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Volume Preserving ODEs

e Consider an ODE of the form

where div(f) =0 .

e “Divergence free vector field”.
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Volume Preserving ODEs

e Consider an ODE of the form

where div(f) =0 .
e “Divergence free vector field”.

e These systems are volume preserving...
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Volume Preserving ODEs

e The solution to an ODE x = f(x) is a flow map,
ot R" = R",

for all times t > 0. It maps x(0) to x(t).
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Volume Preserving ODEs

e The solution to an ODE x = f(x) is a flow map,
ot R" = R",

for all times t > 0. It maps x(0) to x(t).
e The ODE is volume preserving if for all measurable sets A C R”

vol (p¢(A)) = vol(A)

for all t > 0.
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Volume Preserving ODEs

e The solution to an ODE x = f(x) is a flow map,
ot R" = R",

for all times t > 0. It maps x(0) to x(t).
e The ODE is volume preserving if for all measurable sets A C R”

vol (p¢(A)) = vol(A)

for all t > 0.
e Equivalently,

det(py(x)) = 1
for all x € R" and all t > 0. “Jacobian is 1".
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Volume Preserving ODEs

e The solution to an ODE x = f(x) is a flow map,
ot R" = R",

for all times t > 0. It maps x(0) to x(t).
e The ODE is volume preserving if for all measurable sets A C R”

vol (p¢(A)) = vol(A)

for all t > 0.
e Equivalently,

det(py(x)) = 1
for all x € R" and all t > 0. “Jacobian is 1".

e This is because
[ ay= [ deei)ax
wt(A) A
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Volume Preserving Methods

e For every step size h > 0 a numerical method for x = f(x) gives a
numerical flow map
op : R" = R".
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Volume Preserving Methods

e For every step size h > 0 a numerical method for x = f(x) gives a
numerical flow map
op : R" = R".

e The exact solution to the ODE is approximated by

on(x) = on(x),  @2n(x) = dn(Pn(x)), etc.
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Volume Preserving Methods

e For every step size h > 0 a numerical method for x = f(x) gives a

numerical flow map
op: R" — R".

e The exact solution to the ODE is approximated by
on(x) = dn(x),  w2n(x) = dn(dn(x)), etc.

¢ A numerical method is volume preserving for x = f(x) if
det(¢},(x)) =1 for all x, h.
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Runge-Kutta Methods

e An s-stage Runge-Kutta method is defined by
dh(x) = x+h>_ bif(k)
i=1

s
kk = x-+ hz aljf(kj)
=1

ks = x+h)_agf(k)
j=1

e Butcher tableau: b € R®, A € R5*¢
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Runge-Kutta Methods
e An s-stage Runge-Kutta method is defined by
dh(x) = x+h>_ bif(k)
i=1

s
kk = x-+ hz aljf(kj)
=1

ks = x+h)_agf(k)
j=1

e Butcher tableau: b € R®, A € R5*¢

e In what situations are Runge-Kutta methods volume preserving?
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Hamiltonian Systems

e Hamiltonian Systems are volume preserving ODEs. Why?

x=JVH(x), J= ( _0/ (’) ) € R29%2d

(VETCTERUEL LN (G RO RV IR B IR YR \/olume Preservation by Runge-Kutta Methods SciCADE 2015 6 /24



Hamiltonian Systems

e Hamiltonian Systems are volume preserving ODEs. Why?

x=JVH(x), J= ( _OI (’) > € R29%2d

e They have the special property that the flow maps are symplectic:

Pe(x) " Jipp(x) = J.
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Hamiltonian Systems

e Hamiltonian Systems are volume preserving ODEs. Why?

x=JVH(x), J= ( _OI (’) > € R29%2d

e They have the special property that the flow maps are symplectic:

Pe(x) " Jipp(x) = J.
o Compute determinants:
det(;(x) ")det(J)det(¢}(x)) = det(J).
Hence det(¢}(x))? = 1. Note that det(¢f(x)) = 1, so
det(4(x)) = 1.

(VETCTERIEL LN (G RO RV IR B IR IEIRTIII  \/olume Preservation by Runge-Kutta Methods SciCADE 2015 6 /24



Symplectic Runge-Kutta

e For Hamiltonian problems, Symplectic Runge-Kutta methods produce
symplectic maps:
-
Oh(x) " Jh(x) = J.
Hence Symplectic Runge-Kutta methods are volume preserving
integrators for Hamiltonian Systems.
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Symplectic Runge-Kutta

e For Hamiltonian problems, Symplectic Runge-Kutta methods produce
symplectic maps:
Oh(x) " Jdh(x) = J.
Hence Symplectic Runge-Kutta methods are volume preserving
integrators for Hamiltonian Systems.
e There are many more divergence free vector fields!
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Symplectic Runge-Kutta

e For Hamiltonian problems, Symplectic Runge-Kutta methods produce
symplectic maps:
Oh(x) " Jdh(x) = J.
Hence Symplectic Runge-Kutta methods are volume preserving
integrators for Hamiltonian Systems.
e There are many more divergence free vector fields!

e What about non-Hamiltonian systems, and in general?
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Barriers for Volume Preserving Integrators
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Barriers for Volume Preserving Integrators

Theorem (Kang, Zai-Jiu 1995)

No single analytic method (includes all RK methods) is volume preserving
for all divergence free systems.
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Barriers for Volume Preserving Integrators

Theorem (Kang, Zai-Jiu 1995)
No single analytic method (includes all RK methods) is volume preserving

for all divergence free systems.

Theorem (lIserles, Quispel, Tse and Chartier, Murua 2007)

No single B-Series method (includes all RK methods) is volume preserving
for all divergence free systems.
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Barriers for Volume Preserving Integrators

Theorem (Kang, Zai-Jiu 1995)

No single analytic method (includes all RK methods) is volume preserving
for all divergence free systems.

Theorem (lIserles, Quispel, Tse and Chartier, Murua 2007)

No single B-Series method (includes all RK methods) is volume preserving
for all divergence free systems.

General volume preservation is hard!
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HLW Separable Systems

e In their book on Geometric Numerical Integation, Hairer, Lubich and
Wanner consider the following systems. x € R”, y € R"

(5)=0)

for functions v : R" — R™, v : R™ — R"

(VETCTERIELLN (G RO RV IR B IR IR \/olume Preservation by Runge-Kutta Methods SciCADE 2015 9 /24



HLW Separable Systems

e In their book on Geometric Numerical Integation, Hairer, Lubich and
Wanner consider the following systems. x € R”, y € R"

(3)-08)
y v(x) )’
for functions v : R" — R™, v : R™ — R"

Theorem (Hairer,Lubich,Wanner 2006)

Systems of this form are volume perserving, and any Symplectic

Runge-Kutta method with 1 or 2 stages (and compositions) is a volume
preserving integrator for these systems.
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HLW Separable Systems

e In their book on Geometric Numerical Integation, Hairer, Lubich and
Wanner consider the following systems. x € R”, y € R"

(3)-08)
y v(x) )’
for functions v : R" — R™, v : R™ — R"

Theorem (Hairer,Lubich,Wanner 2006)

Systems of this form are volume perserving, and any Symplectic

Runge-Kutta method with 1 or 2 stages (and compositions) is a volume
preserving integrator for these systems.

e These are many examples of non-Hamiltonian systems that have
volume preserving Runge-Kutta integrators.
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The Main Questions

e |s there a large class of divergence free vector fields that have volume
preserving Runge-Kutta methods?
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The Main Questions

e |s there a large class of divergence free vector fields that have volume
preserving Runge-Kutta methods?

e Which Runge-Kutta methods are relevant?
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Implicit Midpoint Rule

e The implicit midpoint rule is the only 1-stage Symplectic
Runge-Kutta method:

¢n(x) = x + hf ((x + én(x)) /2)
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Implicit Midpoint Rule

e The implicit midpoint rule is the only 1-stage Symplectic
Runge-Kutta method:

¢n(x) = x + hf ((x + én(x)) /2)

e When is it volume preserving?
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Implicit Midpoint Rule

e The implicit midpoint rule is the only 1-stage Symplectic
Runge-Kutta method:

¢n(x) = x + hf ((x + én(x)) /2)

e When is it volume preserving?

Ph(x) =1+ gf’(((x +6n(x)) /2) (1 + 63,(x))
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Implicit Midpoint Rule

e The implicit midpoint rule is the only 1-stage Symplectic
Runge-Kutta method:

¢n(x) = x + hf ((x + én(x)) /2)

e When is it volume preserving?

Ph(x) =1+ gf’(((x +6n(x)) /2) (1 + 63,(x))

(1 - ’Q’f'(((xwh(x))/z)) () = 1+ 57 (((x + 64(x)) /2)
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Implicit Midpoint Rule

e The implicit midpoint rule is the only 1-stage Symplectic
Runge-Kutta method:

¢n(x) = x + hf ((x + én(x)) /2)

e When is it volume preserving?

Ph(x) =1+ gf’(((x +6n(x)) /2) (1 + 63,(x))

(1 - ’Q’f'(((xwh(x))/z)) () = 1+ 57 (((x + 64(x)) /2)

_ det (1 + 3F(((x + ¢n(x)) /2))

det(¢h(x)) = (I = BF(((x + on(x)) /2))
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Implicit Midpoint Rule

e The implicit midpoint rule is the only 1-stage Symplectic
Runge-Kutta method:

¢n(x) = x + hf ((x + én(x)) /2)

e When is it volume preserving?

Ph(x) =1+ gf’(((x +6n(x)) /2) (1 + 63,(x))

(1 - ’Q’f'(((xwh(x))/z)) () = 1+ 57 (((x + 64(x)) /2)

_ det (1 + 3F(((x + ¢n(x)) /2))

 det (1 = 2 (((x + ¢n(x)) /2)) =1

det(¢},(x))
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Implicit Midpoint Rule

e The implicit midpoint rule is the only 1-stage Symplectic
Runge-Kutta method:

¢n(x) = x + hf ((x + én(x)) /2)

e When is it volume preserving?

Ph(x) =1+ gf’(((x +6n(x)) /2) (1 + 63,(x))

2
_det (1 + 3 (((x + 64(x)) /2)) _,
det (1 = 3F'(((x + ¢n(x)) /2))

¢ “The determinant condition” is the necessary and sufficient
condition for volume preservation for the implicit midpoint rule:

<’ - Zf’(((xwh(x))/z)) Gh(x) = [+ 2 ((x+ 6n()) /2)

det(¢},(x))

h h
det(/ + Ef’(x)) = det(/ — §f’(x)) for all x € R", h > 0.
Volume Preservation by Runge-Kutta Methods SciCADE 2015
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The Determinant Condition

h h
det(/ + Ef'(x)) = det(/ — Ef’(x)) for all x e R",h > 0.

e What does it mean?
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The Determinant Condition

h h
det(/ + Ef'(x)) = det(/ — Ef’(x)) for all x e R",h > 0.

e What does it mean?

e Eigenvalues of f'(x) come in positive-negative pairs e.g.
(1, 27 27 33 Oa _17 _2a _27 _3)
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The Determinant Condition

h h
det(/ + Ef'(x)) = det(/ — Ef’(x)) for all x e R",h > 0.

e What does it mean?
e Eigenvalues of f'(x) come in positive-negative pairs e.g.
(1,2,2,3,0,—-1,-2,—-2,-3)
o trace(f’(x)?*1) =0 for k =0,1,2,.... Note that
div(f) = trace(f'(x)).
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The Determinant Condition

h h
det(/ + Ef'(x)) = det(/ — Ef’(x)) for all x e R",h > 0.

e What does it mean?
e Eigenvalues of f'(x) come in positive-negative pairs e.g.
(1,2,2,3,0,—-1,-2,—-2,-3)
o trace(f’(x)?*1) =0 for k =0,1,2,.... Note that
div(f) = trace(f'(x)).

e Hamiltonian systems satisfy this condition.
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The Determinant Condition

h h
det(/ + Ef'(x)) = det(/ — Ef’(x)) for all x e R",h > 0.

e What does it mean?

e Eigenvalues of f'(x ) come in positive-negative pairs e.g.
(1,2,2,3,0,—1,-2,-2,-3)

. trace(f’( )2"“) = 0 for k — 0,1,2,.... Note that
div(f) = trace(f'(x)).

e Hamiltonian systems satisfy this condition.

¢ Hairer-Lubich-Wanner separable systems satisfy this condition.
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Symmetry-Induced Volume Preservation

Lemma (Generalises Hamiltonian systems)

Let f : R" — R" be such that there exists an invertible matrix P € R"*"
with Pf'(x)P~% = —f'(x)". Then any Symplectic Runge-Kutta method is
volume preserving.
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Symmetry-Induced Volume Preservation

Lemma (Generalises Hamiltonian systems)

Let f : R" — R" be such that there exists an invertible matrix P € R"*"
with Pf'(x)P~% = —f'(x)". Then any Symplectic Runge-Kutta method is
volume preserving.

If £ is Hamiltonian: f(x ) J7IVH(x), then f'(x) = J7'V2H(x). Hence
JF(x)J7 = V2H(x)J L = —(JTIV2H(x))T = —f'(x)T.
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Symmetry-Induced Volume Preservation

Lemma (Generalises Hamiltonian systems)

Let f : R" — R" be such that there exists an invertible matrix P € R"*"
with Pf'(x)P~% = —f'(x)". Then any Symplectic Runge-Kutta method is
volume preserving.

If £ is Hamiltonian: f(x ) J7IVH(x), then f'(x) = J7'V2H(x). Hence
JF(x)J7 = V2H(x)J L = —(JTIV2H(x))T = —f'(x)T.

Lemma (Generalises HLW separable systems)

Let f : R" — R" be such that there exists an invertible matrix P € R"*"
with Pf'(x)P~! = —f'(x). Then any Symplectic Runge-Kutta method
with 1 or 2 stages (and compositions) is volume preserving.
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Symmetry-Induced Volume Preservation

Lemma (Generalises Hamiltonian systems)

Let f : R" — R" be such that there exists an invertible matrix P € R"*"
with Pf'(x)P~% = —f'(x)". Then any Symplectic Runge-Kutta method is
volume preserving.

If £ is Hamiltonian: f(x ) J71VH(x), then f’( )=J" 1V2H( ). Hence
JF(x)J7t = V2H(x)J 7t = —(J7IV2H(x)) T = —f'(x)T.

Lemma (Generalises HLW separable systems)

Let f : R" — R" be such that there exists an invertible matrix P € R"*"
with Pf'(x)P~! = —f'(x). Then any Symplectic Runge-Kutta method
with 1 or 2 stages (and compositions) is volume preserving.

If fis a HLW system, f(x,y) = (u(y), v(x)), then

(5 ")

Hence Pf'(x,y)P~1 = —f'(x,y), where P = ( (l) _OI
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Further Examples

0 01
P=|0 10|, PP 1==f(x)", PF(x)Pt=—f(x)
100
x= F(x—2z)—>by F'(x—2z) -5 —F'(x—2z)
y= bz—2x f'(x,y,z) = -2 0 5
z= F(x—2z)+2y Fiix—2z) 2 —F'(x-2)
x= F(x—2z)+G(y) Flix—z) G(y) —F(x—2z)
y= H(z-x) f'(x,y,z)=| —H(z-x) 0 H'(z - x)
z= F(x—2z)-G(y) Fiix=2) =G'(y) —F'(x—2)
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Further Examples

0 01
P=|0 10|, PP 1==f(x)", PF(x)Pt=—f(x)
100
x= F(x—2z)—>by F'(x—2z) -5 —F'(x—2z)
y= bz—2x f'(x,y,z) = -2 0 5
z= F(x—2z)+2y Fiix—2z) 2 —F'(x-2)
x= F(x—2z)+G(y) Flix—z) G(y) —F(x—2z)
y= H(z-x) f'(x,y,z)=| —H(z-x) 0 H'(z - x)
z= F(x—2z)—G(y) Fi(x—z) —=G'(y) —F'(x—2)

| don’t know of any real life examples yet.
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The Bigger Picture: Why are SRK methods symplectic?

e The system x = f(x) is Hamiltonian if and only if for every x € R??

F(x) € {Q e R2X2d . O 1 QT = o}
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The Bigger Picture: Why are SRK methods symplectic?

e The system x = f(x) is Hamiltonian if and only if for every x € R??
F(x) € {Q e R2X2d . O 1 QT = o}

e This is the Symplectic Lie Algebra, sp(2d)
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The Bigger Picture: Why are SRK methods symplectic?

e The system x = f(x) is Hamiltonian if and only if for every x € R??
F(x) € {Q e R2X2d . O 1 QT = o}

e This is the Symplectic Lie Algebra, sp(2d)

e From the definition of the flow map ¢:, we can show

S0 = Fe)Ax). o) =
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The Bigger Picture: Why are SRK methods symplectic?

e The system x = f(x) is Hamiltonian if and only if for every x € R??
F(x) € {Q e R2X2d . O 1 QT = o}

e This is the Symplectic Lie Algebra, sp(2d)

e From the definition of the flow map ¢;, we can show

S0 = Fe)Ax). o) =

e For each x € R?9, this is a Lie group equation for ¢}(x). Hence
#i(x) € Sp(2d) = { @ e R*2: QTq = J}

for all times t. The Symplectic Lie Group.
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The Bigger Picture: Why are SRK methods symplectic?

Theorem (Cooper 1987, Sanz-Serna 1988, Bochev, Scovel 1994)

Symplectic Runge-Kutta methods preserve quadratic first integrals of both
the solution ¢+(x) and the Jacobian ¢(x).
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The Bigger Picture: Why are SRK methods symplectic?

Theorem (Cooper 1987, Sanz-Serna 1988, Bochev, Scovel 1994)

Symplectic Runge-Kutta methods preserve quadratic first integrals of both
the solution ¢+(x) and the Jacobian ¢(x).

e The constraint that }(x) € SP(2d) (i.e. ¢}(x)T Jp}(x) = J) is a set
of 4d? quadratic constraints of (}(x). One for each entry of the
matrix.
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The Bigger Picture: Why are SRK methods symplectic?

Theorem (Cooper 1987, Sanz-Serna 1988, Bochev, Scovel 1994)

Symplectic Runge-Kutta methods preserve quadratic first integrals of both
the solution ¢+(x) and the Jacobian ¢(x).

e The constraint that }(x) € SP(2d) (i.e. ¢}(x)T Jp}(x) = J) is a set
of 4d? quadratic constraints of (}(x). One for each entry of the
matrix.

e Symplectic Runge-Kutta methods will preserve all of these first
integrals, so “symplectic methods are symplectic”.
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The Bigger Picture

e For vector fields satisfying this Hamiltonian type condition

Pf'(x)P~t = —f'(x)"
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The Bigger Picture

e For vector fields satisfying this Hamiltonian type condition
Pf’(x)P*1 = —f’(x)T
e This is a quadratic Lie algebra condition f'(x) € gp:

gp:{QeR”X”:PQ+QTP:O}
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The Bigger Picture

e For vector fields satisfying this Hamiltonian type condition
Pf(x)P~t = —f'(x)"
e This is a quadratic Lie algebra condition f'(x) € gp:
p = {QGR”X” : PQ+QTP:0}
e The generated quadratic Lie group is

Gp={Qe®™: QTPQ =P} (1)
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Quadratic Lie Groups Methods

e Just like for Hamiltonian systems (but with P instead of J) SRK
methods preserve the quadratic Lie Group structure:

@, (x) € Gp = {Q eR™. QTPQ = P}
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Quadratic Lie Groups Methods

e Just like for Hamiltonian systems (but with P instead of J) SRK
methods preserve the quadratic Lie Group structure:

éh(x) € Gp = {Q € R™" . QTPQ = P}
e If P is invertible, then Gp C SL(n):

det(¢,(x) ") det(P) det(g},(x)) = det(P). (2)
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Quadratic Lie Groups Methods

e Just like for Hamiltonian systems (but with P instead of J) SRK
methods preserve the quadratic Lie Group structure:

@, (x) € Gp = {Q eR™. QTPQ = P}
e If P is invertible, then Gp C SL(n):
det(¢, (x) ") det(P) det(¢) (x)) = det(P). (2)

e Hence det(¢}(x)) =1 and the method is volume preserving.
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Quadratic Lie Groups Methods

Just like for Hamiltonian systems (but with P instead of J) SRK
methods preserve the quadratic Lie Group structure:

@, (x) € Gp = {Q eR™. QTPQ = P}

If P is invertible, then Gp C SL(n):

det(¢,(x) ") det(P) det(g},(x)) = det(P). (2)

Hence det(¢},(x)) = 1 and the method is volume preserving.

The quadratic Lie algebraic structure induces the volume
preservation in the ODE
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HLW Separable Systems

e What about those systems with Pf’(x)P~1 = —f'(x)?
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HLW Separable Systems

e What about those systems with Pf’(x)P~1 = —f'(x)?

e In the paper we compute the Jacobian of a Runge-Kutta method
(mega use of the chain rule).
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HLW Separable Systems

e What about those systems with Pf’(x)P~1 = —f'(x)?

e In the paper we compute the Jacobian of a Runge-Kutta method
(mega use of the chain rule).

o | just figured out that this is actually a quadratic Lie triple product
space:

Lp={Q€R™": PQ+QP =0} (3)
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HLW Separable Systems

What about those systems with Pf'(x)P~1 = —f'(x)?

In the paper we compute the Jacobian of a Runge-Kutta method
(mega use of the chain rule).

| just figured out that this is actually a quadratic Lie triple product
space:
Lp:{QeR”X”:PQ—i—QP:O}. (3)

Note that P[[Q1,Q], Q3]P~L = [[PQP7L, PP, PQ3P71] =
—[[£21, 2], Qs].
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HLW Separable Systems

e What about those systems with Pf’(x)P~1 = —f'(x)?

e In the paper we compute the Jacobian of a Runge-Kutta method
(mega use of the chain rule).

o | just figured out that this is actually a quadratic Lie triple product
space:
Lp:{QeR”X”:PQ—i—QP:O}. (3)

e Note that P[[Q1, 2], Q3]P~ = [[PQU P, PP, P3P Y] =
—[[£21, 2], Qs].

o Conjecture: 2-stage SRK methods preserve the appropriate structures.
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Linear Foliations

Definition
A basic foliation is a vector field of the form

= (Lo )
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Linear Foliations

Definition
A basic foliation is a vector field of the form

= (Lo )

Definition
A linear foliation is a vector field of the form

g(z) = Pf(P712),

where P is a matrix and f is a basic foliation.
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Linear Foliations

Fley) = (u(x).v(x.y))
g(z) = PA(P'2)

Nice properties:
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Linear Foliations

Fley) = (u(x).v(x.y))
g(z) = PA(P'2)

Nice properties:

e Divergence free u, v. = divergence free g.
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Linear Foliations

Fley) = (u(x).v(x.y))
g(z) = PA(P'2)

Nice properties:
e Divergence free u, v. = divergence free g.

e Determinant condition for u, v = determinant condition for g.
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Linear Foliations

Fley) = (u(x).v(x.y))
g(z) = PA(P'2)

Nice properties:
e Divergence free u, v. = divergence free g.
e Determinant condition for u, v = determinant condition for g.

e Runge-Kutta methods respect linear foliations.
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Families of Volume Preserving Vector Fields

We define the following families of volume preserving vector fields:

H = {f such that there exists P such that for all x, Pf'(x)P™' = —f'(x)"},
S = {f such that there exists P such that for all x, Pf'(x)P~! = —f'(x)},
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Families of Volume Preserving Vector Fields

We define the following families of volume preserving vector fields:

H = {f such that there exists P such that for all x, Pf'(x)P™' = —f'(x)"},
S = {f such that there exists P such that for all x, Pf'(x)P~! = —f'(x)},
Flo) = {f(x7y) = (u(x), v(x,y))" where u e # U F(>) and there exists

P such that for all x,y, Pd,v(x,y)P~t = —-0,v(x,y)" },
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Families of Volume Preserving Vector Fields

We define the following families of volume preserving vector fields:

H = {f such that there exists P such that for all x, Pf'(x)P™' = —f'(x)"},
S = {f such that there exists P such that for all x, Pf'(x)P~! = —f'(x)},
Flo) = {f(x7y) = (u(x), v(x,y))" where u e # U F(>) and there exists

P such that for all x,y, PO, v(x,y)P™* = —8yv(x,y)T} ,
F@ = {f(x7y) = (u(x), v(x,y))" where u € SUH UF? and there exists

P such that for all x,y, either P9, v(x,y)P~" = —9,v(x,y)" or
Payv(xvy)Pil = —Q,v(x,y)} )
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Families of Volume Preserving Vector Fields

We define the following families of volume preserving vector fields:

H = {f such that there exists P such that for all x, Pf'(x)P™' = —f'(x)"},
S = {f such that there exists P such that for all x, Pf'(x)P~! = —f'(x)},
Flo) = {f(x7y) = (u(x), v(x,y))" where u e # U F(>) and there exists

P such that for all x,y, PO, v(x,y)P™* = —8yv(x,y)T} ,

F@ = {f(x7y) = (u(x), v(x,y))" where u € SUH UF? and there exists
P such that for all x,y, either P9, v(x,y)P~" = —9,v(x,y)" or
Payv(xvy)Pil = _8}/V(X7y)}a

h h
D = {vector fields with det(/ + Ef'(x)) = det(/ — Ef’(x)) for all h > 0} .
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Volume Preserving Runge-Kutta Methods

X w () W ) D
C s )
- J
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Volume Preserving Runge-Kutta Methods

X w () W ) D
C s )
- J

Theorem
For vector fields in F(>), all Symplectic Runge-Kutta methods are volume
preserving.

(VETCTERUELLN (G RO RV IR B XTI \/olume Preservation by Runge-Kutta Methods SciCADE 2015 23 /24



Volume Preserving Runge-Kutta Methods

X w () W ) D
C s )
- J

Theorem

For vector fields in F(>), all Symplectic Runge-Kutta methods are volume
preserving.

Theorem

For vector fields in F(?), all 2-stage (and compositions) Symplectic
Runge-Kutta methods are volume preserving.
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Volume Preserving Runge-Kutta Methods

X w () W ) D
C s )
- J

Theorem

For vector fields in F(>), all Symplectic Runge-Kutta methods are volume
preserving.

Theorem
For vector fields in F(?), all 2-stage (and compositions) Symplectic
Runge-Kutta methods are volume preserving.

Theorem
For vector fields in D (= F(1)), the I-stage implicit midpoint rule is

volume preserving.
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Message and Beyond Volume Preservation

e Message: Runge-Kutta methods can preserve volume for a large
class problems, but not all divergence free ones.

(VETCTERUEL LN RO RV IR B IR YR \Volume Preservation by Runge-Kutta Methods SciCADE 2015 24 / 24



Message and Beyond Volume Preservation

e Message: Runge-Kutta methods can preserve volume for a large
class problems, but not all divergence free ones.

e Quadratic Lie algebras and Lie groups, quadratic Lie triple product
spaces and symmetric spaces, linear foliations.
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Message and Beyond Volume Preservation

e Message: Runge-Kutta methods can preserve volume for a large
class problems, but not all divergence free ones.

e Quadratic Lie algebras and Lie groups, quadratic Lie triple product
spaces and symmetric spaces, linear foliations.

e We have also begun to study measure preserving Runge-Kutta
methods.
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Message and Beyond Volume Preservation

e Message: Runge-Kutta methods can preserve volume for a large
class problems, but not all divergence free ones.

e Quadratic Lie algebras and Lie groups, quadratic Lie triple product
spaces and symmetric spaces, linear foliations.

e We have also begun to study measure preserving Runge-Kutta
methods.

e Methods that are conjugate to volume preserving methods. Here
volume is not preserved, but the volume error does not grow.
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Message and Beyond Volume Preservation

e Message: Runge-Kutta methods can preserve volume for a large
class problems, but not all divergence free ones.

e Quadratic Lie algebras and Lie groups, quadratic Lie triple product
spaces and symmetric spaces, linear foliations.

e We have also begun to study measure preserving Runge-Kutta
methods.

e Methods that are conjugate to volume preserving methods. Here
volume is not preserved, but the volume error does not grow.

e For quadratic vector fields f there is an interesting measure
preservation relationship between

e Trapezoidal Rule
e Implicit Midpoint Rule
e Kahan's method
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Message and Beyond Volume Preservation

e Message: Runge-Kutta methods can preserve volume for a large
class problems, but not all divergence free ones.

e Quadratic Lie algebras and Lie groups, quadratic Lie triple product
spaces and symmetric spaces, linear foliations.

e We have also begun to study measure preserving Runge-Kutta
methods.

e Methods that are conjugate to volume preserving methods. Here
volume is not preserved, but the volume error does not grow.

e For quadratic vector fields f there is an interesting measure
preservation relationship between

e Trapezoidal Rule
e Implicit Midpoint Rule
e Kahan's method

Thank you for listening.
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Measure Preservation

e A map ¢ : R" — R" preserves the measure p on R” if

det(¢'(x))u(d(x)) = p(x).
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Measure Preservation

e A map ¢ : R" — R" preserves the measure p on R” if

det(¢'(x))u(d(x)) = p(x).

e This is because, for measurable A C R”,
poa) = [ duo

#(A)
-/, det(¢'(x)) du(é(x))
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Measure Preservation

e A map ¢ : R" — R" preserves the measure p on R” if

det(¢'(x))u(d(x)) = p(x).

e This is because, for measurable A C R”",
A = du(x
u(6(A)) /qj 440
= [ det(() (o)

e If pu is an actual function, we can write det(¢'(x)) = u(x)/u(o(x)).

(VETCTERUEL LN (G RO RV IR B IR YR  \/olume Preservation by Runge-Kutta Methods SciCADE 2015 24 / 24



Measure Preservation

A map ¢ : R" — R” preserves the measure p on R” if

det(¢'(x))u(d(x)) = p(x)-

This is because, for measurable A C R”,

W(o(A) = / apu(x)

#(A)
- det(¢'(x)) du(é(x))

A

If v is an actual function, we can write det(¢'(x)) = pu(x)/u(P(x)).
Let p(x) = ¢(o(x)). Then

1N = det( 6 (6N det( (<)) = e ulx) - n(x)
Aet(p () = detl@ oL At 0N = o) iG]~ ()
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Measure Preservation

A map ¢ : R" — R” preserves the measure p on R” if

det(¢'(x))u(d(x)) = p(x)-

This is because, for measurable A C R”,

W(o(A) = /¢ 440

_ /A det(¢/ (x)) dp(e(x))

If v is an actual function, we can write det(¢'(x)) = pu(x)/u(P(x)).
Let p(x) = ¢(o(x)). Then

1N = det( 6 (6N det( (<)) = e ulx) - n(x)
Aet(p () = detl@ oL At 0N = o) iG]~ ()

e Similarly, det((¢ o --- 0 @) (x)) = u(x)/pu((¢ o - - - 0 §)(x))
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Trapezoid Rule

e Let f satisfy the determinant condition
det(/ + 2f'(x)) = det(/ — £f'(x)) for all h > 0.
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Trapezoid Rule

e Let f satisfy the determinant condition
det(/ + 2f'(x)) = det(/ — £f'(x)) for all h > 0.

e Consider solving X = f(x) with the trapezoid rule:

On(x) = x+ 2F() + 2F(9n()).
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Trapezoid Rule

e Let f satisfy the determinant condition
det(/ + 2f'(x)) = det(/ — £f'(x)) for all h > 0.

e Consider solving X = f(x) with the trapezoid rule:

On(x) = x+ 2F() + 2F(9n()).

e Then

Coow L det(I+3F(x) u(x)
40N = Gt om0~ Hon0)’

where pu(x) = det(/ £ 2f'(x)).
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Trapezoid Rule

Let f satisfy the determinant condition
det(/ + 2f'(x)) = det(/ — £f'(x)) for all h > 0.

Consider solving X = f(x) with the trapezoid rule:

On(x) = x+ 2F() + 2F(9n()).

Then

) — det(/ + 53F'(x))  u(x)
det(¢h(x)) = detll — BF(on(x)  Hon())’
where pu(x) = det(/ £ 2f'(x)).

What is so good about this?

(VETCTERIELLN (G RO RV IR B IR YR \/olume Preservation by Runge-Kutta Methods SciCADE 2015 24 / 24



Volume Preservation of Trapezoidal Rule

o Assume that det(/ + 2f'(x)) = det(/ — 2f'(x))
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Volume Preservation of Trapezoidal Rule

o Assume that det(/ + 2f'(x)) = det(/ — 2f'(x))
e Then for k iterations of the trapezoidal rule,
On(x) = x + BF(x) + 2 (on(x)),
d ky/ — H(X)
W) = B
det(/ + 2f'(x))
det(/ — 2'(¢K(x)))
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Volume Preservation of Trapezoidal Rule

o Assume that det(/ + 2f'(x)) = det(/ — 2f'(x))
e Then for k iterations of the trapezoidal rule,
On(x) = x + 5F(x) + 5F(dn(x)),

det((¢5)'(x)) = u(i;(ﬁ)zi))
det(/ + gf/(x))

det(/ — 3f'(¢4(x)))

h2 ! 2 h2 1( 1k 2
= 14 gtr(f (x)%) + gtr(f (Pp(x))7) + ...
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Volume Preservation of Trapezoidal Rule

o Assume that det(/ + 2f'(x)) = det(/ — 2f'(x))
e Then for k iterations of the trapezoidal rule,
On(x) = x + 5F(x) + 5F(dn(x)),

det((¢5)'(x)) = u(i;(ﬁ)zi))
det(/ + gf/(x))

det(/ — 3f'(¢4(x)))

h2 ! 2 h2 1( 1k 2
= 14 gtr(f (x)%) + gtr(f (Pp(x))7) + ...

e The error in volume preservation is committed by one operation at
the beginning and one at the end, no error from intermediate
steps.
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Volume Preservation of Trapezoidal Rule

o Assume that det(/ + 2f'(x)) = det(/ — 2f'(x))
e Then for k iterations of the trapezoidal rule,
On(x) = x + 5F(x) + 5F(dn(x)),

det((¢5)'(x)) = u(i;(ﬁ)zi))
det(/ + gf/(x))

det(/ — 3f'(¢4(x)))

h2 ! 2 h2 1( 1k 2
= 14 gtr(f (x)%) + gtr(f (Pp(x))7) + ...

e The error in volume preservation is committed by one operation at
the beginning and one at the end, no error from intermediate
steps.

e If the numerical solution stays in a region where trace(f'(-)?) is
bounded, then we have a global O(h?) error bound on our volume.
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