Spectra of Jacobi Operators via Connection Coefficients

Marcus Webb

University of Cambridge
Joint work with Sheehan Olver (University of Sydney)
27th July 2016
Funding: EPSRC, PhD Supervisor: Arieh Iserles

Jacobi Operators

A Jacobi operator has matrix form

$$
J=\left[\begin{array}{cccc}
\alpha_{0} & \beta_{0} & & \\
\beta_{0} & \alpha_{1} & \beta_{1} & \\
& \beta_{1} & \alpha_{2} & \ddots \\
& & \ddots & \ddots
\end{array}\right], \quad \alpha_{k}, \beta_{k} \in \mathbb{R}, \quad\left(\beta_{k}>0\right)
$$

Jacobi Operators $=$ Orthogonal Polynomials $=$ Probability Densities

Jacobi Operators
$\left[\begin{array}{cccc}\alpha_{0} & \beta_{0} & & \\ \beta_{0} & \alpha_{1} & \beta_{1} & \\ & \beta_{1} & \alpha_{2} & \ddots \\ & & \ddots & \ddots\end{array}\right]$

Orthogonal Polynomials

$$
\begin{gathered}
P_{0}(x)=1 \\
x P_{0}(x)=\alpha_{0} P_{0}(x)+\beta_{0} P_{1}(x) \\
x P_{k}(x)=\beta_{k-1} P_{k-1}(x) \\
+\alpha_{k} P_{k}(x)+\beta_{k} P_{k+1}(x)
\end{gathered}
$$

Probability Densities

Spectral measure
$\mu \in \operatorname{Prob}(\sigma(J))$
$\int P_{i}(x) P_{j}(x) \mathrm{d} \mu(x)=\delta_{i j}$

Jacobi Operators $=$ Orthogonal Polynomials $=$ Probability Densities

Jacobi Operators
$\left[\begin{array}{cccc}\alpha_{0} & \beta_{0} & & \\ \beta_{0} & \alpha_{1} & \beta_{1} & \\ & \beta_{1} & \alpha_{2} & \ddots \\ & & \ddots & \ddots\end{array}\right]$
$U_{k}(x)$ (Chebyshev Polynomials)

$$
\left[\begin{array}{cccc}
0 & \frac{1}{2} & & \\
\frac{1}{2} & 0 & \frac{1}{2} & \\
& \frac{1}{2} & 0 & \ddots \\
& & \ddots & \ddots
\end{array}\right]
$$

$$
\begin{gathered}
P_{0}(x)=1 \\
x P_{0}(x)=\alpha_{0} P_{0}(x)+\beta_{0} P_{1}(x) \\
x P_{k}(x)=\beta_{k-1} P_{k-1}(x) \\
+\alpha_{k} P_{k}(x)+\beta_{k} P_{k+1}(x)
\end{gathered}
$$

Orthogonal Polynomials

Probability Densities

Spectral measure
$\mu \in \operatorname{Prob}(\sigma(J))$
$\int P_{i}(x) P_{j}(x) \mathrm{d} \mu(x)=\delta_{i j}$
$\mu(x)=\frac{2}{\pi} \sqrt{1-x^{2}}$

The Principal Resolvent G

- How to study the spectrum and spectral measure?

The Principal Resolvent G

- How to study the spectrum and spectral measure?
- Define the principal resolvent,

$$
G(\lambda):=e_{0}^{\top}(J-\lambda)^{-1} e_{0},
$$

where $e_{0}:=(1,0,0, \ldots)^{\top}$.

The Principal Resolvent G

- How to study the spectrum and spectral measure?
- Define the principal resolvent,

$$
G(\lambda):=e_{0}^{\top}(J-\lambda)^{-1} e_{0},
$$

where $e_{0}:=(1,0,0, \ldots)^{\top}$.

- $\lambda \in \mathbb{C} \backslash \mathbb{R}$.

Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

$$
\mu(x)=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow+0} G(x+i \epsilon)-G(x-i \epsilon)
$$

Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

$$
\mu(x)=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow+0} G(x+i \epsilon)-G(x-i \epsilon)
$$

Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

$$
\mu(x)=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow+0} G(x+i \epsilon)-G(x-i \epsilon)
$$

Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

$$
\mu(x)=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow+0} G(x+i \epsilon)-G(x-i \epsilon)
$$

Branch cut in $G \mapsto$ continuous part of μ.

Spectral Measure and Resolvent

The Perron-Stieltjes Theorem:

$$
\mu(x)=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow+0} G(x+i \epsilon)-G(x-i \epsilon)
$$

Branch cut in $G \mapsto$ continuous part of μ.
Pole in $G \mapsto$ Dirac mass in μ.

The Jacobi Operators in This Talk

- For this talk we restrict to the case where there exists n such that $\alpha_{k}=0, \beta_{k-1}=\frac{1}{2}$ for all $k>n$. We call this Pert-Toeplitz.

The Jacobi Operators in This Talk

- For this talk we restrict to the case where there exists n such that $\alpha_{k}=0, \beta_{k-1}=\frac{1}{2}$ for all $k>n$. We call this Pert-Toeplitz.
- Not an unusual restriction:

The Jacobi Operators in This Talk

- For this talk we restrict to the case where there exists n such that $\alpha_{k}=0, \beta_{k-1}=\frac{1}{2}$ for all $k>n$. We call this Pert-Toeplitz.
- Not an unusual restriction: Jacobi polynomials measure of orthogonality is

$$
\mu(x)=\left.m_{\alpha, \beta}(1-x)^{\alpha}(1+x)^{\beta}\right|_{[-1,1]},
$$

where $m_{\alpha, \beta}$ is a normalisation constant.

The Jacobi Operators in This Talk

- For this talk we restrict to the case where there exists n such that $\alpha_{k}=0, \beta_{k-1}=\frac{1}{2}$ for all $k>n$. We call this Pert-Toeplitz.
- Not an unusual restriction: Jacobi polynomials measure of orthogonality is

$$
\mu(x)=\left.m_{\alpha, \beta}(1-x)^{\alpha}(1+x)^{\beta}\right|_{[-1,1]},
$$

where $m_{\alpha, \beta}$ is a normalisation constant. Jacobi operator has:

$$
\begin{aligned}
\alpha_{k} & =\frac{\beta^{2}-\alpha^{2}}{(2 k+\alpha+\beta)(2 k+\alpha+\beta+2)} \rightarrow 0 \\
\beta_{k-1} & =2 \sqrt{\frac{k(k+\alpha)(k+\beta)(k+\alpha+\beta)}{(2 k+\alpha+\beta-1)(2 k+\alpha+\beta)^{2}(2 k+\alpha+\beta+1)}} \rightarrow \frac{1}{2}
\end{aligned}
$$

Pert-Toeplitz Restriction

- In this talk: $J-\Delta$ is finite rank.

Pert-Toeplitz Restriction

- In this talk: $J-\Delta$ is finite rank.
- The case where $J-\Delta$ is trace class was studied by Killip and Simon in their 2003 Annals paper Sum rules for Jacobi matrices and their applications to spectral theory.

Pert-Toeplitz Restriction

- In this talk: $J-\Delta$ is finite rank.
- The case where $J-\Delta$ is trace class was studied by Killip and Simon in their 2003 Annals paper Sum rules for Jacobi matrices and their applications to spectral theory.
- Other relevant authors studying these are Geronimus, Nevai, Chihara, Van Assche.

Pert-Toeplitz Restriction

- In this talk: $J-\Delta$ is finite rank.
- The case where $J-\Delta$ is trace class was studied by Killip and Simon in their 2003 Annals paper Sum rules for Jacobi matrices and their applications to spectral theory.
- Other relevant authors studying these are Geronimus, Nevai, Chihara, Van Assche.
- Our results extend to trace class too.

Explicit example

The example I will use throughout the talk to help explain is

$$
J_{\text {ex }}=\left[\begin{array}{ccccc}
\frac{3}{4} & 1 & & & \\
1 & -\frac{1}{4} & \frac{3}{4} & & \\
& \frac{3}{4} & \frac{1}{2} & \frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right]=\Delta+\left[\begin{array}{ccccc}
\frac{3}{4} & \frac{1}{2} & & & \\
\frac{1}{2} & -\frac{1}{4} & \frac{1}{4} & & \\
& \frac{1}{4} & \frac{1}{2} & 0 & \\
& & 0 & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right]
$$

Explicit example

The example I will use throughout the talk to help explain is

$$
J_{\mathrm{ex}}=\left[\begin{array}{ccccc}
\frac{3}{4} & 1 & & & \\
1 & -\frac{1}{4} & \frac{3}{4} & & \\
& \frac{3}{4}^{4} & \frac{1}{2} & \frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right]=\Delta+\left[\begin{array}{ccccc}
\frac{3}{4} & \frac{1}{2} & & & \\
\frac{1}{2} & -\frac{1}{4} & \frac{1}{4} & & \\
& \frac{1}{4} & \frac{1}{2} & 0 & \\
& & 0 & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right]
$$

1.5

Computing the Resolvent

- How do we compute the resolvent $G(\lambda)=e_{0}^{\top}(J-\lambda)^{-1} e_{0}$?

Computing the Resolvent

- How do we compute the resolvent $G(\lambda)=e_{0}^{\top}(J-\lambda)^{-1} e_{0}$?

$$
\left[\begin{array}{ccccc}
0 & \frac{1}{2} & & & \\
\frac{1}{2} & 0 & \frac{1}{2} & & \\
& \frac{1}{2} & 0 & \frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
\frac{3}{4} & 1 & & & \\
1 & -\frac{1}{4} & \frac{3}{4} & & \\
& \frac{3}{4} & \frac{1}{2} & \frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right]
$$

Computing the Resolvent

- How do we compute the resolvent $G(\lambda)=e_{0}^{\top}(J-\lambda)^{-1} e_{0}$?

$$
\left[\begin{array}{ccccc}
0 & \frac{1}{2} & & & \\
\frac{1}{2} & 0 & \frac{1}{2} & & \\
& \frac{1}{2} & 0 & \frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
\frac{3}{4} & 1 & & & \\
1 & -\frac{1}{4} & \frac{3}{4} & & \\
& \frac{3}{4}^{4} & \frac{1}{2} & \frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right]
$$

- $G_{\Delta}(\lambda)=2 \sqrt{\lambda+1} \sqrt{\lambda-1}-2 \lambda \rightarrow G(\lambda)=$?

Connection Coefficients

- Key idea: construct the connection ceofficients. Let P_{k} be the orthogonal polynomials for J and suppose

$$
f(x)=\sum_{k=0}^{\infty} a_{k}^{J} P_{k}(x)=\sum_{k=0}^{\infty} a_{k}^{\Delta} U_{k}(x)
$$

Connection Coefficients

- Key idea: construct the connection ceofficients. Let P_{k} be the orthogonal polynomials for J and suppose

$$
f(x)=\sum_{k=0}^{\infty} a_{k}^{J} P_{k}(x)=\sum_{k=0}^{\infty} a_{k}^{\Delta} U_{k}(x)
$$

Then

$$
\left[\begin{array}{c}
a_{0}^{\Delta} \\
a_{1}^{\Delta} \\
a_{2}^{\Delta} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
c_{00} & c_{01} & c_{02} & c_{03} & \cdots \\
0 & c_{11} & c_{12} & c_{13} & \cdots \\
0 & 0 & c_{22} & c_{23} & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{0}^{J} \\
a_{1}^{J} \\
a_{2}^{J} \\
\vdots
\end{array}\right]
$$

Connection Coefficients

- Key idea: construct the connection ceofficients. Let P_{k} be the orthogonal polynomials for J and suppose

$$
f(x)=\sum_{k=0}^{\infty} a_{k}^{J} P_{k}(x)=\sum_{k=0}^{\infty} a_{k}^{\Delta} U_{k}(x)
$$

Then

$$
\left[\begin{array}{c}
a_{0}^{\Delta} \\
a_{1}^{\Delta} \\
a_{2}^{\Delta} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
c_{00} & c_{01} & c_{02} & c_{03} & \cdots \\
0 & c_{11} & c_{12} & c_{13} & \cdots \\
0 & 0 & c_{22} & c_{23} & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{0}^{J} \\
a_{1}^{J} \\
a_{2}^{J} \\
\vdots
\end{array}\right]
$$

- C^{\top} changes basis from U_{k} to P_{k} :

$$
\left[\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
P_{2}(x) \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
c_{00} & 0 & 0 & 0 & \cdots \\
c_{01} & c_{11} & 0 & 0 & \cdots \\
c_{02} & c_{12} & c_{22} & 0 & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
U_{0}(x) \\
U_{1}(x) \\
U_{2}(x) \\
\vdots
\end{array}\right]
$$

Connection Coefficients

Connection Coefficients

- Alternative formulation:

$$
\begin{equation*}
C J-\Delta C=0, \quad C e_{0}=e_{0} \tag{1}
\end{equation*}
$$

Connection Coefficients

- Alternative formulation:

$$
\begin{equation*}
C J-\Delta C=0, \quad C e_{0}=e_{0} \tag{1}
\end{equation*}
$$

- This looks like the wave equation:

$$
\begin{equation*}
\partial_{x}^{2} C(x, t)-\partial_{t}^{2} C(x, t)=0, \quad C(x, 0)=\delta_{0}(x), \text { etc } \ldots \tag{2}
\end{equation*}
$$

Connection Coefficients

- Alternative formulation:

$$
\begin{equation*}
C J-\Delta C=0, \quad C e_{0}=e_{0} \tag{1}
\end{equation*}
$$

- This looks like the wave equation:

$$
\begin{equation*}
\partial_{x}^{2} C(x, t)-\partial_{t}^{2} C(x, t)=0, \quad C(x, 0)=\delta_{0}(x), \text { etc } \ldots \tag{2}
\end{equation*}
$$

- Entries of C are computable by finite difference methods.

Connection Coefficients

- Alternative formulation:

$$
\begin{equation*}
C J-\Delta C=0, \quad C e_{0}=e_{0} \tag{1}
\end{equation*}
$$

- This looks like the wave equation:

$$
\begin{equation*}
\partial_{x}^{2} C(x, t)-\partial_{t}^{2} C(x, t)=0, \quad C(x, 0)=\delta_{0}(x), \text { etc } \ldots \tag{2}
\end{equation*}
$$

- Entries of C are computable by finite difference methods. First column is initial data.

Connection Coefficients

- Alternative formulation:

$$
\begin{equation*}
C J-\Delta C=0, \quad C e_{0}=e_{0} \tag{1}
\end{equation*}
$$

- This looks like the wave equation:

$$
\begin{equation*}
\partial_{x}^{2} C(x, t)-\partial_{t}^{2} C(x, t)=0, \quad C(x, 0)=\delta_{0}(x), \text { etc } \ldots \tag{2}
\end{equation*}
$$

- Entries of C are computable by finite difference methods. First column is initial data. Information propagates to the right like a wave.

Connection Coefficients

$$
C_{\text {ex }}=\left[\begin{array}{cccccccc}
1 & -0.75 & -1.25 & 2.04 & -0.08 & -0.33 & 0 & \cdots \\
0 & 0.5 & -0.33 & -1.33 & 1.71 & -0.08 & -0.33 & \ddots \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & \ddots \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & \ddots \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 & \ddots \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 & \ddots \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33 & \ddots \\
& & & & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

Connection Coefficients

$$
C_{\mathrm{ex}}=\left[\begin{array}{cccccccc}
1 & -0.75 & -1.25 & 2.04 & -0.08 & -0.33 & 0 & \cdots \\
0 & 0.5 & -0.33 & -1.33 & 1.71 & -0.08 & -0.33 & \ddots \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & \ddots \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & \ddots \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 & \ddots \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 & \ddots \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33 & \ddots \\
& & & & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

When J is Pert-Toeplitz, so is C !

Connection Coefficients

$$
C_{\mathrm{ex}}=\left[\begin{array}{cccccccc}
1 & -0.75 & -1.25 & 2.04 & -0.08 & -0.33 & 0 & \cdots \\
0 & 0.5 & -0.33 & -1.33 & 1.71 & -0.08 & -0.33 & \ddots \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & \ddots \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & \ddots \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 & \ddots \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 & \ddots \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33 & \ddots \\
& & & & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

When J is Pert-Toeplitz, so is C !
$C_{\mathrm{ex}}=\left[\begin{array}{ccccccc}0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 & 0 \\ 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 \\ 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 \\ 0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 \\ 0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 \\ 0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.33\end{array}\right]+\left[\begin{array}{cccccc}0.66 & -0.09 & 0.08 & 0.33 & 0 & 0 \\ 0 & 0.16 & 0.33 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Formula for Resolvent Using C

Just using $C J-\Delta C=0$ and $C e_{0}=e_{0}$, we have:

Formula for Resolvent Using C

Just using $C J-\Delta C=0$ and $C e_{0}=e_{0}$, we have:

$$
\begin{aligned}
G_{\Delta}(\lambda) & =e_{0}^{\top}(\Delta-\lambda)^{-1} e_{0} \\
& =e_{0}^{\top}(\Delta-\lambda)^{-1} C e_{0} \quad\left(C e_{0}=e_{0}\right) \\
& =e_{0}^{\top} C(J-\lambda)^{-1} e_{0}
\end{aligned}
$$

Formula for Resolvent Using C

Just using $C J-\Delta C=0$ and $C e_{0}=e_{0}$, we have:

$$
\begin{aligned}
G_{\Delta}(\lambda) & =e_{0}^{\top}(\Delta-\lambda)^{-1} e_{0} \\
& =e_{0}^{\top}(\Delta-\lambda)^{-1} C e_{0} \quad\left(C e_{0}=e_{0}\right) \\
& =e_{0}^{\top} C(J-\lambda)^{-1} e_{0} \\
& =\left(\sum_{k=0}^{2 n-1} c_{0 k} e_{k}^{\top}\right)(J-\lambda)^{-1} e_{0}
\end{aligned}
$$

Formula for Resolvent Using C

Just using $C J-\Delta C=0$ and $C e_{0}=e_{0}$, we have:

$$
\begin{aligned}
G_{\Delta}(\lambda) & =e_{0}^{\top}(\Delta-\lambda)^{-1} e_{0} \\
& =e_{0}^{\top}(\Delta-\lambda)^{-1} C e_{0} \quad\left(C e_{0}=e_{0}\right) \\
& =e_{0}^{\top} C(J-\lambda)^{-1} e_{0} \\
& =\left(\sum_{k=0}^{2 n-1} c_{0 k} e_{k}^{\top}\right)(J-\lambda)^{-1} e_{0} \\
& =\int p(x)(x-\lambda)^{-1} \mathrm{~d} \mu(x) \quad\left(\text { where } p(x)=\sum_{k=0}^{2 n-1} c_{0 k} P_{k}(x)\right)
\end{aligned}
$$

Formula for Resolvent Using C

Just using $C J-\Delta C=0$ and $C e_{0}=e_{0}$, we have:

$$
\begin{aligned}
G_{\Delta}(\lambda) & =e_{0}^{\top}(\Delta-\lambda)^{-1} e_{0} \\
& =e_{0}^{\top}(\Delta-\lambda)^{-1} C e_{0} \quad\left(C e_{0}=e_{0}\right) \\
& =e_{0}^{\top} C(J-\lambda)^{-1} e_{0} \\
& =\left(\sum_{k=0}^{2 n-1} c_{0 k} e_{k}^{\top}\right)(J-\lambda)^{-1} e_{0} \\
& =\int p(x)(x-\lambda)^{-1} \mathrm{~d} \mu(x) \quad\left(\text { where } p(x)=\sum_{k=0}^{2 n-1} c_{0 k} P_{k}(x)\right) \\
& =\int(p(x)-p(\lambda))(x-\lambda)^{-1} \mathrm{~d} \mu(x)+p(\lambda) \int(x-\lambda)^{-1} \mathrm{~d} \mu(x) \\
& =p^{\mu}(\lambda) \quad+p(\lambda) G(\lambda)
\end{aligned}
$$

Formula for Resolvent Using C

Just using $C J-\Delta C=0$ and $C e_{0}=e_{0}$, we have:

$$
\begin{aligned}
G_{\Delta}(\lambda) & =e_{0}^{\top}(\Delta-\lambda)^{-1} e_{0} \\
& =e_{0}^{\top}(\Delta-\lambda)^{-1} C e_{0} \quad\left(C e_{0}=e_{0}\right) \\
& =e_{0}^{\top} C(J-\lambda)^{-1} e_{0} \\
& =\left(\sum_{k=0}^{2 n-1} c_{0 k} e_{k}^{\top}\right)(J-\lambda)^{-1} e_{0} \\
& =\int p(x)(x-\lambda)^{-1} \mathrm{~d} \mu(x) \quad\left(\text { where } p(x)=\sum_{k=0}^{2 n-1} c_{0 k} P_{k}(x)\right) \\
& =\int(p(x)-p(\lambda))(x-\lambda)^{-1} \mathrm{~d} \mu(x)+p(\lambda) \int(x-\lambda)^{-1} \mathrm{~d} \mu(x) \\
& =\quad p^{\mu}(\lambda) \quad+p(\lambda) G(\lambda) \\
& \quad(\mu \text {-derivative of } p) \quad(\text { we want } G)
\end{aligned}
$$

A Formula for the Resolvent

$$
G(\lambda)=\frac{G_{\Delta}(\lambda)-p^{\mu}(\lambda)}{p(\lambda)}=\frac{2 \sqrt{\lambda+1} \sqrt{\lambda-1}-2 \lambda-p^{\mu}(\lambda)}{p(\lambda)}
$$

A Formula for the Resolvent

$$
G(\lambda)=\frac{G_{\Delta}(\lambda)-p^{\mu}(\lambda)}{p(\lambda)}=\frac{2 \sqrt{\lambda+1} \sqrt{\lambda-1}-2 \lambda-p^{\mu}(\lambda)}{p(\lambda)}
$$

- Dirac points of μ (discrete spectrum of J) are at the poles of G, which must be roots of p.

A Formula for the Resolvent

$$
G(\lambda)=\frac{G_{\Delta}(\lambda)-p^{\mu}(\lambda)}{p(\lambda)}=\frac{2 \sqrt{\lambda+1} \sqrt{\lambda-1}-2 \lambda-p^{\mu}(\lambda)}{p(\lambda)}
$$

- Dirac points of μ (discrete spectrum of J) are at the poles of G, which must be roots of p.

A Formula for the Resolvent

$$
G(\lambda)=\frac{G_{\Delta}(\lambda)-p^{\mu}(\lambda)}{p(\lambda)}=\frac{2 \sqrt{\lambda+1} \sqrt{\lambda-1}-2 \lambda-p^{\mu}(\lambda)}{p(\lambda)}
$$

- Dirac points of μ (discrete spectrum of J) are at the poles of G, which must be roots of p.

Toeplitz Symbol of C

- Remember, in our running example, C is Toeplitz plus finite.

$$
C_{\mathrm{ex}}=\left[\begin{array}{ccccccc}
0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 & 0 \\
0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33
\end{array}\right]+\left[\begin{array}{ccccc}
0.66 & -0.09 & 0.08 & 0.33 & 0 \\
0 & 0.16 & 0.33 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

Toeplitz Symbol of C

- Remember, in our running example, C is Toeplitz plus finite.

$$
C_{\mathrm{ex}}=\left[\begin{array}{ccccccc}
0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 & 0 \\
0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33
\end{array}\right]+\left[\begin{array}{ccccc}
0.66 & -0.09 & 0.08 & 0.33 & 0 \\
0 & 0.16 & 0.33 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

- The symbol of the Toeplitz matrix is $c(z)=\sum_{k=0}^{5} t_{k} z^{k}$.

Toeplitz Symbol of C

- Remember, in our running example, C is Toeplitz plus finite.

$$
C_{\mathrm{ex}}=\left[\begin{array}{ccccccc}
0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 & 0 \\
0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33
\end{array}\right]+\left[\begin{array}{ccccc}
0.66 & -0.09 & 0.08 & 0.33 & 0 \\
0 & 0.16 & 0.33 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

- The symbol of the Toeplitz matrix is $c(z)=\sum_{k=0}^{5} t_{k} z^{k}$. It "lives" naturally in the unit disc \mathbb{D}.

Toeplitz Symbol of C

- Remember, in our running example, C is Toeplitz plus finite.

$$
C_{\mathrm{ex}}=\left[\begin{array}{ccccccc}
0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 & 0 \\
0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33
\end{array}\right]+\left[\begin{array}{ccccc}
0.66 & -0.09 & 0.08 & 0.33 & 0 \\
0 & 0.16 & 0.33 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

- The symbol of the Toeplitz matrix is $c(z)=\sum_{k=0}^{5} t_{k} z^{k}$. It "lives" naturally in the unit disc \mathbb{D}.
- Natural change of coordinates from \mathbb{D} to $\mathbb{C} \backslash[-1,1]$ is Joukowski map, $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$.

Toeplitz Symbol of C

- Remember, in our running example, C is Toeplitz plus finite.

$$
C_{\mathrm{ex}}=\left[\begin{array}{ccccccc}
0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 & 0 \\
0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33
\end{array}\right]+\left[\begin{array}{ccccc}
0.66 & -0.09 & 0.08 & 0.33 & 0 \\
0 & 0.16 & 0.33 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

- The symbol of the Toeplitz matrix is $c(z)=\sum_{k=0}^{5} t_{k} z^{k}$. It "lives" naturally in the unit disc \mathbb{D}.
- Natural change of coordinates from \mathbb{D} to $\mathbb{C} \backslash[-1,1]$ is Joukowski map, $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$.
- (Awesome) Lemma: $p(\lambda(z))=c(z) c\left(z^{-1}\right)$.

Toeplitz Symbol of C

- Remember, in our running example, C is Toeplitz plus finite.

$$
C_{\mathrm{ex}}=\left[\begin{array}{ccccccc}
0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 & 0 \\
0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 & -0.33 \\
0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 & -0.08 \\
0 & 0 & 0 & 0.33 & -0.66 & -1.33 & 1.71 \\
0 & 0 & 0 & 0 & 0.33 & -0.66 & -1.33 \\
0 & 0 & 0 & 0 & 0 & 0.33 & -0.66 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.33
\end{array}\right]+\left[\begin{array}{ccccc}
0.66 & -0.09 & 0.08 & 0.33 & 0 \\
0 & 0.16 & 0.33 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

- The symbol of the Toeplitz matrix is $c(z)=\sum_{k=0}^{5} t_{k} z^{k}$. It "lives" naturally in the unit disc \mathbb{D}.
- Natural change of coordinates from \mathbb{D} to $\mathbb{C} \backslash[-1,1]$ is Joukowski map, $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$.
- (Awesome) Lemma: $p(\lambda(z))=c(z) c\left(z^{-1}\right)$.
- $\{$ roots of $c\} \longleftrightarrow\{$ roots of $p\}$.

Formula for Resolvent in the Unit Disc

- The Joukowski map $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$ also simplifies the resolvent:

Formula for Resolvent in the Unit Disc

- The Joukowski map $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$
G(\lambda(z))=-\frac{c_{\mu}(z)}{c(z)}
$$

Formula for Resolvent in the Unit Disc

- The Joukowski map $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$
G(\lambda(z))=-\frac{c_{\mu}(z)}{c(z)}
$$

- Here $c_{\mu}(z)$ is also a Toeplitz symbol of a connection coefficients matrix, but a modified one.

Formula for Resolvent in the Unit Disc

- The Joukowski map $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$
G(\lambda(z))=-\frac{c_{\mu}(z)}{c(z)}
$$

- Here $c_{\mu}(z)$ is also a Toeplitz symbol of a connection coefficients matrix, but a modified one.
- The roots of $c_{\mu}(z)$ and $c(z)$ do not intersect in the unit disc.

Formula for Resolvent in the Unit Disc

- The Joukowski map $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$
G(\lambda(z))=-\frac{c_{\mu}(z)}{c(z)}
$$

- Here $c_{\mu}(z)$ is also a Toeplitz symbol of a connection coefficients matrix, but a modified one.
- The roots of $c_{\mu}(z)$ and $c(z)$ do not intersect in the unit disc. Hence the set

$$
\left\{\lambda\left(z_{1}\right), \lambda\left(z_{2}\right), \ldots, \lambda\left(z_{r}\right): c\left(z_{i}\right)=0, z_{i} \in \mathbb{D}\right\}
$$

decribes all the poles of G, and hence all the eigenvalues of J.

Formula for Resolvent in the Unit Disc

- The Joukowski map $\lambda(z)=\frac{1}{2}\left(z+z^{-1}\right)$ also simplifies the resolvent:
- For $z \in \mathbb{D}$,

$$
G(\lambda(z))=-\frac{c_{\mu}(z)}{c(z)}
$$

- Here $c_{\mu}(z)$ is also a Toeplitz symbol of a connection coefficients matrix, but a modified one.
- The roots of $c_{\mu}(z)$ and $c(z)$ do not intersect in the unit disc. Hence the set

$$
\left\{\lambda\left(z_{1}\right), \lambda\left(z_{2}\right), \ldots, \lambda\left(z_{r}\right): c\left(z_{i}\right)=0, z_{i} \in \mathbb{D}\right\}
$$

decribes all the poles of G, and hence all the eigenvalues of J.

- The roots of $c(z)$ outside \mathbb{D} correspond to roots of p that get cancelled out.

Resolvent in the Unit Disc

Formula for the Spectral Measure

Connection coefficients matrix C gives us a formula for the spectral measure of J (in the case where J is pert-Toeplitz):

$$
\mu(x)=\frac{1}{p(x)} \mu_{\Delta}(x)+\sum_{i=1}^{r} \frac{\left(z_{j}-z_{j}^{-1}\right)^{2}}{z_{j} c^{\prime}\left(z_{j}\right) c\left(z_{j}^{-1}\right)} \delta_{\lambda\left(z_{i}\right)}(x)
$$

where

- $p(x)=\sum_{i=0}^{2 n-1} c_{0 k} P_{k}(x)=\sum_{i=0}^{2 n-1}\left(C C^{\top}\right)_{k 0} U_{k}(x)$
- z_{i} are the roots of the Toeplitz symbol c in \mathbb{D}

Formula for the Spectral Measure

Connection coefficients matrix C gives us a formula for the spectral measure of J (in the case where J is pert-Toeplitz):

$$
\mu(x)=\frac{1}{p(x)} \mu_{\Delta}(x)+\sum_{i=1}^{r} \frac{\left(z_{j}-z_{j}^{-1}\right)^{2}}{z_{j} c^{\prime}\left(z_{j}\right) c\left(z_{j}^{-1}\right)} \delta_{\lambda\left(z_{i}\right)}(x)
$$

where

- $p(x)=\sum_{i=0}^{2 n-1} c_{0 k} P_{k}(x)=\sum_{i=0}^{2 n-1}\left(C C^{\top}\right)_{k 0} U_{k}(x)$
- z_{i} are the roots of the Toeplitz symbol c in $\mathbb{D}(c$ is degree $2 n-1)$

Where are we going?

- Where are we going with this?

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
- So far we have reduced Pert-Toeplitz Jacobi to canonical form.

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
- So far we have reduced Pert-Toeplitz Jacobi to canonical form.
- Can we do other types of Jacobi operators?

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
- So far we have reduced Pert-Toeplitz Jacobi to canonical form.
- Can we do other types of Jacobi operators?
- Can we tridiagonalise a banded operator?

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
- So far we have reduced Pert-Toeplitz Jacobi to canonical form.
- Can we do other types of Jacobi operators?
- Can we tridiagonalise a banded operator?
- Can we deal with lower Hessenberg?

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
- So far we have reduced Pert-Toeplitz Jacobi to canonical form.
- Can we do other types of Jacobi operators?
- Can we tridiagonalise a banded operator?
- Can we deal with lower Hessenberg?
- Non-self-adjoint cases?

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
- So far we have reduced Pert-Toeplitz Jacobi to canonical form.
- Can we do other types of Jacobi operators?
- Can we tridiagonalise a banded operator?
- Can we deal with lower Hessenberg?
- Non-self-adjoint cases? (finite section often fails)

Where are we going?

- Where are we going with this?
- Usually, spectra are computed using finite sections, (truncations).
- For banded self-adjoint operators this "works"
- So far we have reduced Pert-Toeplitz Jacobi to canonical form.
- Can we do other types of Jacobi operators?
- Can we tridiagonalise a banded operator?
- Can we deal with lower Hessenberg?
- Non-self-adjoint cases? (finite section often fails)
- The aim is alternatives to finite section method.

