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Motivation: why singular functions?

I Some differential equations naturally have solutions with
singularities:

I Boundary layers
I Corner singularities
I Endpoint singularities
I Discontinuous media: fractures/interfaces
I Singular integral equations/fractional differential equations

I Location and nature of singularities known

I Example methodologies for dealing with these:
I Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
I Rational collocation (Weidemann 1998)
I Enriched finite elements (Belytschko et al 1999)

I Traditional spectral methods struggle in these situations.
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Model problem

I Consider a function u of the form u(x) = f(x) + |x|1/2g(x)

I f and g are smooth functions

I We can only sample u
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Approximating u(x) = f(x) + |x|1/2g(x)

1. u(x) ≈
N−1∑
k=0

akTk(x)

2. u(x) ≈
N−1∑
k=0

bk|x|1/2Tk(x)

3. u(x) ≈
N/2−1∑
k=0

c2kTk(x) + c2k+1|x|1/2Tk(x)
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What are we computing?

I We seek the N coefficients c ∈ RN which form the least squares
interpolant at M = γN Gauss-Chebyshev nodes {x1,M , . . . , xM,M}:

arg min
c∈RN

M∑
k=1

∣∣∣∣∣∣
N/2−1∑
j=0

c2jTj(xk,M ) + c2j+1|xk,M |1/2Tj(xk,M )− f(xk,M )

∣∣∣∣∣∣
2

I AKA oversampled collocation

I Equivalent to the least squares solution of the tall, skinny linear
system, Ac = b, where A ∈ RM×N ,

Ak,2j = Tj(xk,M ), Ak,2j+1 = |xk,M |1/2Tj(xk,M ),

bk = f(xk,M ), k = 1, 2, . . . ,M, j = 0, 1, . . . , N/2− 1.
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FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients.

Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT. Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N ). Sad!?

I Coefficient size and error correlation:
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Adaptivity and frames: Coppé-Huybrechs (in prep.)
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FrameFun vs ApproxFun (Chebfun)

I The collocation matrix A is a transform between coefficients c and
values of the function with those coefficients. Just like Chebfun!

I A and A∗ can be applied to a vector fast using a DCT. Just like
Chebfun!

I A is exponentially ill-conditioned (κ(A) ≥ 4N ). Sad!?

I Coefficient size and error correlation:

0 25 50 75 100
k

10 15

10 10

10 5

100

c_
k

FrameFun on u(x)
Chebyshev on f(x) and g(x)

Adaptivity and frames: Coppé-Huybrechs (in prep.)
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Solving ill-conditioned systems

I Ill-conditioned least squares problem: A ∈ RM×N , b ∈ RM

(M = γN),
arg min
x∈RN

‖Ax− b‖22

I Many solutions with small residual. The ε-regularised SVD solution
is,

A = U


σ1

.
.
.

σr

.
.
.

σN

V ∗, x = V


σ
−1
1

.
.
.

σ
−1
r

.
.
.

0

U∗b

where σk < ε ⇐⇒ k > r.

I Backslash computes the ε-regularised pivoted-QR solution

I O(N3) flops – very slow!
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Adcock-Huybrechs Theorems

Oversampled Collocation Theorem (Adcock–Huybrechs 2018)
Let Φ = {ϕk}∞k=1 be a frame for L2(Ω) and let {wk,Mf(xk,M )}Mk=1 be
”good” samples for any f ∈ L2(Ω).
If the entries of A ∈ RM×N are ak,j = wk,Mϕj(xk,M ), and
bk = wk,Mu(xk,M ), then the ε-regularised solution uε,M,N (x) satisfies

‖uε,M,N − u‖L2(Ω) ≤ Cε
M,N

∥∥∥∥∥
N∑

k=1

vkϕk − u

∥∥∥∥∥
L2(Ω)

+ ε‖v‖2

 ,

for any v ∈ `2, where sup
N

lim sup
M→∞

Cε
M,N ≤ C <∞.

Furthermore, the RHS converges to O(ε) as N →∞, with sufficient
oversampling M .
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What is a frame?

I A frame is a set of functions Φ = {ϕk}∞k=1 ⊂ H (inner product
space) such that

f 7→ ‖ (〈ϕk, f〉)∞k=1 ‖`2 and f 7→ ‖f‖H

are equivalent norms on H.

I The set ϕ2k = Tk, ϕ2k+1 = w · Tk, satisfies

‖f‖2 inf
x∈[−1,1]

|1+|w(x)|2| ≤
∞∑
k=0

|〈ϕk, f〉|2 ≤ ‖f‖2 sup
x∈[−1,1]

|1+|w(x)|2|

I We have a frame if 1 + |w(x)|2 is bounded above and below
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Dual frames

I Typical focus: dual frame or ”inversion of the frame operator”

I A dual frame Φ̃ = {ϕ̃k}∞k=1 satisfies

f =

∞∑
k=1

〈ϕ̃k, f〉ϕk

Φ = {Tk(x)}∞k=1 ∪ {w(x)Tk(x)}∞k=1

Φ̃ =

{
Tk(x)

1 + |w(x)|2

}∞
k=1

∪
{
w(x)Tk(x)

1 + |w(x)|2

}∞
k=1

I These coefficients, ck = 〈ϕ̃k, f〉, converge too slowly! ROC gives
better approximations.
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Aside: Solving a low-rank system fast

I Let A ∈ RM×r, where r �M . Then the SVD of A can be
computed and inverted in O(Mr2) operations.

I What about if A ∈ RM×N has rank r?

Randomised least squares solver for Ax = b

1. W = randn(N, r + 20)

2. Least squares solve for y ∈ Rr+20: (AW )y = b

3. x = Wy ∈ RN

Theorem (Using techniques in Halko, Martinsson, Tropp 2011)
The computed solution x satisfies,

‖Ax− b‖2 ≤ ‖Av − b‖2 + κr,N ·

(∑
k>r

σ2
k

)1/2

· ‖v‖2, ∀v ∈ RN ,

where κr,N is a random variable such that
P
[
κr,N > 16 + 5

√
r
]
< 2.89× 10−9.
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The plunge region

I Let A ∈ RM×N be the collocation matrix in M Gauss-Chebyshev

points for the N -truncated frame, {Tk}N/2−1
k=0 ∪ {|x|1/2Tk(x)}N/2−1

k=0 .
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I For weighted sums of trigonometric bases, the number of singular
values in (ε, 1− ε) is O(log(N)) (see Adcock-Huybrechs FNA paper
and Webb (in prep.)).

I The big-O depends on ε and the BV norms of the weights. Precise
dependence is an open problem.
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I For weighted sums of trigonometric bases, the number of singular
values in (ε, 1− ε) is O(log(N)) (see Adcock-Huybrechs FNA paper
and Webb (in prep.)).

I The big-O depends on ε and the BV norms of the weights. Precise
dependence is an open problem.
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Dual frame isolates plunge region

Let A ∈ RM×N be the collocation matrix in M Gauss-Chebyshev points

for the N -truncated frame, {Tk}N/2−1
k=0 ∪ {|x|1/2Tk(x)}N/2−1

k=0 .
Let Z ∈ RM×N be the collocation matrix in M Gauss-Chebyshev points
for the N -truncated dual frame,
{Tk(x)/(1 + |x|)}N/2−1

k=0 ∪ {|x|1/2Tk(x)/(1 + |x|)}N/2−1
k=0 .
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The AZ algorithm - A,Z ∈ RM×N , b ∈ RM

AZ Algorithm for a least squares solution to Ax = b:

1. Solve (I −AZ∗)Ax1 = (I −AZ∗)b
2. x2 = Z∗(b−Ax1)

3. x = x1 + x2

I Residual: b−Ax = b−Ax1 −Ax2

= b−Ax1 −AZ∗(b−Ax1)

= (I −AZ∗)(b−Ax1).

I If rankε((I −AZ∗)A) = rkN , and Av, Z∗w require mulN
operations, then, in total,

O(mulN · rkN +N · rk2
N ) operations.

I Our model problem: O(N log2(N))

I See Coppé-Huybrechs-Matthysen-Webb (in prep.)
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I See Coppé-Huybrechs-Matthysen-Webb (in prep.)



The AZ algorithm - A,Z ∈ RM×N , b ∈ RM

AZ Algorithm for a least squares solution to Ax = b:

1. Solve (I −AZ∗)Ax1 = (I −AZ∗)b
2. x2 = Z∗(b−Ax1)

3. x = x1 + x2

I Residual: b−Ax = b−Ax1 −Ax2

= b−Ax1 −AZ∗(b−Ax1)

= (I −AZ∗)(b−Ax1).

I If rankε((I −AZ∗)A) = rkN , and Av, Z∗w require mulN
operations, then, in total,

O(mulN · rkN +N · rk2
N ) operations.

I Our model problem: O(N log2(N))
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Discussion

Effective algorithms:

I Adcock-Huybrechs: for frames use regularised oversampled
collocation

I Coefficients and adaptivity don’t behave like in ApproxFun/Chebfun

Fast algorithms:

I Plunge region

I Fast randomised linear algebra

I The AZ algorithm

I Implemented in Julia package FrameFun

Several papers in prep.!
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