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Jacobi Operators

A Jacobi operator has matrix form

ag  fBo
Bo a1 Br
J= B o | ak, Bk €R,  (Bk >0)
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Jacobi Operators = Orthogonal Polynomials = Probability Densities

Jacobi Operators Orthogonal Polynomials Probability Densities
ag Bo Pox) = 1
Bo a1 B olx) =

xPo(x) = aoPo(x) + BoPi(x) Spectral measure

5 XPy(x) = Be1Px_1(x) ‘,u € }')rob(cr(J))i )
1 . i . ' +akPk,EX; -:ﬁipkﬂ(x) J PR () du(x) = 3
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Jacobi Operators = Orthogonal Polynomials = Probability Densities

Jacobi Operators

Orthogonal Polynomials

a0 fBo
Bo a1 B Po(x) =1
XP()(X) = Ong()(X) + ,30P1(X)
B xPi(x) = Br—1Pr—1(x)
+ou Pi(x) + BiPit1(x)
A Uk(x) (Chebyshev Polynomials)
o 1
2
1 1
3 0 3
1
5 0
Spectra of Jacobi Operators via Connection Coefficients

Probability Densities

Spectral measure
u € Prob(o(J))

J Pi(x)Pj(x) dp(x) = &

Hx) = 2vI—x2

27th July 2016
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The Principal Resolvent G

e How to study the spectrum and spectral measure?
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The Principal Resolvent G

e How to study the spectrum and spectral measure?

e Define the principal resolvent,
G(\):=¢ (J—))Ley,

where e := (1,0,0,...)".
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The Principal Resolvent G

e How to study the spectrum and spectral measure?

e Define the principal resolvent,
G(\):=¢ (J—))Ley,

where e := (1,0,0,...)".
e A eC\R.
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Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

1 . . .
pu(x) = %J_lmo G(x + i€) — G(x — ie)
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Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

1 . .
p(x) = %J_I)T_o G(x + ie) — G(x — ie)

-2.0
=20 -15 -1.0 -05 00 05 10 15 20
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Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

1 . .
p(x) = %J_I)T_O G(x + ie) — G(x — ie)

-2.0
=20 -15 -10 -05 0.0
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Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

1 . .
p(x) = %J_I)T_o G(x + ie) — G(x — ie)

05

-2.0
=20 -15 -1.0 -05 00 05 10 15 20

Branch cut in G — continuous part of p.
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Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

1 . .
p(x) = %J_I)T_o G(x + ie) — G(x — ie)

05

-2.0
=20 -15 -1.0 -05 00 05 10 15 20

Branch cut in G — continuous part of p.
Pole in G — Dirac mass in pu.
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The Jacobi Operators in This Talk

e For this talk we restrict to the case where there exists n such that
ax =0, Bxk_1 = % for all k > n. We call this Pert-Toeplitz.
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The Jacobi Operators in This Talk

e For this talk we restrict to the case where there exists n such that
ax =0, Bxk_1 = % for all k > n. We call this Pert-Toeplitz.

e Not an unusual restriction:
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The Jacobi Operators in This Talk

e For this talk we restrict to the case where there exists n such that
ax =0, Bxk_1 = % for all k > n. We call this Pert-Toeplitz.

e Not an unusual restriction: Jacobi polynomials measure of
orthogonality is

p(x) = mg (1 — x)*(1 + X)ﬁ’[—l,l]a

where m,, g is a normalisation constant.
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The Jacobi Operators in This Talk

e For this talk we restrict to the case where there exists n such that

ax =0, Bxk_1 = % for all k > n. We call this Pert-Toeplitz.

e Not an unusual restriction: Jacobi polynomials measure of
orthogonality is

p(x) = mg (1 — x)*(1 + X)ﬁ’[—l,l]a

where m, g is a normalisation constant. Jacobi operator has:

52_a2
= (2k+a+ﬁ)(2k+a+ﬁ+2)_>0
5 _ k(k +a)(k + B)(k +a+ B)
Kt (2k + a+ B —1)2k +a+ )22k +a+ 5+ 1)
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Pert-Toeplitz Restriction

e In this talk: J — A is finite rank.
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Pert-Toeplitz Restriction

e In this talk: J — A is finite rank.

e The case where J — A is trace class was studied by Killip and Simon
in their 2003 Annals paper Sum rules for Jacobi matrices and their
applications to spectral theory.
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Pert-Toeplitz Restriction

e In this talk: J — A is finite rank.

e The case where J — A is trace class was studied by Killip and Simon
in their 2003 Annals paper Sum rules for Jacobi matrices and their
applications to spectral theory.

e Other relevant authors studying these are Geronimus, Nevai, Chihara,
Van Assche.
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Pert-Toeplitz Restriction

e In this talk: J — A is finite rank.

e The case where J — A is trace class was studied by Killip and Simon
in their 2003 Annals paper Sum rules for Jacobi matrices and their
applications to spectral theory.

e Other relevant authors studying these are Geronimus, Nevai, Chihara,
Van Assche.

e Our results extend to trace class too.
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The example | will use throughout the talk to help explain is

Marcus Webb

=AW

301
1 ;o
13 i 2
1 S
4 2 2 :A+ 4
1
5 0

Spectra of Jacobi Operators via Connection Coefficients

Explicit example

O NI=R|=
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Explicit example

The example | will use throughout the talk to help explain is

=AW
|
Bl

Hlw

NI= NI W
O NI

Principal Resolvent for J_ex

200 -15 -10 -05 00 o 5 20
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Computing the Resolvent

e How do we compute the resolvent G()\) = e7 (J — \) leg?
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Computing the Resolvent

e How do we compute the resolvent G()\) = e7 (J — \) leg?

o 1 3
1 oo 1 1 -1 3
21 5 ESR ST
2 2 4 2 2
—
1 1
3 0 3 0
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Computing the Resolvent

e How do we compute the resolvent G()\) = e7 (J — \) leg?

1 3
o 1 E
1 oo 1 1 -1 3
1§ 1 EA |
2 2 4 2 2
—
1 1
2 0 2 0

o Ga(AN) =2VAF+IVA—1-2) = G(A) =7

Principal Resolvent for \Delta

Principal Resolvent for J_ex

%0 -15 -10 -05 00 05 10 15 20 %0 -15 -10 -05 00 05 10 15 20
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Connection Coefficients

e Key idea: construct the connection ceofficients. Let Py be the
orthogonal polynomials for J and suppose

F(x) = aPu(x) = ap Ui(x).
k=0 k=0
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Connection Coefficients

e Key idea: construct the connection ceofficients. Let Py be the
orthogonal polynomials for J and suppose

F(x) = aPu(x) = ap Ui(x).
k=0 k=0

Then
VN G . J
0 00 Co1 Co2 Co3 dp
A
al 0 Ci1 Ci2 Ci3 - af
32A - 0 0 c» o3 - 3‘2]

10 / 19
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e Key idea: construct the connection ceofficients. Let Py be the

Connection Coefficients

orthogonal polynomials for J and suppose

F(x) = aPu(x) = ap Ui(x).
k=0 k=0

Then
A
=N Co Co1
alA 0 C11
a2 | =] 0 o0

e C' changes basis from Uy to Py:

Po(X) 00 0
P1(x) Co1  Ci1

Py(x) | = | co2 c12

Co2 Co3
Ci2 Ci13
C22 (23
0 0
0 0
2o 0

Marcus Webb Spectra of Jacobi Operators via Connection Coefficients

Uo(x)
Ui (x)
Ua(x)
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Connection Coefficients
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Connection Coefficients

e Alternative formulation:

CJ—AC= 0, Ceo = €p. (1)
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Connection Coefficients

e Alternative formulation:
CJ—-—AC= 0, Ceo = €p. (1)
e This looks like the wave equation:

92C(x,t) — 2C(x,t) =0,  C(x,0) = do(x), etc....  (2)
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Connection Coefficients

e Alternative formulation:
CJ-AC=0, Cep = ep. (1)
e This looks like the wave equation:
D2C(x,t) — 92C(x,t) =0, C(x,0) = dp(x), etc....  (2)

o Entries of C are computable by finite difference methods.

Marcus Webb Spectra of Jacobi Operators via Connection Coefficients 27th July 2016 1 /19



Connection Coefficients

e Alternative formulation:
CJ-AC=0, Cep = ep. (1)
e This looks like the wave equation:
D2C(x,t) — 92C(x,t) =0, C(x,0) = dp(x), etc....  (2)

e Entries of C are computable by finite difference methods. First
column is initial data.
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Connection Coefficients

e Alternative formulation:
CJ-AC=0, Cep = ep. (1)
e This looks like the wave equation:
D2C(x,t) — 92C(x,t) =0, C(x,0) = dp(x), etc....  (2)

e Entries of C are computable by finite difference methods. First
column is initial data. Information propagates to the right like a wave.
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Connection Coefficients

1 -0v5 —-125 204 -0.08 -0.33 0

0 05 -033 —133 171 -0.08 —0.33
0 0 033 -066 —133 171 —0.08
0 0 0 033 —066 —133 171
Cox = 0 0 0 0 033 -066 —1.33
0 0 0 0 0 033 —066
0 0 0 0 0 0 033
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Connection Coefficients

1 -0v5 —-125 204 -0.08 -0.33 0

0 05 -033 —133 171 -0.08 —0.33
0 0 033 -066 —133 171 —0.08
0 0 0 033 —066 —133 171
Cox = 0 0 0 0 033 -066 —1.33
0 0 0 0 0 033 —066
0 0 0 0 0 0 033

When J is Pert-Toeplitz, so is C!
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—0.75
0.5

0
0
0
0
0

When J is Pert-Toeplitz, so

Cex =

0

.3
0
0
0
0
0
0

3

—0.66
0.33

coooo

Marcus Webb

—1.33
—0.66
0.33
0

0
0
0

—-1.25 2.04 —-0.08
-0.33 -1.33 1.71
0.33 —-0.66 —1.33
0 0.33 —-0.66
0 0 0.33
0 0 0
0 0 0
is C!

1.71 —0.08 —0.33 0
—1.33 1.71 —0.08 —0.33
—0.66 —1.33 1.71 —0.08

0.33 —0.66 —1.33 1.71 +

0 0.33 —0.66 —1.33
0 0 0.33 —0.66
0 0 0 0.33

Connection Coefficients

Spectra of Jacobi Operators via Connection Coefficients

[=NeNoNoNoNalN

—0.33
—0.08
1.71
-1.33
—0.66
0.33
0

—0.33
—0.08
1.71
—1.33
—0.66
0.33

[=NeNeNaNoN N

27th July 2016
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Formula for Resolvent Using C

Just using CJ — AC =0 and Cey = ey, we have:
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Formula for Resolvent Using C

Just using CJ — AC =0 and Cey = ey, we have:

Ga(N) = & (A—X) e
= e (A—)\)"1Ce (Cep = &)
= ¢ C(J—)N)1e
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Formula for Resolvent Using C

Just using CJ — AC =0 and Cey = ey, we have:

Ga(N) = & (A—X) e
= e (A—)\)"1Ce (Cep = &)
= ¢ C(J—)N)1e

2n—-1
= <Z cokekT> (J-N"te
k=0
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Formula for Resolvent Using C

Just using CJ — AC =0 and Cey = ey, we have:

Ga(N) = & (A—X) e
= e (A—)\)"1Ce (Cep = &)
= ¢ C(J—)N)1e

2n—-1
= (Z cokekT> (J-N"te
k=0

2n—-1
- / p)(x = A) ! dp(x) (where P(X):ZCOkPk(X)>
k=0
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Formula for Resolvent Using C

Just using CJ — AC =0 and Cey = ey, we have:

Ga(N) = & (A—X) e
= e (A—)\)"1Ce (Cep = &)
= ¢ C(J—)N)1e

2n—1
- (Z cokekT> (J— A)_leo
k=0
2n—1
= [ = 2 dnx) (where px)= 3 cOkPk<x))
k=0

- / (P(x) — PO (x — A dpu(x) + p() / (x— A du(x)
_ () 1 p(0) G(Y)
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Formula for Resolvent Using C

Just using CJ — AC =0 and Cey = ey, we have:

Ga(d) = e (A—A) e
= e(—)r(A — )\)_1C60 (Cep = &)
= ¢ C(J—)N)1e

2n—1
= (Z cokekT> (J—XN)"le
k=0
2n—1
= [ = 2 dnx) (where px)= 3 cOkPk<x))
k=0

= [0 = PO =N + () [ (x = 0)H dat)
= PH(A) +p(A) G(A)
(u-derivative of p) (we want G)
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A Formula for the Resolvent

6o = G — ) 2VAFTVA-T =20 = p()
0N a p(\)
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A Formula for the Resolvent

6o = G — ) 2VAFTVA-T =20 = p()
0N a p(\)

e Dirac points of i (discrete spectrum of J) are at the poles of G,
which must be roots of p.
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A Formula for the Resolvent

Ga(\) = p*(A)  2VAFIVA—1—2) — pi())
p(X) B p(X)

G(\) =

e Dirac points of i (discrete spectrum of J) are at the poles of G,
which must be roots of p.

The Denominator, p

200 15 -10 -05 00 05 10 15 20

14 / 19
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A Formula for the Resolvent

Ga(\) = p*(A)  2VAFIVA—1—2) — pi())
p(X) B p(X)

G(\) =

e Dirac points of i (discrete spectrum of J) are at the poles of G,
which must be roots of p.

The Numerator, G_\Delta - p_mu

The Denominator, p

14 /19
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Toeplitz Symbol of C

e Remember, in our running example, C is Toeplitz plus finite.

0.33 —-0.66 —1.33 1.71 —0.08 —-0.33 0 0.66 —0.09 0.08 0.33
0 0.33 —0.66 —1.33 1.71 —0.08 —0.33 0 0.16 0.33 0
0 0 0.33 —0.66 —1.33 1.71 —0.08 0 0 0 0
ex = 0 0 0 0.33 —0.66 —1.33 1.71 + 0 0 0 0
0 0 0 0 0.33 —0.66 —1.33 0 0 0 0
0 0 0 0 0 0.33 —0.66 0 0 0 0
0 0 0 0 0 0 0.33 0 0 0 0

coocoocoo
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Toeplitz Symbol of C

e Remember, in our running example, C is Toeplitz plus finite.

0.33

.3
0
0
ex — O
0
0
0

e The symbol of the Toeplitz matrix

Marcus Webb

—0.66 —1.33 1.71 —0.08 —-0.33 0

0.33 —0.66 —1.33 1.71 —0.08 —0.33
0 0.33 —0.66 —1.33 1.71 —0.08
0 0 0.33 —0.66 —1.33 1.71
0 0 0 0.33 —0.66 —1.33
0 0 0 0 0.33 —0.66
0 0 0 0 0 0.33

Spectra of Jacobi Operators via Connection Coefficients

+

0

.6
0
0
0
0
0
0

6

—0.09 0.0
0.16 0.3

coocoo

is c(z) = Zi:o ti zk.
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Toeplitz Symbol of C

e Remember, in our running example, C is Toeplitz plus finite.

0.33 —-0.66 —1.33 1.71 —0.08 —-0.33 0 0.66 —0.09 0.08 0.33
0 0.33 —0.66 —1.33 1.71 —0.08 —0.33 0 0.16 0.33 0
0 0 0.33 —0.66 —1.33 1.71 —0.08 0 0 0 0
ex = 0 0 0 0.33 —0.66 —1.33 1.71 + 0 0 0 0
0 0 0 0 0.33 —0.66 —1.33 0 0 0 0
0 0 0 0 0 0.33 —0.66 0 0 0 0
0 0 0 0 0 0 0.33 0 0 0 0

coocoocoo

e The symbol of the Toeplitz matrix is c(z) = Zi:o tzK. It “lives”
naturally in the unit disc D.
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Toeplitz Symbol of C

e Remember, in our running example, C is Toeplitz plus finite.

0.33

3
0
0
ex — 0
0
0
0

—0.66 —1.33 1.71 —0.08 —-0.33 0 0.66

0.33 —0.66 —1.33 1.71 —0.08 —0.33 0
0 0.33 —0.66 —1.33 1.71 —0.08 0
0 0 0.33 —0.66 —1.33 1.71 + 0
0 0 0 0.33 —0.66 —1.33 0
0 0 0 0 0.33 —0.66 0
0 0 0 0 0 0.33 0

e The symbol of the Toeplitz matrix is c(z) =
naturally in the unit disc D.

S o tkz".

—0.09 0.08
0.16 0.33

0 0

0 0

0 0

0 0

0 0

It “lives”

¢ Natural change of coordinates from D to C \ [—1, 1] is Joukowski
map, A(z) = 3(z + z71).

Marcus Webb
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27th July 2016

cocoocococo,
[eNeoNoNeNe ool

15 /19



Toeplitz Symbol of C

e Remember, in our running example, C is Toeplitz plus finite.

0.33

3
0
0
ex — 0
0
0
0

—0.66 —1.33 1.71 —0.08 —0.33 0 0.66

0.33 —0.66 —1.33 1.71 —0.08 —0.33 0
0 0.33 —0.66 —1.33 1.71 —0.08 0
0 0 0.33 —0.66 —1.33 1.71 + 0
0 0 0 0.33 —0.66 —1.33 0
0 0 0 0 0.33 —0.66 0
0 0 0 0 0 0.33 0

e The symbol of the Toeplitz matrix is c(z) =
naturally in the unit disc D.

She o tkz".

—0.09 0.08
0.16 0.33

0 0

0 0

0 0

0 0

0 0

It “lives”

¢ Natural change of coordinates from D to C \ [—1, 1] is Joukowski
map, A(z) = 3(z + z71).
(Awesome) Lemma: p(A(z2)) = c(z)c(z71).

Marcus Webb

Spectra of Jacobi Operators via Connection Coefficients
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Toeplitz Symbol of C

e Remember, in our running example, C is Toeplitz plus finite.

0.33

3
0
0
ex — 0
0
0
0

—0.66 —1.33 1.71 —0.08 —0.33 0 0.66

0.33 —0.66 —1.33 1.71 —0.08 —0.33 0
0 0.33 —0.66 —1.33 1.71 —0.08 0
0 0 0.33 —0.66 —1.33 1.71 + 0
0 0 0 0.33 —0.66 —1.33 0
0 0 0 0 0.33 —0.66 0
0 0 0 0 0 0.33 0

e The symbol of the Toeplitz matrix is c(z) =
naturally in the unit disc D.

She o tkz".

—0.09 0.08
0.16 0.33

0 0

0 0

0 0

0 0

0 0

It “lives”

¢ Natural change of coordinates from D to C \ [—1, 1] is Joukowski
map, A(z) = 3(z + z71).

Marcus Webb

(Awesome) Lemma: p(A(z2)) = c(z)c(z71).
{roots of ¢ } +— { roots of p }.

Spectra of Jacobi Operators via Connection Coefficients
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Formula for Resolvent in the Unit Disc

e The Joukowski map A(z) = %(z + z71) also simplifies the resolvent:
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Formula for Resolvent in the Unit Disc

e The Joukowski map A(z) = %(z + z71) also simplifies the resolvent:
e For z €D,

G0 =~
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Formula for Resolvent in the Unit Disc

e The Joukowski map A(z) = %(z + z71) also simplifies the resolvent:
e For z €D,

G0 =~

e Here ¢,(z) is also a Toeplitz symbol of a connection coefficients
matrix, but a modified one.
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Formula for Resolvent in the Unit Disc

The Joukowski map A\(z) = %(z + z71) also simplifies the resolvent:
For z € D,

G0 =~

Here c,(z) is also a Toeplitz symbol of a connection coefficients
matrix, but a modified one.

The roots of ¢,(z) and c(z) do not intersect in the unit disc.
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Formula for Resolvent in the Unit Disc

e The Joukowski map A(z) = 3(z 4+ z7!) also simplifies the resolvent:
e For z €D,

G0 =~

e Here ¢,(z) is also a Toeplitz symbol of a connection coefficients
matrix, but a modified one.

e The roots of ¢,(z) and c(z) do not intersect in the unit disc. Hence
the set
{AMz1), A(22), - .-, A(zr) : c(2)) =0,z € D}

decribes all the poles of G, and hence all the eigenvalues of J.
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Formula for Resolvent in the Unit Disc

e The Joukowski map A(z) = 3(z 4+ z7!) also simplifies the resolvent:
e For z €D,

G0 =~

e Here ¢,(z) is also a Toeplitz symbol of a connection coefficients
matrix, but a modified one.

e The roots of ¢,(z) and c(z) do not intersect in the unit disc. Hence
the set
{AMz1), A(22), - .-, A(zr) : c(2)) =0,z € D}
decribes all the poles of G, and hence all the eigenvalues of J.

e The roots of ¢(z) outside D correspond to roots of p that get
cancelled out.
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Resolvent in the Unit Disc

Principal Resolvent for J_ex

Principal Resolvent of J_ex in the Unit Disc
T T T T

2.0
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Formula for the Spectral Measure

Connection coefficients matrix C gives us a formula for the spectral
measure of J (in the case where J is pert-Toeplitz):

(x) = 1 (x) + Zr:(zf_zl_l)z(g (x)
H p(X)MA L ZjC/(Zj)C(ZJ-_l) Azp) )

where
o p(x) = 70" corPul(x) = 76 M (CCT ko Uk(x)
e z; are the roots of the Toeplitz symbol ¢ in D
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Formula for the Spectral Measure

Connection coefficients matrix C gives us a formula for the spectral
measure of J (in the case where J is pert-Toeplitz):

(X):L (X)+§r:(zj_zf_1)2 (x)
H p(X)MA L ZjC/(Zj)C(ZJ-_l) Azp) )

where
o p(x) = 2" cokPr(x) = 37751 (CC o Uk(x)
e z; are the roots of the Toeplitz symbol ¢ in D (c is degree 2n — 1)
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Where are we going?

e Where are we going with this?
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e Where are we going with this?

e Usually, spectra are computed using finite sections, (truncations).
e For banded self-adjoint operators this “works"”

e So far we have reduced Pert-Toeplitz Jacobi to canonical form.

e Can we do other types of Jacobi operators?

e Can we tridiagonalise a banded operator?
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Where are we going?

e Where are we going with this?

e Usually, spectra are computed using finite sections, (truncations).
e For banded self-adjoint operators this “works"”

e So far we have reduced Pert-Toeplitz Jacobi to canonical form.

e Can we do other types of Jacobi operators?

e Can we tridiagonalise a banded operator?

e Can we deal with lower Hessenberg?

o Non-self-adjoint cases? (finite section often fails)
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Where are we going?

Where are we going with this?

Usually, spectra are computed using finite sections, (truncations).
For banded self-adjoint operators this "“works"”

So far we have reduced Pert-Toeplitz Jacobi to canonical form.

Can we do other types of Jacobi operators?

Can we tridiagonalise a banded operator?

Can we deal with lower Hessenberg?

Non-self-adjoint cases? (finite section often fails)

The aim is alternatives to finite section method.
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