Approximation of singular functions using frames

Marcus Webb

Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven 25 Oct 2018

Approximation of singular functions using frames

Marcus Webb

Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven 25 Oct 2018

Approximation of singular functions using frames

Marcus Webb

Joint with Daan Huybrechs, Vincent Coppé and Roel Matthysen

NUMA Seminar, KU Leuven 25 Oct 2018

- Some differential equations naturally have solutions with singularities:
 - Boundary layers
 - Corner singularities
 - Endpoint singularities
 - Discontinuous media: fractures/interfaces
 - Singular integral equations/fractional differential equations

- Some differential equations naturally have solutions with singularities:
 - Boundary layers
 - Corner singularities
 - Endpoint singularities
 - ▶ Discontinuous media: fractures/interfaces
 - Singular integral equations/fractional differential equations
- Location and nature of singularities known

- Some differential equations naturally have solutions with singularities:
 - Boundary layers
 - Corner singularities
 - Endpoint singularities
 - Discontinuous media: fractures/interfaces
 - Singular integral equations/fractional differential equations
- Location and nature of singularities known
- Example methodologies for dealing with these:
 - ► Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
 - ► Rational collocation (Weidemann 1998)
 - ► Enriched finite elements (Belytschko et al 1999)

- Some differential equations naturally have solutions with singularities:
 - Boundary layers
 - Corner singularities
 - Endpoint singularities
 - Discontinuous media: fractures/interfaces
 - Singular integral equations/fractional differential equations
- Location and nature of singularities known
- ► Example methodologies for dealing with these:
 - ► Mesh refinement/domain splitting near singularity (e.g. hp-FEM)
 - ► Rational collocation (Weidemann 1998)
 - ► Enriched finite elements (Belytschko et al 1999)
- ► Traditional spectral methods struggle in these situations.

Model problem

- ▶ Consider a function u of the form $u(x) = f(x) + |x|^{1/2}g(x)$
- ightharpoonup f and g are smooth functions
- lacktriangleq We can only sample u

▶ More generally, $u(x) = w_1(x)f_1(x) + \cdots + w_p(x)f_p(x)$

Approximating $u(x) = f(x) + |x|^{1/2}g(x)$

1.
$$u(x) \approx \sum_{k=0}^{N-1} a_k T_k(x)$$

2.
$$u(x) \approx \sum_{k=0}^{N-1} b_k |x|^{1/2} T_k(x)$$

N/2-1

3.
$$u(x) \approx \sum_{k=0}^{\infty} c_{2k} T_k(x) + c_{2k+1} |x|^{1/2} T_k(x)$$

Approximating $u(x) = f(x) + |x|^{1/2}g(x)$

1.
$$u(x) \approx \sum_{k=0}^{\infty} a_k T_k(x)$$

2.
$$u(x) \approx \sum_{k=0}^{N-1} b_k |x|^{1/2} T_k(x)$$

3.
$$u(x) \approx \sum_{k=0}^{\infty} c_{2k} T_k(x) + c_{2k+1} |x|^{1/2} T_k(x)$$

What are we computing?

▶ We seek the N coefficients $\mathbf{c} \in \mathbb{R}^N$ which form the least squares interpolant at $M = \gamma N$ Gauss-Chebyshev nodes $\{x_{1,M}, \dots, x_{M,M}\}$:

$$\underset{\mathbf{c} \in \mathbb{R}^N}{\arg\min} \sum_{k=1}^M \left| \sum_{j=0}^{N/2-1} c_{2j} T_j(x_{k,M}) + c_{2j+1} |x_{k,M}|^{1/2} T_j(x_{k,M}) - f(x_{k,M}) \right|^2$$

What are we computing?

▶ We seek the N coefficients $\mathbf{c} \in \mathbb{R}^N$ which form the least squares interpolant at $M = \gamma N$ Gauss-Chebyshev nodes $\{x_{1,M}, \dots, x_{M,M}\}$:

$$\underset{\mathbf{c} \in \mathbb{R}^N}{\arg\min} \sum_{k=1}^{M} \left| \sum_{j=0}^{N/2-1} c_{2j} T_j(x_{k,M}) + c_{2j+1} |x_{k,M}|^{1/2} T_j(x_{k,M}) - f(x_{k,M}) \right|^2$$

AKA oversampled collocation

What are we computing?

▶ We seek the N coefficients $\mathbf{c} \in \mathbb{R}^N$ which form the least squares interpolant at $M = \gamma N$ Gauss-Chebyshev nodes $\{x_{1,M}, \dots, x_{M,M}\}$:

$$\underset{\mathbf{c} \in \mathbb{R}^N}{\operatorname{arg\,min}} \sum_{k=1}^M \left| \sum_{j=0}^{N/2-1} c_{2j} T_j(x_{k,M}) + c_{2j+1} |x_{k,M}|^{1/2} T_j(x_{k,M}) - f(x_{k,M}) \right|^2$$

- AKA oversampled collocation
- ▶ Equivalent to the least squares solution of the tall, skinny linear system, $A\mathbf{c} = \mathbf{b}$, where $A \in \mathbb{R}^{M \times N}$,

$$A_{k,2j} = T_j(x_{k,M}),$$
 $A_{k,2j+1} = |x_{k,M}|^{1/2} T_j(x_{k,M}),$ $b_k = f(x_{k,M}),$ $k = 1, 2, \dots, M, j = 0, 1, \dots, N/2 - 1.$

► The collocation matrix A is a **transform** between **coefficients** c and **values** of the function with those coefficients.

- ► The collocation matrix *A* is a **transform** between **coefficients c** and **values** of the function with those coefficients. Just like Chebfun!
- ightharpoonup A and A^* can be applied to a vector fast using a DCT.

- ► The collocation matrix *A* is a **transform** between **coefficients c** and **values** of the function with those coefficients. Just like Chebfun!
- A and A* can be applied to a vector fast using a DCT. Just like Chebfun!

- ► The collocation matrix *A* is a **transform** between **coefficients c** and **values** of the function with those coefficients. Just like Chebfun!
- lacksquare A and A^* can be applied to a vector fast using a DCT. Just like Chebfun!
- A is exponentially ill-conditioned $(\kappa(A) \ge 4^N)$. Sad!

- ► The collocation matrix *A* is a **transform** between **coefficients c** and **values** of the function with those coefficients. Just like Chebfun!
- lacksquare A and A^* can be applied to a vector fast using a DCT. Just like Chebfun!
- ▶ A is exponentially ill-conditioned $(\kappa(A) \ge 4^N)$. Sad!?

- ► The collocation matrix *A* is a **transform** between **coefficients c** and **values** of the function with those coefficients. Just like Chebfun!
- A and A* can be applied to a vector fast using a DCT. Just like Chebfun!
- ▶ A is exponentially ill-conditioned ($\kappa(A) \ge 4^N$). Sad!?
- ► Coefficient size and error correlation:

- ► The collocation matrix A is a **transform** between **coefficients** c and **values** of the function with those coefficients. Just like Chebfun!
- A and A* can be applied to a vector fast using a DCT. Just like Chebfun!
- ▶ A is exponentially ill-conditioned $(\kappa(A) \ge 4^N)$. Sad!?
- ► Coefficient size and error correlation:

Adaptivity and frames: Coppé-Huybrechs (in prep.)

▶ Ill-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}$, $\mathbf{b} \in \mathbb{R}^{M}$ $(M = \gamma N)$,

$$\underset{\mathbf{x} \in \mathbb{R}^N}{\arg\min} \|A\mathbf{x} - b\|_2^2$$

▶ Ill-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}$, $\mathbf{b} \in \mathbb{R}^{M}$ $(M = \gamma N)$,

$$\underset{\mathbf{x} \in \mathbb{R}^N}{\arg\min} \|A\mathbf{x} - b\|_2^2$$

Many solutions with small residual.

▶ Ill-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}$, $\mathbf{b} \in \mathbb{R}^{M}$ $(M = \gamma N)$,

$$\arg\min_{\mathbf{x}\in\mathbb{P}^N} \|A\mathbf{x} - b\|_2^2$$

▶ Many solutions with small residual. The ε -regularised SVD solution is,

$$A = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & \sigma_N \end{bmatrix} V^*, \quad \mathbf{x} = V \begin{bmatrix} \sigma_1^{-1} & & & & \\ & \ddots & & \\ & & \sigma_r^{-1} & & \\ & & & \ddots & \\ & & & & 0 \end{bmatrix} U^* b$$

where $\sigma_k < \varepsilon \iff k > r$.

▶ Ill-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}$, $\mathbf{b} \in \mathbb{R}^{M}$ $(M = \gamma N)$,

$$\arg\min_{\mathbf{x}\in\mathbb{P}^N} \|A\mathbf{x} - b\|_2^2$$

▶ Many solutions with small residual. The ε -regularised SVD solution is,

$$A = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & \sigma_N \end{bmatrix} V^*, \quad \mathbf{x} = V \begin{bmatrix} \sigma_1^{-1} & & & & \\ & \ddots & & \\ & & & \sigma_r^{-1} & & \\ & & & \ddots & \\ & & & & 0 \end{bmatrix} U^* b$$

where $\sigma_k < \varepsilon \iff k > r$.

lacktriangle Backslash computes the arepsilon-regularised pivoted-QR solution

▶ Ill-conditioned least squares problem: $A \in \mathbb{R}^{M \times N}$, $\mathbf{b} \in \mathbb{R}^{M}$ $(M = \gamma N)$,

$$\arg\min_{\mathbf{x}\in\mathbb{R}^N} \|A\mathbf{x} - b\|_2^2$$

▶ Many solutions with small residual. The ε -regularised SVD solution is,

$$A = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & \sigma_N \end{bmatrix} V^*, \quad \mathbf{x} = V \begin{bmatrix} \sigma_1^{-1} & & & \\ & \ddots & & \\ & & & \sigma_r^{-1} & \\ & & & \ddots & \\ & & & & 0 \end{bmatrix} U^* b$$

where $\sigma_k < \varepsilon \iff k > r$.

- ▶ Backslash computes the ε -regularised pivoted-QR solution
- $ightharpoonup O(N^3)$ flops very slow!

Adcock-Huybrechs Theorems

Oversampled Collocation Theorem (Adcock–Huybrechs 2018) Let $\Phi = \{\varphi_k\}_{k=1}^\infty$ be a **frame** for $L^2(\Omega)$ and let $\{w_{k,M}f(x_{k,M})\}_{k=1}^M$ be "good" samples for any $f \in L^2(\Omega)$. If the entries of $A \in \mathbb{R}^{M \times N}$ are $a_{k,j} = w_{k,M}\varphi_j(x_{k,M})$, and $b_k = w_{k,M}u(x_{k,M})$, then the ε -regularised solution $u^{\varepsilon,M,N}(x)$ satisfies

$$\|u^{\varepsilon,M,N} - u\|_{L^2(\Omega)} \le C_{M,N}^{\varepsilon} \left(\left\| \sum_{k=1}^N v_k \varphi_k - u \right\|_{L^2(\Omega)} + \varepsilon \|\mathbf{v}\|_2 \right),$$

for any $\mathbf{v} \in \ell^2$, where $\sup_N \limsup_{M \to \infty} C^{\varepsilon}_{M,N} \leq C < \infty$.

Adcock-Huybrechs Theorems

Oversampled Collocation Theorem (Adcock–Huybrechs 2018)

Let $\Phi=\{\varphi_k\}_{k=1}^\infty$ be a **frame** for $L^2(\Omega)$ and let $\{w_{k,M}f(x_{k,M})\}_{k=1}^M$ be "good" samples for any $f\in L^2(\Omega)$.

If the entries of $A \in \mathbb{R}^{M \times N}$ are $a_{k,j} = w_{k,M} \varphi_j(x_{k,M})$, and $b_k = w_{k,M} u(x_{k,M})$, then the ε -regularised solution $u^{\varepsilon,M,N}(x)$ satisfies

$$\|u^{\varepsilon,M,N} - u\|_{L^2(\Omega)} \le C_{M,N}^{\varepsilon} \left(\left\| \sum_{k=1}^N v_k \varphi_k - u \right\|_{L^2(\Omega)} + \varepsilon \|\mathbf{v}\|_2 \right),$$

for any $\mathbf{v} \in \ell^2$, where $\sup_N \limsup_{M \to \infty} C_{M,N}^{\varepsilon} \leq C < \infty$.

Furthermore, the RHS converges to $\mathcal{O}(\varepsilon)$ as $N\to\infty$, with sufficient oversampling M.

What is a frame?

▶ A **frame** is a set of functions $\Phi = \{\varphi_k\}_{k=1}^\infty \subset \mathcal{H}$ (inner product space) such that

$$f\mapsto \|\left(\langle arphi_k,f
angle
ight)_{k=1}^\infty\|_{\ell^2}\quad ext{ and }\quad f\mapsto \|f\|_{\mathcal{H}}$$

are equivalent norms on \mathcal{H} .

What is a frame?

▶ A **frame** is a set of functions $\Phi = \{\varphi_k\}_{k=1}^{\infty} \subset \mathcal{H}$ (inner product space) such that

$$f \mapsto \| (\langle \varphi_k, f \rangle)_{k=1}^{\infty} \|_{\ell^2} \quad \text{and} \quad f \mapsto \| f \|_{\mathcal{H}}$$

are **equivalent norms** on \mathcal{H} .

▶ The set $\varphi_{2k} = T_k$, $\varphi_{2k+1} = w \cdot T_k$, satisfies

$$||f||^2 \inf_{x \in [-1,1]} |1 + |w(x)|^2| \le \sum_{k=0}^{\infty} |\langle \varphi_k, f \rangle|^2 \le ||f||^2 \sup_{x \in [-1,1]} |1 + |w(x)|^2|$$

What is a frame?

▶ A **frame** is a set of functions $\Phi = \{\varphi_k\}_{k=1}^\infty \subset \mathcal{H}$ (inner product space) such that

$$f \mapsto \| (\langle \varphi_k, f \rangle)_{k=1}^{\infty} \|_{\ell^2} \quad \text{and} \quad f \mapsto \| f \|_{\mathcal{H}}$$

are **equivalent norms** on \mathcal{H} .

▶ The set $\varphi_{2k} = T_k$, $\varphi_{2k+1} = w \cdot T_k$, satisfies

$$||f||^2 \inf_{x \in [-1,1]} |1 + |w(x)|^2| \le \sum_{k=0}^{\infty} |\langle \varphi_k, f \rangle|^2 \le ||f||^2 \sup_{x \in [-1,1]} |1 + |w(x)|^2|$$

• We have a frame if $1 + |w(x)|^2$ is **bounded above** and **below**

Dual frames

- ▶ Typical focus: dual frame or "inversion of the frame operator"
- \blacktriangleright A dual frame $\tilde{\Phi}=\{\tilde{\varphi}_k\}_{k=1}^{\infty}$ satisfies

$$f = \sum_{k=1}^{\infty} \langle \tilde{\varphi}_k, f \rangle \varphi_k$$

Dual frames

- ▶ Typical focus: dual frame or "inversion of the frame operator"
- ▶ A dual frame $\tilde{\Phi} = {\{\tilde{\varphi}_k\}_{k=1}^{\infty} \text{ satisfies}}$

$$f = \sum_{k=1}^{\infty} \langle \tilde{\varphi}_k, f \rangle \varphi_k$$

$$\Phi = \{T_k(x)\}_{k=1}^{\infty} \cup \{w(x)T_k(x)\}_{k=1}^{\infty}$$

$$\tilde{\Phi} = \left\{\frac{T_k(x)}{1 + |w(x)|^2}\right\}_{k=1}^{\infty} \cup \left\{\frac{w(x)T_k(x)}{1 + |w(x)|^2}\right\}_{k=1}^{\infty}$$

▶ These coefficients, $c_k = \langle \tilde{\varphi}_k, f \rangle$, converge too slowly! ROC gives better approximations.

▶ Let $A \in \mathbb{R}^{M \times r}$, where $r \ll M$. Then the SVD of A can be computed and inverted in $\mathcal{O}(Mr^2)$ operations.

- ▶ Let $A \in \mathbb{R}^{M \times r}$, where $r \ll M$. Then the SVD of A can be computed and inverted in $\mathcal{O}(Mr^2)$ operations.
- ▶ What about if $A \in \mathbb{R}^{M \times N}$ has rank r?

- ▶ Let $A \in \mathbb{R}^{M \times r}$, where $r \ll M$. Then the SVD of A can be computed and inverted in $\mathcal{O}(Mr^2)$ operations.
- ▶ What about if $A \in \mathbb{R}^{M \times N}$ has rank r?

Randomised least squares solver for $A\mathbf{x} = \mathbf{b}$

- 1. $W = \operatorname{randn}(N, r + 20)$
- 2. Least squares solve for $\mathbf{y} \in \mathbb{R}^{r+20}$: $(AW)\mathbf{y} = \mathbf{b}$
- 3. $\mathbf{x} = W\mathbf{y} \in \mathbb{R}^N$

Aside: Solving a low-rank system fast

- ▶ Let $A \in \mathbb{R}^{M \times r}$, where $r \ll M$. Then the SVD of A can be computed and inverted in $\mathcal{O}(Mr^2)$ operations.
- ▶ What about if $A \in \mathbb{R}^{M \times N}$ has rank r?

Randomised least squares solver for $A\mathbf{x} = \mathbf{b}$

- 1. W = randn(N, r + 20)
- 2. Least squares solve for $\mathbf{y} \in \mathbb{R}^{r+20}$: $(AW)\mathbf{y} = \mathbf{b}$
- 3. $\mathbf{x} = W\mathbf{y} \in \mathbb{R}^N$

Theorem (Using techniques in Halko, Martinsson, Tropp 2011) The computed solution ${\bf x}$ satisfies,

$$||A\mathbf{x} - b||_2 \le ||A\mathbf{v} - b||_2 + \kappa_{r,N} \cdot \left(\sum_{k>r} \sigma_k^2\right)^{1/2} \cdot ||\mathbf{v}||_2, \quad \forall \mathbf{v} \in \mathbb{R}^N,$$

where $\kappa_{r,N}$ is a random variable such that $\mathbb{P}\left[\kappa_{r,N} > 16 + 5\sqrt{r}\right] < 2.89 \times 10^{-9}$.

The plunge region

Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\{T_k\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1}$.

The plunge region

Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\{T_k\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1}$.

The plunge region

▶ Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\{T_k\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1}$.

- For weighted sums of trigonometric bases, the number of singular values in $(\varepsilon, 1 \varepsilon)$ is $\mathcal{O}(\log(N))$ (see Adcock-Huybrechs FNA paper and Webb (in prep.)).
- ▶ The big- \mathcal{O} depends on ε and the BV norms of the weights. Precise dependence is an **open problem**.

Dual frame isolates plunge region

Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\{T_k\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1}$. Let $Z \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated **dual frame**, $\{T_k(x)\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1}$

$$\{T_k(x)/(1+|x|)\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)/(1+|x|)\}_{k=0}^{N/2-1}.$$

Dual frame isolates plunge region

Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\{T_k\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1}$. Let $Z \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated **dual frame**, $\{T_k\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1}$

$$\{T_k(x)/(1+|x|)\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)/(1+|x|)\}_{k=0}^{N/2-1}.$$

Dual frame isolates plunge region

Let $A \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated frame, $\{T_k\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)\}_{k=0}^{N/2-1}$. Let $Z \in \mathbb{R}^{M \times N}$ be the collocation matrix in M Gauss-Chebyshev points for the N-truncated **dual frame**,

$$\{T_k(x)/(1+|x|)\}_{k=0}^{N/2-1} \cup \{|x|^{1/2}T_k(x)/(1+|x|)\}_{k=0}^{N/2-1}.$$

The AZ algorithm - $A,Z \in \mathbb{R}^{M \times N}$, $b \in \mathbb{R}^M$

AZ Algorithm for a least squares solution to Ax = b:

- 1. Solve $(I AZ^*)A\mathbf{x}_1 = (I AZ^*)b$
- 2. $\mathbf{x}_2 = Z^*(b A\mathbf{x}_1)$
- 3. $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$

The AZ algorithm - $A,Z\in\mathbb{R}^{M\times N}$, $b\in\mathbb{R}^M$

AZ Algorithm for a least squares solution to Ax = b:

- 1. Solve $(I AZ^*)Ax_1 = (I AZ^*)b$
- 2. $\mathbf{x}_2 = Z^*(b A\mathbf{x}_1)$
- 3. $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$

Residual:
$$b - A\mathbf{x} = b - A\mathbf{x}_1 - A\mathbf{x}_2$$

$$= b - A\mathbf{x}_1 - AZ^*(b - A\mathbf{x}_1)$$

$$= (I - AZ^*)(b - A\mathbf{x}_1).$$

The AZ algorithm - $A, Z \in \mathbb{R}^{M \times N}$, $b \in \mathbb{R}^M$

AZ Algorithm for a least squares solution to $A\mathbf{x} = b$:

- 1. Solve $(I AZ^*)A\mathbf{x}_1 = (I AZ^*)b$
- 2. $\mathbf{x}_2 = Z^*(b A\mathbf{x}_1)$
- 3. $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$
- Residual: $b A\mathbf{x} = b A\mathbf{x}_1 A\mathbf{x}_2$ $= b - A\mathbf{x}_1 - AZ^*(b - A\mathbf{x}_1)$ $= (I - AZ^*)(b - A\mathbf{x}_1).$
- ▶ If $\operatorname{rank}_{\varepsilon}((I AZ^*)A) = \operatorname{rk}_N$, and $A\mathbf{v}$, $Z^*\mathbf{w}$ require mul_N operations, then, in total,

$$\mathcal{O}(\text{mul}_N \cdot \text{rk}_N + N \cdot \text{rk}_N^2)$$
 operations.

The AZ algorithm - $A, Z \in \mathbb{R}^{M \times N}$, $b \in \mathbb{R}^M$

AZ Algorithm for a least squares solution to $A\mathbf{x} = b$:

- 1. Solve $(I AZ^*)A\mathbf{x}_1 = (I AZ^*)b$
- 2. $\mathbf{x}_2 = Z^*(b A\mathbf{x}_1)$
- 3. $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$
- Residual: $b A\mathbf{x} = b A\mathbf{x}_1 A\mathbf{x}_2$ $= b - A\mathbf{x}_1 - AZ^*(b - A\mathbf{x}_1)$ $= (I - AZ^*)(b - A\mathbf{x}_1).$
- ▶ If $\operatorname{rank}_{\varepsilon}((I AZ^*)A) = \operatorname{rk}_N$, and $A\mathbf{v}$, $Z^*\mathbf{w}$ require mul_N operations, then, in total,

$$\mathcal{O}(\text{mul}_N \cdot \text{rk}_N + N \cdot \text{rk}_N^2)$$
 operations.

▶ Our model problem: $\mathcal{O}(N \log^2(N))$

The AZ algorithm - $A, Z \in \mathbb{R}^{M \times N}$, $b \in \mathbb{R}^M$

AZ Algorithm for a least squares solution to $A\mathbf{x} = b$:

- 1. Solve $(I AZ^*)A\mathbf{x}_1 = (I AZ^*)b$
- 2. $\mathbf{x}_2 = Z^*(b A\mathbf{x}_1)$
- 3. $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$
- Residual: $b A\mathbf{x} = b A\mathbf{x}_1 A\mathbf{x}_2$ $= b - A\mathbf{x}_1 - AZ^*(b - A\mathbf{x}_1)$ $= (I - AZ^*)(b - A\mathbf{x}_1).$
- ▶ If $\operatorname{rank}_{\varepsilon}((I AZ^*)A) = \operatorname{rk}_N$, and $A\mathbf{v}$, $Z^*\mathbf{w}$ require mul_N operations, then, in total,

$$\mathcal{O}(\text{mul}_N \cdot \text{rk}_N + N \cdot \text{rk}_N^2)$$
 operations.

- ▶ Our model problem: $\mathcal{O}(N \log^2(N))$
- See Coppé-Huybrechs-Matthysen-Webb (in prep.)

Discussion

Effective algorithms:

- Adcock-Huybrechs: for frames use regularised oversampled collocation
- ► Coefficients and adaptivity don't behave like in ApproxFun/Chebfun

Fast algorithms:

- ▶ Plunge region
- ► Fast randomised linear algebra
- ► The AZ algorithm
- ▶ Implemented in Julia package FrameFun

Discussion

Effective algorithms:

- Adcock-Huybrechs: for frames use regularised oversampled collocation
- Coefficients and adaptivity don't behave like in ApproxFun/Chebfun

Fast algorithms:

- ▶ Plunge region
- ► Fast randomised linear algebra
- ► The AZ algorithm
- ▶ Implemented in Julia package FrameFun

Several papers in prep.!