2 = Z∗(b−Ax1)

3. x = x1 + x2

I Residual: b−Ax = b−Ax1 −Ax2

= b−Ax1 −AZ∗(b−Ax1)

= (I −AZ∗)(b−Ax1).

I If rankε((I −AZ∗)A) = rkN , and Av, Z∗w require mulN
operations, then, in total,

O(mulN · rkN +N · rk2
N) operations.

I Our model problem: O(N log2(N))

I See Coppé-Huybrechs-Matthysen-Webb (in prep.)

The AZ algorithm - A,Z ∈ RM×N , b ∈ RM

AZ Algorithm for a least squares solution to Ax = b:

1. Solve (I −AZ∗)Ax1 = (I −AZ∗)b
2. x2 = Z∗(b−Ax1)

3. x = x1 + x2

I Residual: b−Ax = b−Ax1 −Ax2

= b−Ax1 −AZ∗(b−Ax1)

= (I −AZ∗)(b−Ax1).

I If rankε((I −AZ∗)A) = rkN , and Av, Z∗w require mulN
operations, then, in total,

O(mulN · rkN +N · rk2
N) operations.

I Our model problem: O(N log2(N))

I See Coppé-Huybrechs-Matthysen-Webb (in prep.)

The AZ algorithm - A,Z ∈ RM×N , b ∈ RM

AZ Algorithm for a least squares solution to Ax = b:

1. Solve (I −AZ∗)Ax1 = (I −AZ∗)b
2. x2 = Z∗(b−Ax1)

3. x = x1 + x2

I Residual: b−Ax = b−Ax1 −Ax2

= b−Ax1 −AZ∗(b−Ax1)

= (I −AZ∗)(b−Ax1).

I If rankε((I −AZ∗)A) = rkN , and Av, Z∗w require mulN
operations, then, in total,

O(mulN · rkN +N · rk2
N) operations.

I Our model problem: O(N log2(N))

I See Coppé-Huybrechs-Matthysen-Webb (in prep.)

The AZ algorithm - A,Z ∈ RM×N , b ∈ RM

AZ Algorithm for a least squares solution to Ax = b:

1. Solve (I −AZ∗)Ax1 = (I −AZ∗)b
2. x2 = Z∗(b−Ax1)

3. x = x1 + x2

I Residual: b−Ax = b−Ax1 −Ax2

= b−Ax1 −AZ∗(b−Ax1)

= (I −AZ∗)(b−Ax1).

I If rankε((I −AZ∗)A) = rkN , and Av, Z∗w require mulN
operations, then, in total,

O(mulN · rkN +N · rk2
N) operations.

I Our model problem: O(N log2(N))

I See Coppé-Huybrechs-Matthysen-Webb (in prep.)

Discussion

Effective algorithms:

I Adcock-Huybrechs: for frames use regularised oversampled
collocation

I Coefficients and adaptivity don’t behave like in ApproxFun/Chebfun

Fast algorithms:

I Plunge region

I Fast randomised linear algebra

I The AZ algorithm

I Implemented in Julia package FrameFun

Several papers in prep.!

Discussion

Effective algorithms:

I Adcock-Huybrechs: for frames use regularised oversampled
collocation

I Coefficients and adaptivity don’t behave like in ApproxFun/Chebfun

Fast algorithms:

I Plunge region

I Fast randomised linear algebra

I The AZ algorithm

I Implemented in Julia package FrameFun

Several papers in prep.!

