Spectra of Jacobi Operators via Connection Coefficients

Marcus Webb

University of Cambridge

Joint work with Sheehan Olver (University of Sydney)

27th July 2016

Funding: EPSRC, PhD Supervisor: Arieh Iserles

Jacobi Operators

A Jacobi operator has matrix form

$$J = \begin{bmatrix} \alpha_0 & \beta_0 & & & \\ \beta_0 & \alpha_1 & \beta_1 & & & \\ & \beta_1 & \alpha_2 & \ddots & \\ & & \ddots & \ddots & \end{bmatrix}, \quad \alpha_k, \beta_k \in \mathbb{R}, \quad (\beta_k > 0)$$

Jacobi Operators = Orthogonal Polynomials = Probability Densities

Jacobi Operators

$$\begin{array}{cccc} \alpha_0 & \beta_0 \\ \beta_0 & \alpha_1 & \beta_1 \\ & \beta_1 & \alpha_2 & \ddots \\ & & \ddots & \ddots \end{array}$$

Orthogonal Polynomials

$$\begin{bmatrix} \alpha_0 & \beta_0 & & & \\ \beta_0 & \alpha_1 & \beta_1 & & & \\ & \beta_1 & \alpha_2 & \ddots & & \\ & & \ddots & \ddots & & \\ & & & \ddots & \ddots \end{bmatrix} \qquad \begin{aligned} & P_0(x) = 1 & & \text{Spectral measure} \\ & xP_0(x) = \alpha_0P_0(x) + \beta_0P_1(x) & & & \mu \in \operatorname{Prob}(\sigma(J)) \\ & xP_k(x) = \beta_{k-1}P_{k-1}(x) & & & f_i(x)P_j(x)\operatorname{d}\mu(x) = \delta_{ij} \end{aligned}$$

Probability Densities

Spectral measure
$$\mu \in \operatorname{Prob}(\sigma(J))$$

 $\int P_i(x)P_j(x) \, \mathrm{d}\mu(x) = \delta_{ij}$

Jacobi Operators = Orthogonal Polynomials = Probability Densities

Jacobi Operators

$$\begin{bmatrix} \alpha_0 & \beta_0 \\ \beta_0 & \alpha_1 & \beta_1 \\ & & & \\ & & \beta_1 & \alpha_2 \\ & & & \ddots \\ & & & & \\ \end{bmatrix}$$

Δ

Orthogonal Polynomials

$$\begin{vmatrix} \alpha_0 & \beta_0 \\ \beta_0 & \alpha_1 & \beta_1 \\ & & & \\ & \beta_1 & \alpha_2 & \ddots \\ & & & & \\ & & & & \\ & & & & \\ \end{vmatrix} \begin{vmatrix} P_0(x) = 1 \\ xP_0(x) = \alpha_0P_0(x) + \beta_0P_1(x) \\ xP_k(x) = \beta_{k-1}P_{k-1}(x) \\ +\alpha_kP_k(x) + \beta_kP_{k+1}(x) \end{vmatrix}$$

$U_k(x)$ (Chebyshev Polynomials)

Probability Densities

Spectral measure
$$\mu \in \operatorname{Prob}(\sigma(J))$$
 $\int P_i(x)P_j(x) \, \mathrm{d}\mu(x) = \delta_{ij}$

$$\mu(x) = \frac{2}{\pi} \sqrt{1 - x^2}$$

The Principal Resolvent *G*

How to study the spectrum and spectral measure?

The Principal Resolvent *G*

- How to study the spectrum and spectral measure?
- Define the principal resolvent,

$$G(\lambda) := e_0^{\top} (J - \lambda)^{-1} e_0,$$

where $e_0 := (1, 0, 0, ...)^{\top}$.

The Principal Resolvent *G*

- How to study the spectrum and spectral measure?
- Define the principal resolvent,

$$G(\lambda) := e_0^{\top} (J - \lambda)^{-1} e_0,$$

where
$$e_0 := (1, 0, 0, ...)^{\top}$$
.

• $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

The Perron-Stieltjes Theorem:

$$\mu(x) = \frac{1}{2\pi} \lim_{\epsilon \to +0} G(x + i\epsilon) - G(x - i\epsilon)$$

The Perron-Stieltjes Theorem:

$$\mu(x) = \frac{1}{2\pi} \lim_{\epsilon \to +0} G(x + i\epsilon) - G(x - i\epsilon)$$

The Perron-Stieltjes Theorem:

$$\mu(x) = \frac{1}{2\pi} \lim_{\epsilon \to +0} G(x + i\epsilon) - G(x - i\epsilon)$$

The Perron-Stieltjes Theorem:

$$\mu(x) = \frac{1}{2\pi} \lim_{\epsilon \to +0} G(x + i\epsilon) - G(x - i\epsilon)$$

Branch cut in $G \mapsto$ continuous part of μ .

The Perron-Stieltjes Theorem:

$$\mu(x) = \frac{1}{2\pi} \lim_{\epsilon \to +0} G(x + i\epsilon) - G(x - i\epsilon)$$

Branch cut in $G \mapsto$ continuous part of μ . **Pole** in $G \mapsto$ Dirac mass in μ .

• For this talk we restrict to the case where there exists n such that $\alpha_k = 0$, $\beta_{k-1} = \frac{1}{2}$ for all k > n. We call this **Pert-Toeplitz**.

- For this talk we restrict to the case where there exists n such that $\alpha_k = 0$, $\beta_{k-1} = \frac{1}{2}$ for all k > n. We call this **Pert-Toeplitz**.
- Not an unusual restriction:

- For this talk we restrict to the case where there exists n such that $\alpha_k = 0$, $\beta_{k-1} = \frac{1}{2}$ for all k > n. We call this **Pert-Toeplitz**.
- Not an unusual restriction: Jacobi polynomials measure of orthogonality is

$$\mu(x) = m_{\alpha,\beta}(1-x)^{\alpha}(1+x)^{\beta}|_{[-1,1]},$$

where $m_{\alpha,\beta}$ is a normalisation constant.

- For this talk we restrict to the case where there exists n such that $\alpha_k = 0$, $\beta_{k-1} = \frac{1}{2}$ for all k > n. We call this **Pert-Toeplitz**.
- Not an unusual restriction: Jacobi polynomials measure of orthogonality is

$$\mu(x) = m_{\alpha,\beta} (1-x)^{\alpha} (1+x)^{\beta}|_{[-1,1]},$$

where $m_{\alpha,\beta}$ is a normalisation constant. Jacobi operator has:

$$\alpha_{k} = \frac{\beta^{2} - \alpha^{2}}{(2k + \alpha + \beta)(2k + \alpha + \beta + 2)} \to 0$$

$$\beta_{k-1} = 2\sqrt{\frac{k(k+\alpha)(k+\beta)(k+\alpha+\beta)}{(2k+\alpha+\beta-1)(2k+\alpha+\beta)^{2}(2k+\alpha+\beta+1)}} \to \frac{1}{2}$$

• In this talk: $J - \Delta$ is finite rank.

- In this talk: $J \Delta$ is finite rank.
- The case where $J-\Delta$ is trace class was studied by Killip and Simon in their 2003 Annals paper Sum rules for Jacobi matrices and their applications to spectral theory.

- In this talk: $J \Delta$ is finite rank.
- The case where $J-\Delta$ is trace class was studied by Killip and Simon in their 2003 Annals paper Sum rules for Jacobi matrices and their applications to spectral theory.
- Other relevant authors studying these are Geronimus, Nevai, Chihara, Van Assche.

- In this talk: $J \Delta$ is finite rank.
- The case where $J-\Delta$ is trace class was studied by Killip and Simon in their 2003 Annals paper Sum rules for Jacobi matrices and their applications to spectral theory.
- Other relevant authors studying these are Geronimus, Nevai, Chihara, Van Assche.
- Our results extend to trace class too.

Explicit example

The example I will use throughout the talk to help explain is

$$J_{
m ex} = \left[egin{array}{ccccc} rac{3}{4} & 1 & & & & \ 1 & -rac{1}{4} & rac{3}{4} & & & \ & rac{3}{4} & rac{1}{2} & rac{1}{2} & & \ & rac{1}{2} & 0 & \ddots & \ & & \ddots & \ddots \end{array}
ight] = \Delta + \left[egin{array}{cccccc} rac{3}{4} & rac{1}{2} & & & \ rac{1}{2} & -rac{1}{4} & rac{1}{4} & & \ & rac{1}{4} & rac{1}{2} & 0 & & \ & & 0 & 0 & \ddots & \ & & & \ddots & \ddots & \end{array}
ight]$$

Explicit example

The example I will use throughout the talk to help explain is

Computing the Resolvent

• How do we compute the resolvent $G(\lambda) = e_0^{\top} (J - \lambda)^{-1} e_0$?

Computing the Resolvent

• How do we compute the resolvent $G(\lambda) = e_0^{\top} (J - \lambda)^{-1} e_0$?

$$\begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ & \frac{1}{2} & 0 & \frac{1}{2} \\ & & \frac{1}{2} & 0 & \ddots \\ & & & \ddots & \ddots \end{bmatrix} \rightarrow \begin{bmatrix} \frac{3}{4} & 1 \\ 1 & -\frac{1}{4} & \frac{3}{4} \\ & \frac{3}{4} & \frac{1}{2} & \frac{1}{2} \\ & & & \frac{1}{2} & 0 & \ddots \\ & & & \ddots & \ddots \end{bmatrix}$$

Computing the Resolvent

• How do we compute the resolvent $G(\lambda) = e_0^{\top} (J - \lambda)^{-1} e_0$?

$$\begin{bmatrix} 0 & \frac{1}{2} & & & & \\ \frac{1}{2} & 0 & \frac{1}{2} & & & & \\ & \frac{1}{2} & 0 & \frac{1}{2} & & & & \\ & & \frac{1}{2} & 0 & \ddots & & \\ & & & \ddots & \ddots & \end{bmatrix} \rightarrow \begin{bmatrix} \frac{3}{4} & 1 & & & & \\ 1 & -\frac{1}{4} & \frac{3}{4} & & & \\ & \frac{3}{4} & \frac{1}{2} & \frac{1}{2} & & & \\ & & & \frac{1}{2} & 0 & \ddots & \\ & & & \ddots & \ddots & \end{bmatrix}$$

• Key idea: construct the **connection ceofficients**. Let P_k be the orthogonal polynomials for J and suppose

$$f(x) = \sum_{k=0}^{\infty} a_k^J P_k(x) = \sum_{k=0}^{\infty} a_k^{\Delta} U_k(x).$$

• Key idea: construct the **connection ceofficients**. Let P_k be the orthogonal polynomials for J and suppose

$$f(x) = \sum_{k=0}^{\infty} a_k^J P_k(x) = \sum_{k=0}^{\infty} a_k^{\Delta} U_k(x).$$

Then

$$\begin{bmatrix} a_0^{\Delta} \\ a_1^{\Delta} \\ a_2^{\Delta} \\ \vdots \end{bmatrix} = \begin{bmatrix} c_{00} & c_{01} & c_{02} & c_{03} & \cdots \\ 0 & c_{11} & c_{12} & c_{13} & \cdots \\ 0 & 0 & c_{22} & c_{23} & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} a_0^J \\ a_1^J \\ a_2^J \\ \vdots \end{bmatrix}$$

• Key idea: construct the **connection ceofficients**. Let P_k be the orthogonal polynomials for J and suppose

$$f(x) = \sum_{k=0}^{\infty} a_k^J P_k(x) = \sum_{k=0}^{\infty} a_k^{\Delta} U_k(x).$$

Then

$$\begin{bmatrix} a_0^{\Delta} \\ a_1^{\Delta} \\ a_2^{\Delta} \\ \vdots \end{bmatrix} = \begin{bmatrix} c_{00} & c_{01} & c_{02} & c_{03} & \cdots \\ 0 & c_{11} & c_{12} & c_{13} & \cdots \\ 0 & 0 & c_{22} & c_{23} & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} a_0^J \\ a_1^J \\ a_2^J \\ \vdots \end{bmatrix}$$

• C^{\top} changes basis from U_k to P_k :

$$\begin{bmatrix} P_0(x) \\ P_1(x) \\ P_2(x) \\ \vdots \end{bmatrix} = \begin{bmatrix} c_{00} & 0 & 0 & 0 & \cdots \\ c_{01} & c_{11} & 0 & 0 & \cdots \\ c_{02} & c_{12} & c_{22} & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \begin{bmatrix} U_0(x) \\ U_1(x) \\ U_2(x) \\ \vdots \end{bmatrix}$$

Alternative formulation:

$$CJ - \Delta C = 0, \qquad Ce_0 = e_0. \tag{1}$$

Alternative formulation:

$$CJ - \Delta C = 0,$$
 $Ce_0 = e_0.$ (1)

• This looks like the wave equation:

$$\partial_x^2 C(x,t) - \partial_t^2 C(x,t) = 0,$$
 $C(x,0) = \delta_0(x),$ etc.... (2)

Alternative formulation:

$$CJ - \Delta C = 0,$$
 $Ce_0 = e_0.$ (1)

• This looks like the wave equation:

$$\partial_x^2 C(x,t) - \partial_t^2 C(x,t) = 0, \qquad C(x,0) = \delta_0(x), \text{ etc....}$$
 (2)

• Entries of *C* are **computable** by finite difference methods.

Alternative formulation:

$$CJ - \Delta C = 0,$$
 $Ce_0 = e_0.$ (1)

• This looks like the wave equation:

$$\partial_x^2 C(x,t) - \partial_t^2 C(x,t) = 0, \qquad C(x,0) = \delta_0(x), \text{ etc...}$$
 (2)

• Entries of *C* are **computable** by finite difference methods. First column is initial data.

Alternative formulation:

$$CJ - \Delta C = 0,$$
 $Ce_0 = e_0.$ (1)

This looks like the wave equation:

$$\partial_x^2 C(x,t) - \partial_t^2 C(x,t) = 0, \qquad C(x,0) = \delta_0(x), \text{ etc...}$$
 (2)

• Entries of *C* are **computable** by finite difference methods. First column is initial data. Information propagates to the right like a wave.

When J is Pert-Toeplitz, so is C!

Connection Coefficients

When *J* is Pert-Toeplitz, so is *C*!

$$G_{\Delta}(\lambda) = e_0^{\top} (\Delta - \lambda)^{-1} e_0$$

= $e_0^{\top} (\Delta - \lambda)^{-1} C e_0$ ($C e_0 = e_0$)
= $e_0^{\top} C (J - \lambda)^{-1} e_0$

$$G_{\Delta}(\lambda) = e_0^{\top} (\Delta - \lambda)^{-1} e_0$$

 $= e_0^{\top} (\Delta - \lambda)^{-1} C e_0 \quad (C e_0 = e_0)$
 $= e_0^{\top} C (J - \lambda)^{-1} e_0$
 $= \left(\sum_{k=0}^{2n-1} c_{0k} e_k^{\top}\right) (J - \lambda)^{-1} e_0$

$$G_{\Delta}(\lambda) = e_{0}^{\top}(\Delta - \lambda)^{-1}e_{0}$$

$$= e_{0}^{\top}(\Delta - \lambda)^{-1}Ce_{0} \quad (Ce_{0} = e_{0})$$

$$= e_{0}^{\top}C(J - \lambda)^{-1}e_{0}$$

$$= \left(\sum_{k=0}^{2n-1}c_{0k}e_{k}^{\top}\right)(J - \lambda)^{-1}e_{0}$$

$$= \int p(x)(x - \lambda)^{-1} d\mu(x) \quad \left(\text{where } p(x) = \sum_{k=0}^{2n-1}c_{0k}P_{k}(x)\right)$$

$$G_{\Delta}(\lambda) = e_{0}^{\top}(\Delta - \lambda)^{-1}e_{0}$$

$$= e_{0}^{\top}(\Delta - \lambda)^{-1}Ce_{0} \quad (Ce_{0} = e_{0})$$

$$= e_{0}^{\top}C(J - \lambda)^{-1}e_{0}$$

$$= \left(\sum_{k=0}^{2n-1}c_{0k}e_{k}^{\top}\right)(J - \lambda)^{-1}e_{0}$$

$$= \int p(x)(x - \lambda)^{-1} d\mu(x) \quad \left(\text{where } p(x) = \sum_{k=0}^{2n-1}c_{0k}P_{k}(x)\right)$$

$$= \int (p(x) - p(\lambda))(x - \lambda)^{-1} d\mu(x) + p(\lambda)\int (x - \lambda)^{-1} d\mu(x)$$

$$= p^{\mu}(\lambda) \quad + p(\lambda) G(\lambda)$$

Just using $CJ - \Delta C = 0$ and $Ce_0 = e_0$, we have:

$$G_{\Delta}(\lambda) = e_{0}^{\top}(\Delta - \lambda)^{-1}e_{0}$$

$$= e_{0}^{\top}(\Delta - \lambda)^{-1}Ce_{0} \quad (Ce_{0} = e_{0})$$

$$= e_{0}^{\top}C(J - \lambda)^{-1}e_{0}$$

$$= \left(\sum_{k=0}^{2n-1}c_{0k}e_{k}^{\top}\right)(J - \lambda)^{-1}e_{0}$$

$$= \int p(x)(x - \lambda)^{-1} d\mu(x) \quad \left(\text{where } p(x) = \sum_{k=0}^{2n-1}c_{0k}P_{k}(x)\right)$$

$$= \int (p(x) - p(\lambda))(x - \lambda)^{-1} d\mu(x) + p(\lambda)\int (x - \lambda)^{-1} d\mu(x)$$

$$= p^{\mu}(\lambda) \quad + p(\lambda) G(\lambda)$$

 $(\mu$ -derivative of p)

(we want G)

$$G(\lambda) = rac{G_{\Delta}(\lambda) - p^{\mu}(\lambda)}{p(\lambda)} = rac{2\sqrt{\lambda + 1}\sqrt{\lambda - 1} - 2\lambda - p^{\mu}(\lambda)}{p(\lambda)}$$

$$G(\lambda) = rac{G_{\Delta}(\lambda) - p^{\mu}(\lambda)}{p(\lambda)} = rac{2\sqrt{\lambda + 1}\sqrt{\lambda - 1} - 2\lambda - p^{\mu}(\lambda)}{p(\lambda)}$$

 Dirac points of μ (discrete spectrum of J) are at the poles of G, which must be roots of p.

$$G(\lambda) = rac{G_{\Delta}(\lambda) - p^{\mu}(\lambda)}{p(\lambda)} = rac{2\sqrt{\lambda + 1}\sqrt{\lambda - 1} - 2\lambda - p^{\mu}(\lambda)}{p(\lambda)}$$

 Dirac points of μ (discrete spectrum of J) are at the poles of G, which must be roots of p.

$$G(\lambda) = rac{G_{\Delta}(\lambda) - p^{\mu}(\lambda)}{p(\lambda)} = rac{2\sqrt{\lambda + 1}\sqrt{\lambda - 1} - 2\lambda - p^{\mu}(\lambda)}{p(\lambda)}$$

 Dirac points of μ (discrete spectrum of J) are at the poles of G, which must be roots of p.

Remember, in our running example, C is Toeplitz plus finite.

• The symbol of the Toeplitz matrix is $c(z) = \sum_{k=0}^{5} t_k z^k$.

Remember, in our running example, C is Toeplitz plus finite.

• The symbol of the Toeplitz matrix is $c(z) = \sum_{k=0}^{5} t_k z^k$. It "lives" naturally in the unit disc \mathbb{D} .

- The symbol of the Toeplitz matrix is $c(z) = \sum_{k=0}^{5} t_k z^k$. It "lives" naturally in the unit disc \mathbb{D} .
- Natural change of coordinates from $\mathbb D$ to $\mathbb C\setminus [-1,1]$ is Joukowski map, $\lambda(z)=\frac{1}{2}(z+z^{-1}).$

- The symbol of the Toeplitz matrix is $c(z) = \sum_{k=0}^{5} t_k z^k$. It "lives" naturally in the unit disc \mathbb{D} .
- Natural change of coordinates from $\mathbb D$ to $\mathbb C\setminus [-1,1]$ is Joukowski map, $\lambda(z)=\frac{1}{2}(z+z^{-1}).$
- (Awesome) Lemma: $p(\lambda(z)) = c(z)c(z^{-1})$.

- The symbol of the Toeplitz matrix is $c(z) = \sum_{k=0}^{5} t_k z^k$. It "lives" naturally in the unit disc \mathbb{D} .
- Natural change of coordinates from \mathbb{D} to $\mathbb{C} \setminus [-1,1]$ is Joukowski map, $\lambda(z) = \frac{1}{2}(z+z^{-1})$.
- (Awesome) Lemma: $p(\lambda(z)) = c(z)c(z^{-1})$.
- {roots of c } \longleftrightarrow { roots of p }.

• The Joukowski map $\lambda(z)=\frac{1}{2}(z+z^{-1})$ also simplifies the resolvent:

- The Joukowski map $\lambda(z) = \frac{1}{2}(z+z^{-1})$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$G(\lambda(z)) = -\frac{c_{\mu}(z)}{c(z)}$$

- The Joukowski map $\lambda(z) = \frac{1}{2}(z+z^{-1})$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$G(\lambda(z)) = -\frac{c_{\mu}(z)}{c(z)}$$

• Here $c_{\mu}(z)$ is also a Toeplitz symbol of a connection coefficients matrix, but a modified one.

- The Joukowski map $\lambda(z) = \frac{1}{2}(z+z^{-1})$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$G(\lambda(z)) = -\frac{c_{\mu}(z)}{c(z)}$$

- Here $c_{\mu}(z)$ is also a Toeplitz symbol of a connection coefficients matrix, but a modified one.
- The roots of $c_{\mu}(z)$ and c(z) do not intersect in the unit disc.

- The Joukowski map $\lambda(z) = \frac{1}{2}(z+z^{-1})$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$G(\lambda(z)) = -\frac{c_{\mu}(z)}{c(z)}$$

- Here $c_{\mu}(z)$ is also a Toeplitz symbol of a connection coefficients matrix, but a modified one.
- The roots of $c_{\mu}(z)$ and c(z) do not intersect in the unit disc. Hence the set

$$\{\lambda(z_1),\lambda(z_2),\ldots,\lambda(z_r):c(z_i)=0,z_i\in\mathbb{D}\}$$

decribes all the poles of G, and hence all the eigenvalues of J.

- The Joukowski map $\lambda(z) = \frac{1}{2}(z+z^{-1})$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$G(\lambda(z)) = -\frac{c_{\mu}(z)}{c(z)}$$

- Here $c_{\mu}(z)$ is also a Toeplitz symbol of a connection coefficients matrix, but a modified one.
- The roots of $c_{\mu}(z)$ and c(z) do not intersect in the unit disc. Hence the set

$$\{\lambda(z_1),\lambda(z_2),\ldots,\lambda(z_r):c(z_i)=0,z_i\in\mathbb{D}\}$$

decribes all the poles of G, and hence all the eigenvalues of J.

• The roots of c(z) outside $\mathbb D$ correspond to roots of p that get cancelled out.

Resolvent in the Unit Disc

Formula for the Spectral Measure

Connection coefficients matrix C gives us a **formula for the spectral measure** of J (in the case where J is pert-Toeplitz):

$$\mu(x) = \frac{1}{p(x)} \mu_{\Delta}(x) + \sum_{i=1}^{r} \frac{(z_{i} - z_{j}^{-1})^{2}}{z_{j} c'(z_{j}) c(z_{j}^{-1})} \delta_{\lambda(z_{i})}(x),$$

where

- $p(x) = \sum_{i=0}^{2n-1} c_{0k} P_k(x) = \sum_{i=0}^{2n-1} (CC^{\top})_{k0} U_k(x)$
- z_i are the roots of the Toeplitz symbol c in $\mathbb D$

Formula for the Spectral Measure

Connection coefficients matrix C gives us a **formula for the spectral measure** of J (in the case where J is pert-Toeplitz):

$$\mu(x) = \frac{1}{p(x)} \mu_{\Delta}(x) + \sum_{i=1}^{r} \frac{(z_{i} - z_{j}^{-1})^{2}}{z_{j} c'(z_{j}) c(z_{j}^{-1})} \delta_{\lambda(z_{i})}(x),$$

where

- $p(x) = \sum_{i=0}^{2n-1} c_{0k} P_k(x) = \sum_{i=0}^{2n-1} (CC^{\top})_{k0} U_k(x)$
- z_i are the roots of the Toeplitz symbol c in \mathbb{D} (c is degree 2n-1)

• Where are we going with this?

- Where are we going with this?
- Usually, spectra are computed using finite sections

- Where are we going with this?
- Usually, spectra are computed using **finite sections**, (truncations).

- Where are we going with this?
- Usually, spectra are computed using **finite sections**, (truncations).
- For banded self-adjoint operators this "works"

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
 - So far we have reduced Pert-Toeplitz Jacobi to canonical form.

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
 - So far we have reduced Pert-Toeplitz Jacobi to canonical form.
 - Can we do other types of Jacobi operators?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
 - So far we have reduced Pert-Toeplitz Jacobi to canonical form.
 - Can we do other types of Jacobi operators?
 - Can we tridiagonalise a banded operator?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
 - So far we have reduced Pert-Toeplitz Jacobi to canonical form.
 - Can we do other types of Jacobi operators?
 - Can we tridiagonalise a banded operator?
 - Can we deal with lower Hessenberg?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
 - So far we have reduced Pert-Toeplitz Jacobi to canonical form.
 - Can we do other types of Jacobi operators?
 - Can we tridiagonalise a banded operator?
 - Can we deal with lower Hessenberg?
 - Non-self-adjoint cases?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
 - So far we have reduced Pert-Toeplitz Jacobi to canonical form.
 - Can we do other types of Jacobi operators?
 - Can we tridiagonalise a banded operator?
 - Can we deal with lower Hessenberg?
 - Non-self-adjoint cases? (finite section often fails)

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
 - So far we have reduced Pert-Toeplitz Jacobi to canonical form.
 - Can we do other types of Jacobi operators?
 - Can we tridiagonalise a banded operator?
 - Can we deal with lower Hessenberg?
 - Non-self-adjoint cases? (finite section often fails)
- The aim is alternatives to finite section method.