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Motivation: Time-dependent PDEs

u € C*([0,00); HY(R)), te[0,00), x€R.

o Diffusion:
gu _ 9 a(t,x )@ a>0
ot~ ox |70 Wax) =
@ Semi-classical Schrodinger:
du 202

2 2P e, 0<e<l, Tnag(V) =0

@ Nonlinear advection:

ou Ou
- = . <
i aX+f(u), v-f(v) <0
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Motivation: Time-dependent PDEs

u € C*([0,00); HY(R)), te[0,00), x€R.

Diffusion:

ou 0 ou
- = - >
5 = Bx [a(t,x, u)ax] ) a>0

@ Semi-classical Schrodinger:

18@_ 282 + V(t, x, u)u, 0<ex1l, Imag(V)=0
ot 92 ’ sV =
@ Nonlinear advection:
ou Ou
T F . f <
8t ax (U), v (V) 0

o Common property?
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Motivation: Time-dependent PDEs

u € C*([0,00); HY(R)), te[0,00), x€R.

Diffusion:

ou 0 ou
- = - >
5 = Bx [a(t,x, u)ax] ) a>0

@ Semi-classical Schrodinger:

18@_ 282 + V(t, x, u)u, 0<e<1, Imag(V)=0
ot ox? , T

@ Nonlinear advection:
ou  Ou
Jt  Ox
o Common property? L, stability:
d [

I lu(t,x)|>dx < 0, for all t > 0.
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L, stability of these PDEs

d 2 _ Q 2 _ 7@
a/|u(t,x)| dx—/at u(t, )| dx—2Re/u(t,x)at(t,x)dx
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L, stability of these PDEs

d 2 _ Q 2 _ 7@
a/|u(t,x)| dx—/at u(t, )| dx—2Re/u(t,x)at(t,x)dx

e Diffusion:

% |u|? dx 2/700 u% (a(t,x, u)gi> dx

h o ou\>
= —2/ a(t,x, u) <8) dx <0
oo X
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L, stability of these PDEs

ou

d 2 _ g 2 _ Y
a/|u(t,x)| dx—/at u(t, )| dx—2Re/u(t,x)at(t,x)dx

e Diffusion:

d oo

dt

@ Schrodinger:

i/‘”
at )

— 00

lul? dx

|u|? dx

<0 ou
2/700 ups (a(t,x, u)(%(> dx
oo 2
= —2[ma(t,x,u) <gi) dx <0

2Re/ooﬁ i@—i_1V(txu)u dx
N B

— 00

o0
—2Re/ ie Ou
—o0

2
Fx +ie7V(t, x, u)|ul* dx = 0
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Numerical solution of these PDEs

@ Suppose we want a numerical solution to the diffusion equation
Oru = 0y(a(x) - Oxu).
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Numerical solution of these PDEs

@ Suppose we want a numerical solution to the diffusion equation
Oru = 0y(a(x) - Oxu).
@ Obtain a semi-discretised PDE:

u'(t) = DADu(t), u(0)=ugcCN
o E.g. finite difference method on a grid xi, x, ..., xy
u(t) = (u(t,x1), u(t,x),...,u(t,xy))" € CN

@ D is a matrix encoding a finite-difference approximation to the partial
derivative O.

e Ais a diagonal matrix with entries (a(x1), ..., a(xy)).
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Numerical solution of these PDEs

@ Suppose we want to approximate the solution to the diffusion equation
Oru = Oy(a(x) - Oxu).
@ Obtain a semi-discretised PDE:
u'(t) = DADu(t), u(0)=ug € ¥,

e E.g. spectral method for a basis ® = {¢,}necz, of La(R)

oo

u(t, ) = Z “n(t)sﬁn

n=0

@ D and A are infinite-dimensional matrices encoding:

L) = Dejei(x),  alx)er(x) =D Ajpi(x)
j=0 j=0
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(5 stability of (semi-)discretised PDEs

o Diffusion:
u'(t) = DADu(t)
dlul|

T 2u’u’ = 2u"DADu = 2(D"u)A(Du),
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(5 stability of (semi-)discretised PDEs

o Diffusion:
u'(t) = DADu(t)
dlul|
dt
@ Nonlinear advection:

=2u’u' = 2u"DADu = 2(D"u)A(Du),

u'(t) = Du(t) + f(u(t))
d|ul |7
dt

=2u"u =2u"Du + 2u"f(u) < 2u"Du,
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(5 stability of (semi-)discretised PDEs

o Diffusion:
u'(t) = DADu(t)
dlul|
dt
@ Nonlinear advection:

=2u’u' = 2u"DADu = 2(D"u)A(Du),

u'(t) = Du(t) + f(u(t))
dull?
dt
@ We want D to be a skew-symmetric matrix.

=2u"u =2u"Du + 2u"f(u) < 2u"Du,
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(5 stability of (semi-)discretised PDEs

o Diffusion:
u'(t) = DADu(t)
dlul|
dt
@ Nonlinear advection:

=2u’u' = 2u"DADu = 2(D"u)A(Du),

u'(t) = Du(t) + f(u(t))
d|ul |7
dt

@ We want D to be a skew-symmetric matrix. Differential operator is
skew-Hermitian.

=2u"u =2u"Du + 2u"f(u) < 2u"Du,
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(5 stability of (semi-)discretised PDEs

o Diffusion:
u'(t) = DADu(t)
dlul|
dt
@ Nonlinear advection:

=2u’u' = 2u"DADu = 2(D"u)A(Du),

u'(t) = Du(t) + f(u(t))
d|ul |7
dt

@ We want D to be a skew-symmetric matrix. Differential operator is
skew-Hermitian.

Geometric Numerical Integration

The field of research on discretisation of differential equations which respects
qualitative properties of the analytical solution (see Hairer-Lubich-Wanner 2006)

=2u"u =2u"Du + 2u"f(u) < 2u"Du,
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The joy and pain of skew-symmetry

@ The simplest second-order finite difference scheme gives

0O 1 0 --- 0
. -1 0 :

D= _——
2Ax | 0 0
o0 1
0 0 -1 0
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The joy and pain of skew-symmetry

@ The simplest second-order finite difference scheme gives

0O 1 0 --- 0
. -1 0 :

D= _——
2Ax | 0 0
o0 1
0 0 -1 0

@ Looking good!
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The joy and pain of skew-symmetry

@ The simplest second-order finite difference scheme gives

0O 1 0 --- 0
. -1 0 :
D= _——
2Ax | 0 0
oo 01
0 -~ 0 -1 0

@ Looking good! This is the highest order skew-symmetric differentiation
matrix on an equispaced grid (Iserles 2014)
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The joy and pain of skew-symmetry

@ The simplest second-order finite difference scheme gives

0O 1 0 --- 0
. -1 0
D= _——
2Ax | 0 0
oo 01
0 -~ 0 -1 0

@ Looking good! This is the highest order skew-symmetric differentiation
matrix on an equispaced grid (Iserles 2014)

@ Higher-order skew-symmetric differentiation matrices on special grids are
possible but complicated (Hairer-Iserles 2016,2017).
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Known example: Fourier spectral methods

Take the Fourier basis:

1 Cos nx sin nx
po(x) = Wa Pan(x) = 2 Pant1(x) = Tz " eN

— note that the basis is orthonormal.
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Known example: Fourier spectral methods

Take the Fourier basis:

1 Cos nx sin nx
po(x) = W’ Pan(x) = 20 Pant1(x) = 20 neN

— note that the basis is orthonormal. The differentiation matrix is

0j] 0 0 0 0 0 O

0l 0 1]0 0 0 0O
0| -1 0|0 0 0 O
0 0 0|0 2|0 0
D=0 0 0|-2 0|0 0
0 00 0 0|/0 3
0 0 0 0 0/-30
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Known example: Fourier spectral methods

Take the Fourier basis:

1 Cos nx sin nx
po(x) = W’ Pan(x) = 20 Pant1(x) = 20 neN

— note that the basis is orthonormal. The differentiation matrix is

0j] 0 0 0 0 0 O

0l 0 1]0 0 0 0O
0| -1 0|0 0 0 O
0 0 0|0 2|0 0
D=0 0 0|-2 0|0 0
0 00 0 0|/0 3
0 0 0 0 0/-30

For periodic boundary conditions only.
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Known example: Hermite spectral methods

@ Hermite functions are familiar in mathematical physics:

_ (_1)n —x%/2
QOn(X) = We Hn(X), ne Z+, X € R,
where H,, is the nth Hermite polynomial.
@ Orthonormal basis for L(R)
@ Uniformly bounded, and smooth

@ Eigenfunctions of the Fourier transform

Hermite F
T T
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Known example: Hermite spectral methods

Hermite functions obey the ODE

eo(x) = —\/Ewl(XL
Pn(x) = \/Z%l(x)—ﬁ%ﬂ(x), neN.

In other words,

0
0
|

a skew-symmetric, tridiagonal differentiation matrix.
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Nonstandard example: Spherical Bessel Functions

Solutions to the ODE XZS}Z/ +2x% + (x2 = n(n+1))y =0, for each n € Z, are
the spherical Bessel functions J,,(x)

o(x) = sm(x) () = sin(x) cos(x)’ in(x) = ( 3 1) M_3cos(x).

x2 X x2 X X2
Writing ¢n(x) = y/2Z2j,(x), one can obtain the known result
n n+1
P(x) = = Pn-1(x) + Pn1(x)

(2n—1)(2n+1) (2n+1)(2n+ 3)
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Nonstandard example: Spherical Bessel Functions

Solutions to the ODE XZS}Z/ +2x% + (x2 = n(n+1))y =0, for each n € Z, are
the spherical Bessel functions J,,(x)

o(x) = sm(x) () = sin(x) cos(x)’ in(x) = ( 3 1) M_3cos(x).

x2 X x2 X X2
Writing ¢n(x) = y/2Z2j,(x), one can obtain the known result
n n+1
P(x) = = Pn-1(x) + Pn1(x)

(2n—1)(2n+1) (2n+1)(2n+ 3)

ical Bessel
T T
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Aims of the talk

Find a system of functions ® = {¢,}cz,, and nonzero scalars {b,}nez, such that

po(x) = bopi(x),
@;(X) = _bn—l(pn—l(X)'i_bncpn-k—l(X)a neN.

® has real, skew-symmetric, tridiagonal irreducible differentiation matrix
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Aims of the talk

Find a system of functions ® = {¢,}cz,, and nonzero scalars {b,}nez, such that

po(x) = bopi(x),
SDZ(X) = _bn—lgan—l(x)'i_bn(pn-!-l(x)a neN.

® has real, skew-symmetric, tridiagonal irreducible differentiation matrix

Determine systems which are also orthonormal in Ly(R):

u(x) =3 wepr(x) = [ulle, = ullL,m) (1)

n=0
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Aims of the talk

Find a system of functions ® = {¢,}cz,, and nonzero scalars {b,}nez, such that

po(x) = bopi(x),
Oh(x) = —bp_19n_1(x) + bopnii(x), neN.

® has real, skew-symmetric, tridiagonal irreducible differentiation matrix

Determine systems which are also orthonormal in Ly(R):

u(x) =3 wepr(x) = [ulle, = ullL,m) (1)

n=0

Our continuing mission: to explore strange new bases, to seek out new methods
and new special functions, to boldly go...
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Elementary construction

Let g € C*(R) and {bp}necz, be given.

1
n=20: v1(x) = b—onpg(x),
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Elementary construction

Let g € C*(R) and {bp}necz, be given.
1 /
n=0: v1(x) = b—npo(x),
0

P=1: a(x) = bil[go;(x) 4 bogo(x)] = ﬁ[bésoo(x) + ()]
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Elementary construction

Let g € C*(R) and {bp}necz, be given.
1 /
n=0: v1(x) = b—npo(x),
0
1 1
n=1:  @ax) = —[£1(x) + bowo(x)] = ——[bFo(x) + ¢5 (x)],
by bo by

"

n=2: 3(x)= b%[w’z(X) + brpa(x)] = bobﬁ[(bﬁ +b7)0(x) + 95’ ()]
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Elementary construction

Let g € C*(R) and {bp}necz, be given.
1 /
n=0: v1(x) = b—npo(x),
0
1 1
n=1:  @ax) = —[£1(x) + bowo(x)] = ——[bFo(x) + ¢5 (x)],
by bo by

- [(65 + b7)h(x) + 5’ ()]

1., 1
n=2: p3(x) = b72[¢2(x) o)) = bo by by

and so on. Easy induction confirms that

Ln/2]
(n— 2[
@"(X) bob]_ Z Qp 580 X)’ ne N’
2 n
Qpy10 =1, Qnp1e = bp_jop_1p-1+ane, £=1,..., bJ .
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Elementary construction

Let g € C*(R) and {bp}necz, be given.
1 /
n=0: v1(x) = b—npo(x),
0
1 1
n=1:  @ax) = —[£1(x) + bowo(x)] = ——[bFo(x) + ¢5 (x)],
by bo by

- [(65 + b7)h(x) + 5’ ()]

1., 1
n=2: p3(x) = b72[¢2(x) o)) = bo by by

and so on. Easy induction confirms that

Ln/2]
(n— 2[
@"(X) bob]_ Z Qp 580 X)’ ne N’
2 n
Qpy10 =1, Qnp1e = bp_jop_1p-1+ane, £=1,..., bJ .

This method works in some sense.

Marcus Webb (KU Leuven) Skew-symmetric differentiation matrices



Elementary construction

Let g € C*(R) and {bp}necz, be given.
1 /
n=0: v1(x) = b—npo(x),
0
1 1
n=1:  @ax) = —[£1(x) + bowo(x)] = ——[bFo(x) + ¢5 (x)],
by bo by

- [(65 + b7)h(x) + 5’ ()]

1., 1
n=2: p3(x) = b72[¢2(x) o)) = bo by by

and so on. Easy induction confirms that

Ln/2]
(n— 2[
@"(X) bob]_ Z Qp 580 X)’ ne N’
2 n
Qpy10 =1, Qnp1e = bp_jop_1p-1+ane, £=1,..., bJ .

This method works in some sense. How to tell if orthogonal?
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The Fourier transform

The unitary Fourier transform and its inverse:

A = = [ oS FUAO = = [ e
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The Fourier transform

The unitary Fourier transform and its inverse:

A = = [ oS FUAO = = [ e

Well known differentiation formula:

Fle'l(€) = i Fle](6).
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The Fourier transform

The unitary Fourier transform and its inverse:

A = = [ oS FUAO = = [ e

Well known differentiation formula:

Fle'l(€) = i Fle](6).

Define the transformed functions

¥n(&) = (=1)"Flen] (€)-
Then

EPn(€) = (—1)"€Flenl(€) = (=) (1) Flenl (€) = (=)™ Fer] (€)-
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The transformed functions

o Fourier differentiation formula implies

Un(€) = ()" Fleal(€),  €vn(€) = ()" FILI(E), neZ..
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The transformed functions

o Fourier differentiation formula implies

Un(€) = ()" Fleal(€),  €vn(€) = ()" FILI(E), neZ..

@ Using the skew-symmetric differentiation formula,

Eo(§) = bo(—1)F[p1](§) = o (§),
gq/’n(f) 7bn—1(7i)n+1f[90n—1](€) + bn(fi)n+1f[90n+1](€)
= bn—1¢n—1(§) + bn¢n+1(§)-
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The transformed functions

o Fourier differentiation formula implies

Un(€) = ()" Fleal(€),  €vn(€) = ()" FILI(E), neZ..

@ Using the skew-symmetric differentiation formula,

Eo(§) = bo(—1)F[p1](§) = o (§),
gq/’n(f) = 7bn—1(7i)n+1f[90n—1](€) + bn(fi)n+1f[90n+1](€)
= bn—1¢n—1(§) + bn¢n+1(§)-

@ They satisfy a symmetric recurrence!
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The transformed functions

o Fourier differentiation formula implies

Un(€) = ()" Fleal(€),  €vn(€) = ()" FILI(E), neZ..

@ Using the skew-symmetric differentiation formula,

Eo(§) = bo(—1)F[p1](§) = o (§),
gq/’n(f) = 7bn—1(7i)n+1f[90n—1](€) + bn(fi)n+1f[90n+1](€)
= bn—1¢n—1(§) + bn¢n+1(§)-

@ They satisfy a symmetric recurrence!
@ Therefore, they are of the form ,(&) = pn(€)o(E), where

p(€) = 1,  pi(€)=by k¢

b
pria(€) = ppl&) = pa().  neEN
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Favard's Theorem

Theorem (Favard)

Let P = {pn}ncz. be a sequence of real polynomials such that deg(p,) = n. P is
an orthogonal system with respect to the inner product

(f.g), = [(&)g(&)du(€) for some probability measure dy. on the real line if
and only if the polynomials satisfy the three-term recurrence,

p”+1(€) = (Oén - ,an)Pn(g) - 'Vnpnfl(g)a ne Z+7

for some real sequences {&n}nez,, {Bn}nez., {¥n}nez, with vy =0 and
YnBa—1/Bn >0 for all n € N.
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Favard's Theorem

Theorem (Favard)

Let P = {pn}ncz. be a sequence of real polynomials such that deg(p,) = n. P is
an orthogonal system with respect to the inner product

(f.g), = [(&)g(&)du(€) for some probability measure dy. on the real line if
and only if the polynomials satisfy the three-term recurrence,

p”+1(€) = (Oén - ,an)Pn(g) - 'Vnpnfl(g)a ne Z+7

for some real sequences {&n}nez,, {Bn}nez., {¥n}nez, with vy =0 and
YnBa—1/Bn >0 for all n € N.

o du is symmetric (i.e. du(—¢) = du(&)) if and only if @, =0
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Favard's Theorem

Theorem (Favard)

Let P = {pn}ncz. be a sequence of real polynomials such that deg(p,) = n. P is
an orthogonal system with respect to the inner product

(f.g), = [(&)g(&)du(€) for some probability measure dy. on the real line if
and only if the polynomials satisfy the three-term recurrence,

p”+1(€) = (Oén - ﬁnf)pn(é-) - 'Vnpnfl(g)a ne Z+7

for some real sequences {&n}nez,, {Bn}nez., {¥n}nez, with vy =0 and
YnBa—1/Bn >0 for all n € N.

o du is symmetric (i.e. du(—¢) = du(&)) if and only if @, =0
@ P is orthonormal if and only if v,8,-1/6, =1
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Favard's Theorem

Theorem (Favard)

Let P = {pn}ncz. be a sequence of real polynomials such that deg(p,) = n. P is
an orthogonal system with respect to the inner product

(f.g), = [(&)g(&)du(€) for some probability measure dy. on the real line if
and only if the polynomials satisfy the three-term recurrence,

p”+1(€) = (Oén - ﬁnf)pn(é-) - 'Vnpnfl(g)a ne Z+7

for some real sequences {&n}nez,, {Bn}nez., {¥n}nez, with vy =0 and
YnBa—1/Bn >0 for all n € N.

o du is symmetric (i.e. du(—¢) = du(&)) if and only if @, =0
@ P is orthonormal if and only if v,8,-1/6, =1

For us: pn+1(§) = b%pn(f) - b,;);1 Pn—1(§)
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Fourier characterisation for ¢

We can now deduce for our ® = {¢,}nez,

i"Fleal(€) = ¥n(€) = vo(€)Pa(€),  s0  @n(x) = (=1)"F [t - pu]

The mapping can be (carefully) followed both ways:

({Wn}neZp {bn}nEZ+) A ({Pn}neZ+7 '(/JO)

Theorem (lserles-Webb 2018)

The sequence ® = {n}nez . has a real, skew-symmetric, tridiagonal, irreducible,
differentiation matrix if and only if

#n(x) = (=1)"F g - pul,

where P = {p,}nez, is an orthonormal polynomial system on the real line with
respect to a symmetric probability measure dy, and g = 1o = Fleo].

Marcus Webb (KU Leuven) Skew-symmetric differentiation matrices



Legendre and Bessel functions

The Legendre polynomials P = {Pq, Py, ...} satisfy

[ Pi@pa©dc= (n+1) o

-1
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Legendre and Bessel functions

The Legendre polynomials P = {Pq, Py, ...} satisfy
[ Pr@P@ac = (n+3) oum
-1

It is known (see DLMF) that the Fourier transform of the normalised Legendre
polynomials (denoted p,) is

SUE
var )

pn(x)e¢ dx =
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Legendre and Bessel functions

The Legendre polynomials P = {Pq, Py, ...} satisfy
[ Pr@P@ac = (n+3) oum
-1

It is known (see DLMF) that the Fourier transform of the normalised Legendre
polynomials (denoted p,) is

(\;% [ ot ax =226

We obtain the spherical Bessel functions again!
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Legendre and Bessel functions

The Legendre polynomials P = {Pq, Py, ...} satisfy
[ Pr@P@ac = (n+3) oum
-1

It is known (see DLMF) that the Fourier transform of the normalised Legendre
polynomials (denoted p,) is

(\;% [ ot ax =226

We obtain the spherical Bessel functions again! (g(¢) = x[-1,1(£))
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Orthogonal systems

o We have the formula, ,(x) = (—i)"F~1[g - pa], where g = F[eo] and
P = {pn}nez, are orthonormal with respect to a symmetric measure.
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Orthogonal systems

o We have the formula, ,(x) = (—i)"F~1[g - pa], where g = F[eo] and
P = {pn}nez, are orthonormal with respect to a symmetric measure.

@ How can we tell if ® is an orthogonal system?
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Orthogonal systems

o We have the formula, ,(x) = (—i)"F~1[g - pa], where g = F[eo] and
P = {pn}nez, are orthonormal with respect to a symmetric measure.

@ How can we tell if ® is an orthogonal system?
e Parseval’s Theorem: For all ¢, € Ly(R),

| F@FwI©a = [ e dx
@ Simple!

/ " () pm(x) dx = (i)™ " JEGIEGEGIRT

— 00
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Orthogonal systems

o We have the formula, ,(x) = (—i)"F~1[g - pa], where g = F[eo] and
P = {pn}nez, are orthonormal with respect to a symmetric measure.

@ How can we tell if ® is an orthogonal system?
e Parseval’s Theorem: For all ¢, € Ly(R),

| F@FwI©a = [ e dx

@ Simple!

| endent)ax = (0" [ o ©pm(©le(©) de
Theorem (Iserles-Webb 2018)

® is orthogonal in Ly(R) if and only if P is orthogonal with respect to the
measure |g(£)|?d¢. Note, g = Flipo].
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Hermite revisited

(_1)n —x?
wn(x) = We /ZH"(X), neZ,, xeR,

@ As mentioned earlier, the Hermite functions are eigenfunctions of the
Fourier transform:

Flenl(€) = (=i)"en(&) )
@ Therefore, the Hermite functions are, in a sense, a fixed point of our
correspondence

Theorem (lserles-Webb 2018)

Up to trivial rescaling, the only orthogonal system that consists of
“quasi-polynomials” is the Hermite system.
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Transformed Chebyshev functions

@ The Chebyshev polynomials of the second kind, Uy, Uy, Us, ... are
orthonormal with respect to the measure

du(§) = *X[ 1,1(§) V1 —€2d¢E.
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Transformed Chebyshev functions

@ The Chebyshev polynomials of the second kind, Uy, Uy, Us, ... are
orthonormal with respect to the measure

du(§) = *X[ 1,1(§) V1 —€2d¢E.

@ We have b, = 5 for all n € Z, (so D is also a Toeplitz matrix)

1
2
1
wol) o [ (1= eag o 1)
1
v1(x) £(1 — €)% de o @’
-1

@ Here J,(x) is the Bessel function of degree n.

@ The expressions get more complicated...
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Transformed Chebyshev functions
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The generated Hilbert space

@ Well known that Hermite functions are complete in Ly(RR)
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The generated Hilbert space

@ Well known that Hermite functions are complete in Ly(RR)

@ What about transformed Legendre functions (spherical Bessel functions) or
transformed Chebyshev functions?
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The generated Hilbert space

@ Well known that Hermite functions are complete in Ly(RR)

@ What about transformed Legendre functions (spherical Bessel functions) or
transformed Chebyshev functions?

o Clearly, their Fourier transforms are compactly supported in [—1,1]
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The generated Hilbert space

@ Well known that Hermite functions are complete in Ly(RR)

@ What about transformed Legendre functions (spherical Bessel functions) or
transformed Chebyshev functions?

o Clearly, their Fourier transforms are compactly supported in [—1,1]

e The Paley-Wiener spaces are closed subspaces of L,(IR) obtained by
restricting Fourier transforms to a set Q C R:

PWa(R) := {¢ € L3(R) : F[p](&) =0 for a.e. £ € R\ Q},

o Keywords: Band-limiting, band-limited function spaces. Numerous
applications and relevance in signal processing
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Transformed Carlitz functions

Consider the hyperbolic secant measure

dpu(§) = sech®(r&) dé

This measure (after heroic algebra) is related to the Carlitz polynomials on a line
in the complex plane.

Marcus Webb (KU Leuven)

Skew-symmetric differentiation matrices



Transformed Carlitz functions

Consider the hyperbolic secant measure

dpu(§) = sech®(r&) dé

This measure (after heroic algebra) is related to the Carlitz polynomials on a line
in the complex plane.

(n+1)2
- V(@n+1)(2n+3)
Up to a constant scaling,
@o(x) = sech(x)
¢1(x) = —+/3tanh(x)sech(x)
pa(x) = ? (2sech(x) — 3sech®(x))
V7

p3(x) = - tanh(x) (2sech®(x) — 5sech®(x))
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Transformed Carlitz functions
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Transformed Freud functions

Polynomials orthogonal with respect to the measure du(¢) = e=¢' d¢ are a
particular instance of Freud polynomials.

21 —  x* 3 — x*
2mo 3. = | = XT2 (=) oF; 'y, o=
)= i 2oL 1 ] (3o 1 v
The coefficients {b,}ncz, satisfy so-called string relations (see Clarkson 2016).
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Summary and future directions

@ There is a one-to-one correspondence between orthonormal systems with a
real, skew-symmetric, tridiagonal, irreducible differentiation matrix and
orthonormal polynomials with respect to a symmetric probability measure®

du(€) = w(&)dE.
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Summary and future directions

@ There is a one-to-one correspondence between orthonormal systems with a
real, skew-symmetric, tridiagonal, irreducible differentiation matrix and
orthonormal polynomials with respect to a symmetric probability measure®
du(§) = w(&)d¢.

@ The orthonormal systems generated are complete in the Paley-Wiener
space for the support of the measure du.
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Summary and future directions

@ There is a one-to-one correspondence between orthonormal systems with a
real, skew-symmetric, tridiagonal, irreducible differentiation matrix and
orthonormal polynomials with respect to a symmetric probability measure®
du(§) = w(&)d¢.

@ The orthonormal systems generated are complete in the Paley-Wiener
space for the support of the measure du.

@ Plethora of possibilities and questions for ¢:

o Approximation properties of ®7

o Interesting features? E.g. interlacing roots
e Can expansions be computed rapidly and stably?
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Summary and future directions

@ There is a one-to-one correspondence between orthonormal systems with a
real, skew-symmetric, tridiagonal, irreducible differentiation matrix and
orthonormal polynomials with respect to a symmetric probability measure®
du(§) = w(&)d¢.

@ The orthonormal systems generated are complete in the Paley-Wiener
space for the support of the measure du.

@ Plethora of possibilities and questions for ¢:

Approximation properties of 7?7

Interesting features? E.g. interlacing roots

Can expansions be computed rapidly and stably?
Can P be effectively approximated?
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Summary and future directions

@ There is a one-to-one correspondence between orthonormal systems with a
real, skew-symmetric, tridiagonal, irreducible differentiation matrix and
orthonormal polynomials with respect to a symmetric probability measure®
du(§) = w(&)d¢.

@ The orthonormal systems generated are complete in the Paley-Wiener
space for the support of the measure du.

@ Plethora of possibilities and questions for ¢:

Approximation properties of 7?7

Interesting features? E.g. interlacing roots

Can expansions be computed rapidly and stably?

Can P be effectively approximated?

Can new, improved, practical, L, stable spectral methods for time-dependent

PDEs be developed following this work?
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