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Jacobi Operators

A Jacobi operator has matrix form

J =


α0 β0

β0 α1 β1

β1 α2
. . .

. . .
. . .

 , αk , βk ∈ R, (βk > 0)
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Jacobi Operators = Orthogonal Polynomials = Probability Densities

Jacobi Operators Orthogonal Polynomials Probability Densities


α0 β0

β0 α1 β1

β1 α2

. . .

. . .
. . .


P0(x) = 1

xP0(x) = α0P0(x) + β0P1(x)
xPk (x) = βk−1Pk−1(x)

+αkPk (x) + βkPk+1(x)

Spectral measure
µ ∈ Prob(σ(J))∫

Pi (x)Pj (x) dµ(x) = δij

∆ Uk(x) (Chebyshev Polynomials) µ(x) = 2
π

√
1− x2


0 1

2
1
2

0 1
2

1
2

0
. . .

. . .
. . .


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The Principal Resolvent G

• How to study the spectrum and spectral measure?

• Define the principal resolvent,

G (λ) := e>0 (J − λ)−1e0,

where e0 := (1, 0, 0, . . .)>.

• λ ∈ C \ R.
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Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

µ(x) =
1

2π
lim
ε→+0

G (x + iε)− G (x − iε)

Branch cut in G 7→ continuous part of µ.
Pole in G 7→ Dirac mass in µ.
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The Jacobi Operators in This Talk

• For this talk we restrict to the case where there exists n such that
αk = 0, βk−1 = 1

2 for all k > n. We call this Pert-Toeplitz.

• Not an unusual restriction: Jacobi polynomials measure of
orthogonality is

µ(x) = mα,β(1− x)α(1 + x)β|[−1,1],

where mα,β is a normalisation constant. Jacobi operator has:

αk =
β2 − α2

(2k + α + β)(2k + α + β + 2)
→ 0

βk−1 = 2

√
k(k + α)(k + β)(k + α + β)

(2k + α + β − 1)(2k + α + β)2(2k + α + β + 1)
→ 1

2
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Pert-Toeplitz Restriction

• In this talk: J −∆ is finite rank.

• The case where J −∆ is trace class was studied by Killip and Simon
in their 2003 Annals paper Sum rules for Jacobi matrices and their
applications to spectral theory.

• Other relevant authors studying these are Geronimus, Nevai, Chihara,
Van Assche.

• Our results extend to trace class too.
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Explicit example

The example I will use throughout the talk to help explain is

Jex =



3
4 1
1 − 1

4
3
4

3
4

1
2

1
2

1
2 0

. . .
. . .

. . .

 = ∆ +



3
4

1
2

1
2 − 1

4
1
4

1
4

1
2 0

0 0
. . .

. . .
. . .


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Computing the Resolvent

• How do we compute the resolvent G (λ) = e>0 (J − λ)−1e0?



0 1
2

1
2

0 1
2

1
2

0 1
2

1
2

0
. . .

. . .
. . .


→



3
4

1

1 − 1
4

3
4

3
4

1
2

1
2

1
2

0
. . .

. . .
. . .



• G∆(λ) = 2
√
λ+ 1

√
λ− 1− 2λ → G (λ) =?
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Connection Coefficients

• Key idea: construct the connection ceofficients. Let Pk be the
orthogonal polynomials for J and suppose

f (x) =
∞∑
k=0

aJkPk(x) =
∞∑
k=0

a∆
k Uk(x).

Then 
a∆

0

a∆
1

a∆
2
...

 =


c00 c01 c02 c03 · · ·
0 c11 c12 c13 · · ·
0 0 c22 c23 · · ·
...

. . .
. . .

. . .
. . .




aJ0
aJ1
aJ2
...


• C> changes basis from Uk to Pk :

P0(x)
P1(x)
P2(x)

...

 =


c00 0 0 0 · · ·
c01 c11 0 0 · · ·
c02 c12 c22 0 · · ·

...
. . .

. . .
. . .

. . .




U0(x)
U1(x)
U2(x)

...


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Connection Coefficients

• Alternative formulation:

CJ −∆C = 0, Ce0 = e0. (1)

• This looks like the wave equation:

∂2
xC (x , t)− ∂2

t C (x , t) = 0, C (x , 0) = δ0(x), etc.... (2)

• Entries of C are computable by finite difference methods. First
column is initial data. Information propagates to the right like a wave.
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Connection Coefficients

Cex =



1 −0.75 −1.25 2.04 −0.08 −0.33 0 · · ·

0 0.5 −0.33 −1.33 1.71 −0.08 −0.33
. . .

0 0 0.33 −0.66 −1.33 1.71 −0.08
. . .

0 0 0 0.33 −0.66 −1.33 1.71
. . .

0 0 0 0 0.33 −0.66 −1.33
. . .

0 0 0 0 0 0.33 −0.66
. . .

0 0 0 0 0 0 0.33
. . .

. . .
. . .

. . .
. . .



When J is Pert-Toeplitz, so is C !

Cex =



0.33 −0.66 −1.33 1.71 −0.08 −0.33 0
0 0.33 −0.66 −1.33 1.71 −0.08 −0.33
0 0 0.33 −0.66 −1.33 1.71 −0.08
0 0 0 0.33 −0.66 −1.33 1.71
0 0 0 0 0.33 −0.66 −1.33
0 0 0 0 0 0.33 −0.66
0 0 0 0 0 0 0.33


+



0.66 −0.09 0.08 0.33 0 0 0
0 0.16 0.33 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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Formula for Resolvent Using C

Just using CJ −∆C = 0 and Ce0 = e0, we have:

G∆(λ) = e>0 (∆− λ)−1e0

= e>0 (∆− λ)−1Ce0 (Ce0 = e0)

= e>0 C (J − λ)−1e0

=

(
2n−1∑
k=0

c0ke
>
k

)
(J − λ)−1e0

=

∫
p(x)(x − λ)−1 dµ(x)

(
where p(x) =

2n−1∑
k=0

c0kPk(x)

)

=

∫
(p(x)− p(λ))(x − λ)−1 dµ(x) + p(λ)

∫
(x − λ)−1 dµ(x)

= pµ(λ) + p(λ) G (λ)

(µ-derivative of p) (we want G )
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A Formula for the Resolvent

G (λ) =
G∆(λ)− pµ(λ)

p(λ)
=

2
√
λ+ 1

√
λ− 1− 2λ− pµ(λ)

p(λ)

• Dirac points of µ (discrete spectrum of J) are at the poles of G ,
which must be roots of p.
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Toeplitz Symbol of C

• Remember, in our running example, C is Toeplitz plus finite.

Cex =



0.33 −0.66 −1.33 1.71 −0.08 −0.33 0
0 0.33 −0.66 −1.33 1.71 −0.08 −0.33
0 0 0.33 −0.66 −1.33 1.71 −0.08
0 0 0 0.33 −0.66 −1.33 1.71
0 0 0 0 0.33 −0.66 −1.33
0 0 0 0 0 0.33 −0.66
0 0 0 0 0 0 0.33


+



0.66 −0.09 0.08 0.33 0 0 0
0 0.16 0.33 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



• The symbol of the Toeplitz matrix is c(z) =
∑5

k=0 tkz
k . It “lives”

naturally in the unit disc D.

• Natural change of coordinates from D to C \ [−1, 1] is Joukowski
map, λ(z) = 1

2 (z + z−1).

• (Awesome) Lemma: p(λ(z)) = c(z)c(z−1).

• {roots of c } ←→ { roots of p }.
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Formula for Resolvent in the Unit Disc

• The Joukowski map λ(z) = 1
2 (z + z−1) also simplifies the resolvent:

• For z ∈ D,

G (λ(z)) = −cµ(z)

c(z)

• Here cµ(z) is also a Toeplitz symbol of a connection coefficients
matrix, but a modified one.

• The roots of cµ(z) and c(z) do not intersect in the unit disc. Hence
the set

{λ(z1), λ(z2), . . . , λ(zr ) : c(zi ) = 0, zi ∈ D}

decribes all the poles of G , and hence all the eigenvalues of J.

• The roots of c(z) outside D correspond to roots of p that get
cancelled out.
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Resolvent in the Unit Disc
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Formula for the Spectral Measure

Connection coefficients matrix C gives us a formula for the spectral
measure of J (in the case where J is pert-Toeplitz):

µ(x) =
1

p(x)
µ∆(x) +

r∑
i=1

(zj − z−1
j )2

zjc ′(zj)c(z−1
j )

δλ(zi )(x),

where

• p(x) =
∑2n−1

i=0 c0kPk(x) =
∑2n−1

i=0 (CC>)k0Uk(x)

• zi are the roots of the Toeplitz symbol c in D

(c is degree 2n − 1)
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Where are we going?

• Where are we going with this?

• Usually, spectra are computed using finite sections, (truncations).

• For banded self-adjoint operators this “works”
• So far we have reduced Pert-Toeplitz Jacobi to canonical form.
• Can we do other types of Jacobi operators?
• Can we tridiagonalise a banded operator?
• Can we deal with lower Hessenberg?
• Non-self-adjoint cases? (finite section often fails)

• The aim is alternatives to finite section method.
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