Orthogonal systems with a skew-symmetric differentiation matrix

Marcus Webb

KU Leuven, Belgium

joint work with Arieh Iserles (Cambridge)

$$
2 \text { May } 2018
$$

Cambridge Analysists' Knowledge Exchange

Motivation: Time-dependent PDEs

$$
u \in \mathrm{C}^{\infty}\left([0, \infty) ; \mathrm{H}^{1}(\mathbb{R})\right), \quad t \in[0, \infty), \quad x \in \mathbb{R}
$$

- Diffusion:

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[a(t, x, u) \frac{\partial u}{\partial x}\right], \quad a \geq 0
$$

- Semi-classical Schrödinger:

$$
\mathrm{i} \varepsilon \frac{\partial u}{\partial t}=-\varepsilon^{2} \frac{\partial^{2} u}{\partial x^{2}}+V(t, x, u) u, \quad 0<\varepsilon \ll 1, \quad \operatorname{Imag}(V)=0
$$

- Nonlinear advection:

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}+f(u), \quad v \cdot f(v) \leq 0
$$

Motivation: Time-dependent PDEs

$$
u \in \mathrm{C}^{\infty}\left([0, \infty) ; \mathrm{H}^{1}(\mathbb{R})\right), \quad t \in[0, \infty), \quad x \in \mathbb{R}
$$

- Diffusion:

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[a(t, x, u) \frac{\partial u}{\partial x}\right], \quad a \geq 0
$$

- Semi-classical Schrödinger:

$$
\mathrm{i} \varepsilon \frac{\partial u}{\partial t}=-\varepsilon^{2} \frac{\partial^{2} u}{\partial x^{2}}+V(t, x, u) u, \quad 0<\varepsilon \ll 1, \quad \operatorname{Imag}(V)=0
$$

- Nonlinear advection:

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}+f(u), \quad v \cdot f(v) \leq 0
$$

- Common property?

Motivation: Time-dependent PDEs

$$
u \in \mathrm{C}^{\infty}\left([0, \infty) ; \mathrm{H}^{1}(\mathbb{R})\right), \quad t \in[0, \infty), \quad x \in \mathbb{R}
$$

- Diffusion:

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[a(t, x, u) \frac{\partial u}{\partial x}\right], \quad a \geq 0
$$

- Semi-classical Schrödinger:

$$
\mathrm{i} \varepsilon \frac{\partial u}{\partial t}=-\varepsilon^{2} \frac{\partial^{2} u}{\partial x^{2}}+V(t, x, u) u, \quad 0<\varepsilon \ll 1, \quad \operatorname{Imag}(V)=0
$$

- Nonlinear advection:

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}+f(u), \quad v \cdot f(v) \leq 0
$$

- Common property? L_{2} stability:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{-\infty}^{\infty}|u(t, x)|^{2} \mathrm{~d} x \leq 0, \text { for all } t \geq 0
$$

L_{2} stability of these PDEs

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int|u(t, x)|^{2} \mathrm{~d} x=\int \frac{\partial}{\partial t}|u(t, x)|^{2} \mathrm{~d} x=2 \operatorname{Re} \int \overline{u(t, x)} \frac{\partial u}{\partial t}(t, x) \mathrm{d} x
$$

L_{2} stability of these PDEs

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int|u(t, x)|^{2} \mathrm{~d} x=\int \frac{\partial}{\partial t}|u(t, x)|^{2} \mathrm{~d} x=2 \operatorname{Re} \int \overline{u(t, x)} \frac{\partial u}{\partial t}(t, x) \mathrm{d} x
$$

- Diffusion:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{-\infty}^{\infty}|u|^{2} \mathrm{~d} x & =2 \int_{-\infty}^{\infty} u \frac{\partial}{\partial x}\left(a(t, x, u) \frac{\partial u}{\partial x}\right) \mathrm{d} x \\
& =-2 \int_{-\infty}^{\infty} a(t, x, u)\left(\frac{\partial u}{\partial x}\right)^{2} \mathrm{~d} x \leq 0
\end{aligned}
$$

L_{2} stability of these PDEs

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int|u(t, x)|^{2} \mathrm{~d} x=\int \frac{\partial}{\partial t}|u(t, x)|^{2} \mathrm{~d} x=2 \operatorname{Re} \int \overline{u(t, x)} \frac{\partial u}{\partial t}(t, x) \mathrm{d} x
$$

- Diffusion:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{-\infty}^{\infty}|u|^{2} \mathrm{~d} x & =2 \int_{-\infty}^{\infty} u \frac{\partial}{\partial x}\left(a(t, x, u) \frac{\partial u}{\partial x}\right) \mathrm{d} x \\
& =-2 \int_{-\infty}^{\infty} a(t, x, u)\left(\frac{\partial u}{\partial x}\right)^{2} \mathrm{~d} x \leq 0
\end{aligned}
$$

- Schrödinger:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{-\infty}^{\infty}|u|^{2} \mathrm{~d} x & =2 \operatorname{Re} \int_{-\infty}^{\infty} \bar{u}\left(\mathrm{i} \varepsilon \frac{\partial^{2} u}{\partial x^{2}}-\mathrm{i} \varepsilon^{-1} V(t, x, u) u\right) \mathrm{d} x \\
& =-2 \operatorname{Re} \int_{-\infty}^{\infty} \mathrm{i} \varepsilon\left|\frac{\partial u}{\partial x}\right|^{2}+\mathrm{i} \varepsilon^{-1} V(t, x, u)|u|^{2} \mathrm{~d} x=0
\end{aligned}
$$

Numerical solution of these PDEs

- Suppose we want a numerical solution to the diffusion equation $\partial_{t} u=\partial_{x}\left(a(x) \cdot \partial_{x} u\right)$.

Numerical solution of these PDEs

- Suppose we want a numerical solution to the diffusion equation $\partial_{t} u=\partial_{x}\left(a(x) \cdot \partial_{x} u\right)$.
- Obtain a semi-discretised PDE:

$$
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathcal{A D} \mathbf{u}(t), \quad \mathbf{u}(0)=\mathbf{u}_{0} \in \mathbb{C}^{N}
$$

- E.g. finite difference method on a grid $x_{1}, x_{2}, \ldots, x_{N}$

$$
\mathbf{u}(t)=\left(u\left(t, x_{1}\right), u\left(t, x_{2}\right), \ldots, u\left(t, x_{N}\right)\right)^{T} \in \mathbb{C}^{N}
$$

- \mathcal{D} is a matrix encoding a finite-difference approximation to the partial derivative ∂_{x}.
- \mathcal{A} is a diagonal matrix with entries $\left(a\left(x_{1}\right), \ldots, a\left(x_{N}\right)\right)$.

Numerical solution of these PDEs

- Suppose we want to approximate the solution to the diffusion equation $\partial_{t} u=\partial_{x}\left(a(x) \cdot \partial_{x} u\right)$.
- Obtain a semi-discretised PDE:

$$
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathcal{A D} \mathbf{u}(t), \quad \mathbf{u}(0)=\mathbf{u}_{0} \in \ell_{2}
$$

- E.g. spectral method for a basis $\Phi=\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}}$of $L_{2}(\mathbb{R})$

$$
u(t, \cdot)=\sum_{n=0}^{\infty} u_{n}(t) \varphi_{n}
$$

- \mathcal{D} and \mathcal{A} are infinite-dimensional matrices encoding:

$$
\varphi_{k}^{\prime}(x)=\sum_{j=0}^{\infty} D_{k, j} \varphi_{j}(x), \quad a(x) \varphi_{k}(x)=\sum_{j=0}^{\infty} A_{k, j} \varphi_{j}(x)
$$

ℓ_{2} stability of (semi-)discretised PDEs

- Diffusion:

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathcal{A D} \mathbf{u}(t) \\
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{\top} \mathbf{u}^{\prime}=2 \mathbf{u}^{\top} \mathcal{D} \mathcal{A D} \mathbf{u}=2\left(\mathcal{D}^{\top} \mathbf{u}\right) \mathcal{A}(\mathcal{D} \mathbf{u})
\end{gathered}
$$

ℓ_{2} stability of (semi-)discretised PDEs

- Diffusion:

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathcal{A D} \mathbf{u}(t) \\
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{T} \mathbf{u}^{\prime}=2 \mathbf{u}^{\top} \mathcal{D} \mathcal{A D} \mathbf{u}=2\left(\mathcal{D}^{T} \mathbf{u}\right) \mathcal{A}(\mathcal{D} \mathbf{u})
\end{gathered}
$$

- Nonlinear advection:

$$
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathbf{u}(t)+\mathbf{f}(\mathbf{u}(t))
$$

$$
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{T} \mathbf{u}^{\prime}=2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}+2 \mathbf{u}^{T} \mathbf{f}(\mathbf{u}) \leq 2 \mathbf{u}^{\top} \mathcal{D} \mathbf{u}
$$

ℓ_{2} stability of (semi-)discretised PDEs

- Diffusion:

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathcal{A D} \mathbf{u}(t) \\
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{\top} \mathbf{u}^{\prime}=2 \mathbf{u}^{\top} \mathcal{D} \mathcal{A D} \mathbf{u}=2\left(\mathcal{D}^{T} \mathbf{u}\right) \mathcal{A}(\mathcal{D} \mathbf{u})
\end{gathered}
$$

- Nonlinear advection:

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathbf{u}(t)+\mathbf{f}(\mathbf{u}(t)) \\
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{T} \mathbf{u}^{\prime}=2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}+2 \mathbf{u}^{T} \mathbf{f}(\mathbf{u}) \leq 2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}
\end{gathered}
$$

- We want \mathcal{D} to be a skew-symmetric matrix.

ℓ_{2} stability of (semi-)discretised PDEs

- Diffusion:

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathcal{A D} \mathbf{u}(t) \\
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{T} \mathbf{u}^{\prime}=2 \mathbf{u}^{T} \mathcal{D} \mathcal{A D} \mathbf{u}=2\left(\mathcal{D}^{T} \mathbf{u}\right) \mathcal{A}(\mathcal{D} \mathbf{u})
\end{gathered}
$$

- Nonlinear advection:

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathbf{u}(t)+\mathbf{f}(\mathbf{u}(t)) \\
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{T} \mathbf{u}^{\prime}=2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}+2 \mathbf{u}^{T} \mathbf{f}(\mathbf{u}) \leq 2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}
\end{gathered}
$$

- We want \mathcal{D} to be a skew-symmetric matrix. Differential operator is skew-Hermitian.

ℓ_{2} stability of (semi-)discretised PDEs

- Diffusion:

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathcal{A D} \mathbf{u}(t) \\
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{T} \mathbf{u}^{\prime}=2 \mathbf{u}^{T} \mathcal{D} \mathcal{A D} \mathbf{u}=2\left(\mathcal{D}^{T} \mathbf{u}\right) \mathcal{A}(\mathcal{D} \mathbf{u})
\end{gathered}
$$

- Nonlinear advection:

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=\mathcal{D} \mathbf{u}(t)+\mathbf{f}(\mathbf{u}(t)) \\
\frac{\mathrm{d}\|\mathbf{u}\|_{\ell^{2}}^{2}}{\mathrm{~d} t}=2 \mathbf{u}^{T} \mathbf{u}^{\prime}=2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}+2 \mathbf{u}^{T} \mathbf{f}(\mathbf{u}) \leq 2 \mathbf{u}^{T} \mathcal{D} \mathbf{u}
\end{gathered}
$$

- We want \mathcal{D} to be a skew-symmetric matrix. Differential operator is skew-Hermitian.

Geometric Numerical Integration

The field of research on discretisation of differential equations which respects qualitative properties of the analytical solution (see Hairer-Lubich-Wanner 2006)

The joy and pain of skew-symmetry

- The simplest second-order finite difference scheme gives

$$
\mathcal{D}=\frac{1}{2 \Delta x}\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
-1 & 0 & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 1 \\
0 & \cdots & 0 & -1 & 0
\end{array}\right)
$$

The joy and pain of skew-symmetry

- The simplest second-order finite difference scheme gives

$$
\mathcal{D}=\frac{1}{2 \Delta x}\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
-1 & 0 & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 1 \\
0 & \cdots & 0 & -1 & 0
\end{array}\right)
$$

- Looking good!

The joy and pain of skew-symmetry

- The simplest second-order finite difference scheme gives

$$
\mathcal{D}=\frac{1}{2 \Delta x}\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
-1 & 0 & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 1 \\
0 & \cdots & 0 & -1 & 0
\end{array}\right)
$$

- Looking good! This is the highest order skew-symmetric differentiation matrix on an equispaced grid (Iserles 2014)

The joy and pain of skew-symmetry

- The simplest second-order finite difference scheme gives

$$
\mathcal{D}=\frac{1}{2 \Delta x}\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
-1 & 0 & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 1 \\
0 & \cdots & 0 & -1 & 0
\end{array}\right)
$$

- Looking good! This is the highest order skew-symmetric differentiation matrix on an equispaced grid (Iserles 2014)
- Higher-order skew-symmetric differentiation matrices on special grids are possible but complicated (Hairer-Iserles 2016,2017).

Known example: Fourier spectral methods

Take the Fourier basis:

$$
\varphi_{0}(x) \equiv \frac{1}{(2 \pi)^{1 / 2}}, \quad \varphi_{2 n}(x)=\frac{\cos n x}{\pi^{1 / 2}}, \quad \varphi_{2 n+1}(x)=\frac{\sin n x}{\pi^{1 / 2}}, \quad n \in \mathbb{N}
$$

- note that the basis is orthonormal.

Known example: Fourier spectral methods

Take the Fourier basis:

$$
\varphi_{0}(x) \equiv \frac{1}{(2 \pi)^{1 / 2}}, \quad \varphi_{2 n}(x)=\frac{\cos n x}{\pi^{1 / 2}}, \quad \varphi_{2 n+1}(x)=\frac{\sin n x}{\pi^{1 / 2}}, \quad n \in \mathbb{N}
$$

- note that the basis is orthonormal. The differentiation matrix is

$$
\mathcal{D}=\left(\begin{array}{c|ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & \cdots \\
0 & 0 & 0 & -2 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & \cdots \\
0 & 0 & 0 & 0 & 0 & -3 & 0 & \cdots \\
\vdots & \ddots
\end{array}\right) .
$$

Known example: Fourier spectral methods

Take the Fourier basis:

$$
\varphi_{0}(x) \equiv \frac{1}{(2 \pi)^{1 / 2}}, \quad \varphi_{2 n}(x)=\frac{\cos n x}{\pi^{1 / 2}}, \quad \varphi_{2 n+1}(x)=\frac{\sin n x}{\pi^{1 / 2}}, \quad n \in \mathbb{N}
$$

- note that the basis is orthonormal. The differentiation matrix is

$$
\mathcal{D}=\left(\begin{array}{c|ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & \cdots \\
0 & 0 & 0 & -2 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & \cdots \\
0 & 0 & 0 & 0 & 0 & -3 & 0 & \cdots \\
\vdots & \ddots
\end{array}\right) .
$$

For periodic boundary conditions only.

Known example: Hermite spectral methods

- Hermite functions are familiar in mathematical physics:

$$
\varphi_{n}(x)=\frac{(-1)^{n}}{\left(2^{n} n!\right)^{1 / 2} \pi^{1 / 4}} \mathrm{e}^{-x^{2} / 2} \mathrm{H}_{n}(x), \quad n \in \mathbb{Z}_{+}, \quad x \in \mathbb{R}
$$

where H_{n} is the nth Hermite polynomial.

- Orthonormal basis for $\mathrm{L}_{2}(\mathbb{R})$
- Uniformly bounded, and smooth
- Eigenfunctions of the Fourier transform

Known example: Hermite spectral methods

Hermite functions obey the ODE

$$
\begin{aligned}
\varphi_{0}^{\prime}(x) & =-\sqrt{\frac{1}{2}} \varphi_{1}(x) \\
\varphi_{n}^{\prime}(x) & =\sqrt{\frac{n}{2}} \varphi_{n-1}(x)-\sqrt{\frac{n+1}{2}} \varphi_{n+1}(x), \quad n \in \mathbb{N} .
\end{aligned}
$$

In other words,

$$
\mathcal{D}=\left(\begin{array}{ccccc}
0 & -\sqrt{\frac{1}{2}} & 0 & 0 & \cdots \\
\sqrt{\frac{1}{2}} & 0 & -\sqrt{\frac{2}{2}} & 0 & \cdots \\
0 & \sqrt{\frac{2}{2}} & 0 & -\sqrt{\frac{3}{2}} & \ddots \\
\vdots & 0 & \sqrt{\frac{3}{2}} & \ddots & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

a skew-symmetric, tridiagonal differentiation matrix.

Nonstandard example: Spherical Bessel Functions

Solutions to the ODE $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(x^{2}-n(n+1)\right) y=0$, for each $n \in \mathbb{Z}_{+}$, are the spherical Bessel functions $\mathrm{j}_{n}(x)$.
$\mathrm{j}_{0}(x)=\frac{\sin (x)}{x}, \quad \mathrm{j}_{1}(x)=\frac{\sin (x)}{x^{2}}-\frac{\cos (x)}{x}, \quad \mathrm{j}_{2}(x)=\left(\frac{3}{x^{2}}-1\right) \frac{\sin (x)}{x}-\frac{3 \cos (x)}{x^{2}}$.
Writing $\varphi_{n}(x)=\sqrt{\frac{2 n+1}{\pi}} \mathrm{j}_{n}(x)$, one can obtain the known result

$$
\varphi_{n}^{\prime}(x)=-\frac{n}{\sqrt{(2 n-1)(2 n+1)}} \varphi_{n-1}(x)+\frac{n+1}{\sqrt{(2 n+1)(2 n+3)}} \varphi_{n+1}(x)
$$

Nonstandard example: Spherical Bessel Functions

Solutions to the ODE $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(x^{2}-n(n+1)\right) y=0$, for each $n \in \mathbb{Z}_{+}$, are the spherical Bessel functions $\mathrm{j}_{n}(x)$.
$\mathrm{j}_{0}(x)=\frac{\sin (x)}{x}, \quad \mathrm{j}_{1}(x)=\frac{\sin (x)}{x^{2}}-\frac{\cos (x)}{x}, \quad \mathrm{j}_{2}(x)=\left(\frac{3}{x^{2}}-1\right) \frac{\sin (x)}{x}-\frac{3 \cos (x)}{x^{2}}$.
Writing $\varphi_{n}(x)=\sqrt{\frac{2 n+1}{\pi}} \mathrm{j}_{n}(x)$, one can obtain the known result

$$
\varphi_{n}^{\prime}(x)=-\frac{n}{\sqrt{(2 n-1)(2 n+1)}} \varphi_{n-1}(x)+\frac{n+1}{\sqrt{(2 n+1)(2 n+3)}} \varphi_{n+1}(x)
$$

Aims of the talk

Aim 1

Find a system of functions $\Phi=\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}}$, and nonzero scalars $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$such that

$$
\begin{aligned}
\varphi_{0}^{\prime}(x) & =b_{0} \varphi_{1}(x), \\
\varphi_{n}^{\prime}(x) & =-b_{n-1} \varphi_{n-1}(x)+b_{n} \varphi_{n+1}(x), \quad n \in \mathbb{N} .
\end{aligned}
$$

Φ has real, skew-symmetric, tridiagonal irreducible differentiation matrix

Aims of the talk

Aim 1

Find a system of functions $\Phi=\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}}$, and nonzero scalars $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$such that

$$
\begin{aligned}
\varphi_{0}^{\prime}(x) & =b_{0} \varphi_{1}(x) \\
\varphi_{n}^{\prime}(x) & =-b_{n-1} \varphi_{n-1}(x)+b_{n} \varphi_{n+1}(x), \quad n \in \mathbb{N}
\end{aligned}
$$

Φ has real, skew-symmetric, tridiagonal irreducible differentiation matrix

Aim 2

Determine systems which are also orthonormal in $L_{2}(\mathbb{R})$:

$$
\begin{equation*}
u(x)=\sum_{n=0}^{\infty} u_{k} \varphi_{k}(x) \Longrightarrow\|\mathbf{u}\|_{\ell_{2}}=\|u\|_{L_{2}(\mathbb{R})} \tag{1}
\end{equation*}
$$

Aims of the talk

Aim 1

Find a system of functions $\Phi=\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}}$, and nonzero scalars $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$such that

$$
\begin{aligned}
\varphi_{0}^{\prime}(x) & =b_{0} \varphi_{1}(x) \\
\varphi_{n}^{\prime}(x) & =-b_{n-1} \varphi_{n-1}(x)+b_{n} \varphi_{n+1}(x), \quad n \in \mathbb{N}
\end{aligned}
$$

Φ has real, skew-symmetric, tridiagonal irreducible differentiation matrix

Aim 2

Determine systems which are also orthonormal in $L_{2}(\mathbb{R})$:

$$
\begin{equation*}
u(x)=\sum_{n=0}^{\infty} u_{k} \varphi_{k}(x) \Longrightarrow\|\mathbf{u}\|_{\ell_{2}}=\|u\|_{L_{2}(\mathbb{R})} \tag{1}
\end{equation*}
$$

Our continuing mission: to explore strange new bases, to seek out new methods and new special functions, to boldly go...

Elementary construction

Let $\varphi_{0} \in \mathrm{C}^{\infty}(\mathbb{R})$ and $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$be given.

$$
n=0: \quad \varphi_{1}(x)=\frac{1}{b_{0}} \varphi_{0}^{\prime}(x),
$$

Elementary construction

Let $\varphi_{0} \in \mathrm{C}^{\infty}(\mathbb{R})$ and $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$be given.

$$
\begin{array}{ll}
n=0: & \varphi_{1}(x)=\frac{1}{b_{0}} \varphi_{0}^{\prime}(x), \\
n=1: & \varphi_{2}(x)=\frac{1}{b_{1}}\left[\varphi_{1}^{\prime}(x)+b_{0} \varphi_{0}(x)\right]=\frac{1}{b_{0} b_{1}}\left[b_{0}^{2} \varphi_{0}(x)+\varphi_{0}^{\prime \prime}(x)\right],
\end{array}
$$

Elementary construction

Let $\varphi_{0} \in \mathrm{C}^{\infty}(\mathbb{R})$ and $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$be given.

$$
\begin{array}{ll}
n=0: & \varphi_{1}(x)=\frac{1}{b_{0}} \varphi_{0}^{\prime}(x), \\
n=1: & \varphi_{2}(x)=\frac{1}{b_{1}}\left[\varphi_{1}^{\prime}(x)+b_{0} \varphi_{0}(x)\right]=\frac{1}{b_{0} b_{1}}\left[b_{0}^{2} \varphi_{0}(x)+\varphi_{0}^{\prime \prime}(x)\right], \\
n=2: & \varphi_{3}(x)=\frac{1}{b_{2}}\left[\varphi_{2}^{\prime}(x)+b_{1} \varphi_{1}(x)\right]=\frac{1}{b_{0} b_{1} b_{2}}\left[\left(b_{0}^{2}+b_{1}^{2}\right) \varphi_{0}^{\prime}(x)+\varphi_{0}^{\prime \prime \prime}(x)\right]
\end{array}
$$

and so on.

Elementary construction

Let $\varphi_{0} \in \mathrm{C}^{\infty}(\mathbb{R})$ and $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$be given.

$$
\begin{array}{ll}
n=0: & \varphi_{1}(x)=\frac{1}{b_{0}} \varphi_{0}^{\prime}(x), \\
n=1: & \varphi_{2}(x)=\frac{1}{b_{1}}\left[\varphi_{1}^{\prime}(x)+b_{0} \varphi_{0}(x)\right]=\frac{1}{b_{0} b_{1}}\left[b_{0}^{2} \varphi_{0}(x)+\varphi_{0}^{\prime \prime}(x)\right], \\
n=2: & \varphi_{3}(x)=\frac{1}{b_{2}}\left[\varphi_{2}^{\prime}(x)+b_{1} \varphi_{1}(x)\right]=\frac{1}{b_{0} b_{1} b_{2}}\left[\left(b_{0}^{2}+b_{1}^{2}\right) \varphi_{0}^{\prime}(x)+\varphi_{0}^{\prime \prime \prime}(x)\right]
\end{array}
$$

and so on. Easy induction confirms that

$$
\begin{gathered}
\varphi_{n}(x)=\frac{1}{b_{0} b_{1} \cdots b_{n-1}} \sum_{\ell=0}^{\lfloor n / 2\rfloor} \alpha_{n, \ell} \varphi_{0}^{(n-2 \ell)}(x), \quad n \in \mathbb{N}, \\
\alpha_{n+1,0}=1, \quad \alpha_{n+1, \ell}=b_{n-1}^{2} \alpha_{n-1, \ell-1}+\alpha_{n, \ell}, \quad \ell=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor .
\end{gathered}
$$

Elementary construction

Let $\varphi_{0} \in \mathrm{C}^{\infty}(\mathbb{R})$ and $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$be given.

$$
\begin{array}{ll}
n=0: & \varphi_{1}(x)=\frac{1}{b_{0}} \varphi_{0}^{\prime}(x), \\
n=1: & \varphi_{2}(x)=\frac{1}{b_{1}}\left[\varphi_{1}^{\prime}(x)+b_{0} \varphi_{0}(x)\right]=\frac{1}{b_{0} b_{1}}\left[b_{0}^{2} \varphi_{0}(x)+\varphi_{0}^{\prime \prime}(x)\right], \\
n=2: & \varphi_{3}(x)=\frac{1}{b_{2}}\left[\varphi_{2}^{\prime}(x)+b_{1} \varphi_{1}(x)\right]=\frac{1}{b_{0} b_{1} b_{2}}\left[\left(b_{0}^{2}+b_{1}^{2}\right) \varphi_{0}^{\prime}(x)+\varphi_{0}^{\prime \prime \prime}(x)\right]
\end{array}
$$

and so on. Easy induction confirms that

$$
\begin{gathered}
\varphi_{n}(x)=\frac{1}{b_{0} b_{1} \cdots b_{n-1}} \sum_{\ell=0}^{\lfloor n / 2\rfloor} \alpha_{n, \ell} \varphi_{0}^{(n-2 \ell)}(x), \quad n \in \mathbb{N}, \\
\alpha_{n+1,0}=1, \quad \alpha_{n+1, \ell}=b_{n-1}^{2} \alpha_{n-1, \ell-1}+\alpha_{n, \ell}, \quad \ell=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor .
\end{gathered}
$$

This method works in some sense.

Elementary construction

Let $\varphi_{0} \in \mathrm{C}^{\infty}(\mathbb{R})$ and $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$be given.

$$
\begin{array}{ll}
n=0: & \varphi_{1}(x)=\frac{1}{b_{0}} \varphi_{0}^{\prime}(x), \\
n=1: & \varphi_{2}(x)=\frac{1}{b_{1}}\left[\varphi_{1}^{\prime}(x)+b_{0} \varphi_{0}(x)\right]=\frac{1}{b_{0} b_{1}}\left[b_{0}^{2} \varphi_{0}(x)+\varphi_{0}^{\prime \prime}(x)\right], \\
n=2: & \varphi_{3}(x)=\frac{1}{b_{2}}\left[\varphi_{2}^{\prime}(x)+b_{1} \varphi_{1}(x)\right]=\frac{1}{b_{0} b_{1} b_{2}}\left[\left(b_{0}^{2}+b_{1}^{2}\right) \varphi_{0}^{\prime}(x)+\varphi_{0}^{\prime \prime \prime}(x)\right]
\end{array}
$$

and so on. Easy induction confirms that

$$
\begin{gathered}
\varphi_{n}(x)=\frac{1}{b_{0} b_{1} \cdots b_{n-1}} \sum_{\ell=0}^{\lfloor n / 2\rfloor} \alpha_{n, \ell} \varphi_{0}^{(n-2 \ell)}(x), \quad n \in \mathbb{N}, \\
\alpha_{n+1,0}=1, \quad \alpha_{n+1, \ell}=b_{n-1}^{2} \alpha_{n-1, \ell-1}+\alpha_{n, \ell}, \quad \ell=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor .
\end{gathered}
$$

This method works in some sense. How to tell if orthogonal?

The Fourier transform

The unitary Fourier transform and its inverse:

$$
\mathcal{F}[\varphi](\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(x) \mathrm{e}^{-\mathrm{i} \times \xi} \mathrm{d} x, \quad \mathcal{F}^{-1}[\varphi](\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(x) \mathrm{e}^{\mathrm{i} x \xi} \mathrm{~d} x
$$

The Fourier transform

The unitary Fourier transform and its inverse:

$$
\mathcal{F}[\varphi](\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(x) \mathrm{e}^{-\mathrm{i} x \xi} \mathrm{~d} x, \quad \mathcal{F}^{-1}[\varphi](\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(x) \mathrm{e}^{\mathrm{i} x \xi} \mathrm{~d} x
$$

Well known differentiation formula:

$$
\mathcal{F}\left[\varphi^{\prime}\right](\xi)=\mathrm{i} \xi \mathcal{F}[\varphi](\xi) .
$$

The Fourier transform

The unitary Fourier transform and its inverse:

$$
\mathcal{F}[\varphi](\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(x) \mathrm{e}^{-\mathrm{i} x \xi} \mathrm{~d} x, \quad \mathcal{F}^{-1}[\varphi](\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(x) \mathrm{e}^{\mathrm{i} x \xi} \mathrm{~d} x
$$

Well known differentiation formula:

$$
\mathcal{F}\left[\varphi^{\prime}\right](\xi)=\mathrm{i} \xi \mathcal{F}[\varphi](\xi) .
$$

Define the transformed functions

$$
\psi_{n}(\xi)=(-\mathrm{i})^{n} \mathcal{F}\left[\varphi_{n}\right](\xi)
$$

Then

$$
\xi \psi_{n}(\xi)=(-\mathrm{i})^{n} \xi \mathcal{F}\left[\varphi_{n}\right](\xi)=(-\mathrm{i})^{n+1}(\mathrm{i} \xi) \mathcal{F}\left[\varphi_{n}\right](\xi)=(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n}^{\prime}\right](\xi) .
$$

The transformed functions

- Fourier differentiation formula implies

$$
\psi_{n}(\xi)=(-\mathrm{i})^{n} \mathcal{F}\left[\varphi_{n}\right](\xi), \quad \xi \psi_{n}(\xi)=(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n}^{\prime}\right](\xi), \quad n \in \mathbb{Z}_{+}
$$

The transformed functions

- Fourier differentiation formula implies

$$
\psi_{n}(\xi)=(-\mathrm{i})^{n} \mathcal{F}\left[\varphi_{n}\right](\xi), \quad \xi \psi_{n}(\xi)=(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n}^{\prime}\right](\xi), \quad n \in \mathbb{Z}_{+} .
$$

- Using the skew-symmetric differentiation formula,

$$
\begin{aligned}
\xi \psi_{0}(\xi) & =b_{0}(-\mathrm{i}) \mathcal{F}\left[\varphi_{1}\right](\xi)=b_{0} \psi_{1}(\xi) \\
\xi \psi_{n}(\xi) & =-b_{n-1}(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n-1}\right](\xi)+b_{n}(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n+1}\right](\xi) \\
& =b_{n-1} \psi_{n-1}(\xi)+b_{n} \psi_{n+1}(\xi)
\end{aligned}
$$

The transformed functions

- Fourier differentiation formula implies

$$
\psi_{n}(\xi)=(-\mathrm{i})^{n} \mathcal{F}\left[\varphi_{n}\right](\xi), \quad \xi \psi_{n}(\xi)=(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n}^{\prime}\right](\xi), \quad n \in \mathbb{Z}_{+} .
$$

- Using the skew-symmetric differentiation formula,

$$
\begin{aligned}
\xi \psi_{0}(\xi) & =b_{0}(-\mathrm{i}) \mathcal{F}\left[\varphi_{1}\right](\xi)=b_{0} \psi_{1}(\xi), \\
\xi \psi_{n}(\xi) & =-b_{n-1}(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n-1}\right](\xi)+b_{n}(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n+1}\right](\xi) \\
& =b_{n-1} \psi_{n-1}(\xi)+b_{n} \psi_{n+1}(\xi) .
\end{aligned}
$$

- They satisfy a symmetric recurrence!

The transformed functions

- Fourier differentiation formula implies

$$
\psi_{n}(\xi)=(-\mathrm{i})^{n} \mathcal{F}\left[\varphi_{n}\right](\xi), \quad \xi \psi_{n}(\xi)=(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n}^{\prime}\right](\xi), \quad n \in \mathbb{Z}_{+} .
$$

- Using the skew-symmetric differentiation formula,

$$
\begin{aligned}
\xi \psi_{0}(\xi) & =b_{0}(-\mathrm{i}) \mathcal{F}\left[\varphi_{1}\right](\xi)=b_{0} \psi_{1}(\xi) \\
\xi \psi_{n}(\xi) & =-b_{n-1}(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n-1}\right](\xi)+b_{n}(-\mathrm{i})^{n+1} \mathcal{F}\left[\varphi_{n+1}\right](\xi) \\
& =b_{n-1} \psi_{n-1}(\xi)+b_{n} \psi_{n+1}(\xi) .
\end{aligned}
$$

- They satisfy a symmetric recurrence!
- Therefore, they are of the form $\psi_{n}(\xi)=p_{n}(\xi) \psi_{0}(\xi)$, where

$$
\begin{aligned}
p_{0}(\xi) & =1, \quad p_{1}(\xi)=b_{0}^{-1} \xi \\
p_{n+1}(\xi) & =\frac{\xi}{b_{n}} p_{n}(\xi)-\frac{b_{n-1}}{b_{n}} p_{n-1}(\xi), \quad n \in \mathbb{N} .
\end{aligned}
$$

Favard's Theorem

Theorem (Favard)

Let $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$be a sequence of real polynomials such that $\operatorname{deg}\left(p_{n}\right)=n . P$ is an orthogonal system with respect to the inner product $\langle f, g\rangle_{\mu}=\int \overline{f(\xi)} g(\xi) \mathrm{d} \mu(\xi)$ for some probability measure $\mathrm{d} \mu$ on the real line if and only if the polynomials satisfy the three-term recurrence,

$$
p_{n+1}(\xi)=\left(\alpha_{n}-\beta_{n} \xi\right) p_{n}(\xi)-\gamma_{n} p_{n-1}(\xi), \quad n \in \mathbb{Z}_{+},
$$

for some real sequences $\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{\beta_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{\gamma_{n}\right\}_{n \in \mathbb{Z}_{+}}$with $\gamma_{0}=0$ and $\gamma_{n} \beta_{n-1} / \beta_{n}>0$ for all $n \in \mathbb{N}$.

Favard's Theorem

Theorem (Favard)

Let $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$be a sequence of real polynomials such that $\operatorname{deg}\left(p_{n}\right)=n . P$ is an orthogonal system with respect to the inner product $\langle f, g\rangle_{\mu}=\int \overline{f(\xi)} g(\xi) \mathrm{d} \mu(\xi)$ for some probability measure $\mathrm{d} \mu$ on the real line if and only if the polynomials satisfy the three-term recurrence,

$$
p_{n+1}(\xi)=\left(\alpha_{n}-\beta_{n} \xi\right) p_{n}(\xi)-\gamma_{n} p_{n-1}(\xi), \quad n \in \mathbb{Z}_{+}
$$

for some real sequences $\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{\beta_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{\gamma_{n}\right\}_{n \in \mathbb{Z}_{+}}$with $\gamma_{0}=0$ and $\gamma_{n} \beta_{n-1} / \beta_{n}>0$ for all $n \in \mathbb{N}$.

- $\mathrm{d} \mu$ is symmetric (i.e. $\mathrm{d} \mu(-\xi)=\mathrm{d} \mu(\xi)$) if and only if $\alpha_{n}=0$

Favard's Theorem

Theorem (Favard)

Let $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$be a sequence of real polynomials such that $\operatorname{deg}\left(p_{n}\right)=n . P$ is an orthogonal system with respect to the inner product $\langle f, g\rangle_{\mu}=\int \overline{f(\xi)} g(\xi) \mathrm{d} \mu(\xi)$ for some probability measure $\mathrm{d} \mu$ on the real line if and only if the polynomials satisfy the three-term recurrence,

$$
p_{n+1}(\xi)=\left(\alpha_{n}-\beta_{n} \xi\right) p_{n}(\xi)-\gamma_{n} p_{n-1}(\xi), \quad n \in \mathbb{Z}_{+}
$$

for some real sequences $\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{\beta_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{\gamma_{n}\right\}_{n \in \mathbb{Z}_{+}}$with $\gamma_{0}=0$ and $\gamma_{n} \beta_{n-1} / \beta_{n}>0$ for all $n \in \mathbb{N}$.

- $\mathrm{d} \mu$ is symmetric (i.e. $\mathrm{d} \mu(-\xi)=\mathrm{d} \mu(\xi)$) if and only if $\alpha_{n}=0$
- P is orthonormal if and only if $\gamma_{n} \beta_{n-1} / \beta_{n}=1$

Favard's Theorem

Theorem (Favard)

Let $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$be a sequence of real polynomials such that $\operatorname{deg}\left(p_{n}\right)=n . P$ is an orthogonal system with respect to the inner product $\langle f, g\rangle_{\mu}=\int \overline{f(\xi)} g(\xi) \mathrm{d} \mu(\xi)$ for some probability measure $\mathrm{d} \mu$ on the real line if and only if the polynomials satisfy the three-term recurrence,

$$
p_{n+1}(\xi)=\left(\alpha_{n}-\beta_{n} \xi\right) p_{n}(\xi)-\gamma_{n} p_{n-1}(\xi), \quad n \in \mathbb{Z}_{+}
$$

for some real sequences $\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{\beta_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{\gamma_{n}\right\}_{n \in \mathbb{Z}_{+}}$with $\gamma_{0}=0$ and $\gamma_{n} \beta_{n-1} / \beta_{n}>0$ for all $n \in \mathbb{N}$.

- $\mathrm{d} \mu$ is symmetric (i.e. $\mathrm{d} \mu(-\xi)=\mathrm{d} \mu(\xi)$) if and only if $\alpha_{n}=0$
- P is orthonormal if and only if $\gamma_{n} \beta_{n-1} / \beta_{n}=1$

For us:

$$
p_{n+1}(\xi)=\frac{\xi}{b_{n}} p_{n}(\xi)-\frac{b_{n-1}}{b_{n}} p_{n-1}(\xi)
$$

Fourier characterisation for ϕ

We can now deduce for our $\Phi=\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}}$:

$$
\mathrm{i}^{n} \mathcal{F}\left[\varphi_{n}\right](\xi)=\psi_{n}(\xi)=\psi_{0}(\xi) p_{n}(\xi), \quad \text { so } \quad \varphi_{n}(x)=(-\mathrm{i})^{n} \mathcal{F}^{-1}\left[\psi_{0} \cdot p_{n}\right]
$$

The mapping can be (carefully) followed both ways:

$$
\left(\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}},\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}\right) \leftrightarrow\left(\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}, \psi_{0}\right)
$$

Theorem (Iserles-Webb 2018)

The sequence $\Phi=\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}_{+}}$has a real, skew-symmetric, tridiagonal, irreducible, differentiation matrix if and only if

$$
\varphi_{n}(x)=(-\mathrm{i})^{n} \mathcal{F}^{-1}\left[g \cdot p_{n}\right],
$$

where $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$is an orthonormal polynomial system on the real line with respect to a symmetric probability measure $\mathrm{d} \mu$, and $g=\psi_{0}=\mathcal{F}\left[\varphi_{0}\right]$.

Legendre and Bessel functions

The Legendre polynomials $P=\left\{P_{0}, P_{1}, \ldots\right\}$ satisfy

$$
\int_{-1}^{1} P_{n}(\xi) P_{m}(\xi) \mathrm{d} \xi=\left(n+\frac{1}{2}\right)^{-1} \delta_{n, m}
$$

Legendre and Bessel functions

The Legendre polynomials $P=\left\{P_{0}, P_{1}, \ldots\right\}$ satisfy

$$
\int_{-1}^{1} P_{n}(\xi) P_{m}(\xi) \mathrm{d} \xi=\left(n+\frac{1}{2}\right)^{-1} \delta_{n, m}
$$

It is known (see DLMF) that the Fourier transform of the normalised Legendre polynomials (denoted p_{n}) is

$$
\frac{(-\mathrm{i})^{n}}{\sqrt{2 \pi}} \int_{-1}^{1} p_{n}(x) \mathrm{e}^{\mathrm{i} \mathrm{x} \xi} \mathrm{~d} x=
$$

Legendre and Bessel functions

The Legendre polynomials $P=\left\{P_{0}, P_{1}, \ldots\right\}$ satisfy

$$
\int_{-1}^{1} P_{n}(\xi) P_{m}(\xi) \mathrm{d} \xi=\left(n+\frac{1}{2}\right)^{-1} \delta_{n, m}
$$

It is known (see DLMF) that the Fourier transform of the normalised Legendre polynomials (denoted p_{n}) is

$$
\frac{(-\mathrm{i})^{n}}{\sqrt{2 \pi}} \int_{-1}^{1} p_{n}(x) \mathrm{e}^{\mathrm{i} \times \xi} \mathrm{d} x=\sqrt{\frac{2 n+1}{\pi}} \mathrm{j}_{n}(\xi) .
$$

We obtain the spherical Bessel functions again!

Legendre and Bessel functions

The Legendre polynomials $P=\left\{P_{0}, P_{1}, \ldots\right\}$ satisfy

$$
\int_{-1}^{1} P_{n}(\xi) P_{m}(\xi) \mathrm{d} \xi=\left(n+\frac{1}{2}\right)^{-1} \delta_{n, m}
$$

It is known (see DLMF) that the Fourier transform of the normalised Legendre polynomials (denoted p_{n}) is

$$
\frac{(-\mathrm{i})^{n}}{\sqrt{2 \pi}} \int_{-1}^{1} p_{n}(x) \mathrm{e}^{\mathrm{i} \times \xi} \mathrm{d} x=\sqrt{\frac{2 n+1}{\pi}} \mathrm{j}_{n}(\xi) .
$$

We obtain the spherical Bessel functions again! $\left(g(\xi)=\chi_{[-1,1]}(\xi)\right)$

Orthogonal systems

- We have the formula, $\varphi_{n}(x)=(-i)^{n} \mathcal{F}^{-1}\left[g \cdot p_{n}\right]$, where $g=\mathcal{F}\left[\varphi_{0}\right]$ and $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$are orthonormal with respect to a symmetric measure.

Orthogonal systems

- We have the formula, $\varphi_{n}(x)=(-i)^{n} \mathcal{F}^{-1}\left[g \cdot p_{n}\right]$, where $g=\mathcal{F}\left[\varphi_{0}\right]$ and $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$are orthonormal with respect to a symmetric measure.
- How can we tell if Φ is an orthogonal system?

Orthogonal systems

- We have the formula, $\varphi_{n}(x)=(-i)^{n} \mathcal{F}^{-1}\left[g \cdot p_{n}\right]$, where $g=\mathcal{F}\left[\varphi_{0}\right]$ and $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$are orthonormal with respect to a symmetric measure.
- How can we tell if Φ is an orthogonal system?
- Parseval's Theorem: For all $\varphi, \psi \in \mathrm{L}_{2}(\mathbb{R})$,

$$
\int_{-\infty}^{\infty} \overline{\mathcal{F}[\varphi](\xi)} \mathcal{F}[\psi](\xi) \mathrm{d} \xi=\int_{-\infty}^{\infty} \overline{\varphi(x)} \psi(x) \mathrm{d} x
$$

- Simple!

$$
\int_{-\infty}^{\infty} \varphi_{n}(x) \varphi_{m}(x) \mathrm{d} x=(-\mathrm{i})^{m-n} \int p_{n}(\xi) p_{m}(\xi)|g(\xi)|^{2} \mathrm{~d} \xi
$$

Orthogonal systems

- We have the formula, $\varphi_{n}(x)=(-i)^{n} \mathcal{F}^{-1}\left[g \cdot p_{n}\right]$, where $g=\mathcal{F}\left[\varphi_{0}\right]$ and $P=\left\{p_{n}\right\}_{n \in \mathbb{Z}_{+}}$are orthonormal with respect to a symmetric measure.
- How can we tell if Φ is an orthogonal system?
- Parseval's Theorem: For all $\varphi, \psi \in \mathrm{L}_{2}(\mathbb{R})$,

$$
\int_{-\infty}^{\infty} \overline{\mathcal{F}[\varphi](\xi)} \mathcal{F}[\psi](\xi) \mathrm{d} \xi=\int_{-\infty}^{\infty} \overline{\varphi(x)} \psi(x) \mathrm{d} x
$$

- Simple!

$$
\int_{-\infty}^{\infty} \varphi_{n}(x) \varphi_{m}(x) \mathrm{d} x=(-\mathrm{i})^{m-n} \int p_{n}(\xi) p_{m}(\xi)|g(\xi)|^{2} \mathrm{~d} \xi
$$

Theorem (Iserles-Webb 2018)

Φ is orthogonal in $\mathrm{L}_{2}(\mathbb{R})$ if and only if P is orthogonal with respect to the measure $|g(\xi)|^{2} \mathrm{~d} \xi$. Note, $g=\mathcal{F}\left[\varphi_{0}\right]$.

Hermite revisited

$$
\varphi_{n}(x)=\frac{(-1)^{n}}{\left(2^{n} n!\right)^{1 / 2} \pi^{1 / 4}} \mathrm{e}^{-x^{2} / 2} \mathrm{H}_{n}(x), \quad n \in \mathbb{Z}_{+}, \quad x \in \mathbb{R}
$$

- As mentioned earlier, the Hermite functions are eigenfunctions of the Fourier transform:

$$
\begin{equation*}
\mathcal{F}\left[\varphi_{n}\right](\xi)=(-i)^{n} \varphi_{n}(\xi) \tag{2}
\end{equation*}
$$

- Therefore, the Hermite functions are, in a sense, a fixed point of our correspondence

Theorem (Iserles-Webb 2018)

Up to trivial rescaling, the only orthogonal system that consists of "quasi-polynomials" is the Hermite system.

Transformed Chebyshev functions

- The Chebyshev polynomials of the second kind, $U_{0}, U_{1}, U_{2}, \ldots$ are orthonormal with respect to the measure

$$
\mathrm{d} \mu(\xi)=\frac{2}{\pi} \chi_{[-1,1]}(\xi) \sqrt{1-\xi^{2}} \mathrm{~d} \xi .
$$

Transformed Chebyshev functions

- The Chebyshev polynomials of the second kind, $U_{0}, U_{1}, U_{2}, \ldots$ are orthonormal with respect to the measure

$$
\mathrm{d} \mu(\xi)=\frac{2}{\pi} \chi_{[-1,1]}(\xi) \sqrt{1-\xi^{2}} \mathrm{~d} \xi .
$$

- We have $b_{n}=\frac{1}{2}$ for all $n \in \mathbb{Z}_{+}$(so \mathcal{D} is also a Toeplitz matrix)

$$
\begin{aligned}
& \varphi_{0}(x) \propto \int_{-1}^{1}\left(1-\xi^{2}\right)^{1 / 4} \mathrm{e}^{\mathrm{i} \times \xi} \mathrm{d} \xi \propto \frac{\mathrm{~J}_{1}(x)}{x} \\
& \varphi_{1}(x) \propto \int_{-1}^{1} \xi\left(1-\xi^{2}\right)^{1 / 4} \mathrm{e}^{\mathrm{i} \times \xi} \mathrm{d} \xi \propto \frac{\mathrm{~J}_{2}(x)}{x}
\end{aligned}
$$

- Here $\mathrm{J}_{n}(x)$ is the Bessel function of degree n.
- The expressions get more complicated...

Transformed Chebyshev functions

The generated Hilbert space

- Well known that Hermite functions are complete in $\mathrm{L}_{2}(\mathbb{R})$

The generated Hilbert space

- Well known that Hermite functions are complete in $L_{2}(\mathbb{R})$
- What about transformed Legendre functions (spherical Bessel functions) or transformed Chebyshev functions?

The generated Hilbert space

- Well known that Hermite functions are complete in $\mathrm{L}_{2}(\mathbb{R})$
- What about transformed Legendre functions (spherical Bessel functions) or transformed Chebyshev functions?
- Clearly, their Fourier transforms are compactly supported in $[-1,1]$

The generated Hilbert space

- Well known that Hermite functions are complete in $\mathrm{L}_{2}(\mathbb{R})$
- What about transformed Legendre functions (spherical Bessel functions) or transformed Chebyshev functions?
- Clearly, their Fourier transforms are compactly supported in $[-1,1]$
- The Paley-Wiener spaces are closed subspaces of $L_{2}(\mathbb{R})$ obtained by restricting Fourier transforms to a set $\Omega \subset \mathbb{R}$:

$$
\mathcal{P} \mathcal{W}_{\Omega}(\mathbb{R}):=\left\{\varphi \in \mathrm{L}^{2}(\mathbb{R}): \mathcal{F}[\varphi](\xi)=0 \text { for a.e. } \xi \in \mathbb{R} \backslash \Omega\right\}
$$

- Keywords: Band-limiting, band-limited function spaces. Numerous applications and relevance in signal processing

Transformed Carlitz functions

Consider the hyperbolic secant measure

$$
\mathrm{d} \mu(\xi)=\operatorname{sech}^{2}(\pi \xi) \mathrm{d} \xi
$$

This measure (after heroic algebra) is related to the Carlitz polynomials on a line in the complex plane.

Transformed Carlitz functions

Consider the hyperbolic secant measure

$$
\mathrm{d} \mu(\xi)=\operatorname{sech}^{2}(\pi \xi) \mathrm{d} \xi
$$

This measure (after heroic algebra) is related to the Carlitz polynomials on a line in the complex plane.

$$
b_{n}=\frac{(n+1)^{2}}{\sqrt{(2 n+1)(2 n+3)}}
$$

Up to a constant scaling,

$$
\begin{aligned}
\varphi_{0}(x) & =\operatorname{sech}(x) \\
\varphi_{1}(x) & =-\sqrt{3} \tanh (x) \operatorname{sech}(x) \\
\varphi_{2}(x) & =\frac{\sqrt{5}}{2}\left(2 \operatorname{sech}(x)-3 \operatorname{sech}^{3}(x)\right) \\
\varphi_{3}(x) & =\frac{\sqrt{7}}{2} \tanh (x)\left(2 \operatorname{sech}^{2}(x)-5 \operatorname{sech}^{4}(x)\right)
\end{aligned}
$$

Transformed Carlitz functions

Transformed Freud functions

Polynomials orthogonal with respect to the measure $\mathrm{d} \mu(\xi)=\mathrm{e}^{-\xi^{4}} \mathrm{~d} \xi$ are a particular instance of Freud polynomials.

$$
\varphi_{0}(x)=\frac{2^{\frac{3}{4}}}{4 \Gamma\left(\frac{3}{4}\right)}\left\{2 \pi_{0} F_{2}\left[\frac{-}{\frac{1}{2}, \frac{3}{4} ;} ; \frac{x^{4}}{128}\right]-x^{2} \Gamma^{2}\left(\frac{3}{4}\right){ }_{0} F_{2}\left[\begin{array}{l}
-; \\
\frac{5}{4}, \frac{3}{2} ;
\end{array} \frac{x^{4}}{128}\right]\right\},
$$

The coefficients $\left\{b_{n}\right\}_{n \in \mathbb{Z}_{+}}$satisfy so-called string relations (see Clarkson 2016).

Summary and future directions

- There is a one-to-one correspondence between orthonormal systems with a real, skew-symmetric, tridiagonal, irreducible differentiation matrix and orthonormal polynomials with respect to a symmetric probability measure* $\mathrm{d} \mu(\xi)=w(\xi) \mathrm{d} \xi$.

Summary and future directions

- There is a one-to-one correspondence between orthonormal systems with a real, skew-symmetric, tridiagonal, irreducible differentiation matrix and orthonormal polynomials with respect to a symmetric probability measure* $\mathrm{d} \mu(\xi)=w(\xi) \mathrm{d} \xi$.
- The orthonormal systems generated are complete in the Paley-Wiener space for the support of the measure $\mathrm{d} \mu$.

Summary and future directions

- There is a one-to-one correspondence between orthonormal systems with a real, skew-symmetric, tridiagonal, irreducible differentiation matrix and orthonormal polynomials with respect to a symmetric probability measure* $\mathrm{d} \mu(\xi)=w(\xi) \mathrm{d} \xi$.
- The orthonormal systems generated are complete in the Paley-Wiener space for the support of the measure $\mathrm{d} \mu$.
- Plethora of possibilities and questions for Φ :

Summary and future directions

- There is a one-to-one correspondence between orthonormal systems with a real, skew-symmetric, tridiagonal, irreducible differentiation matrix and orthonormal polynomials with respect to a symmetric probability measure* $\mathrm{d} \mu(\xi)=w(\xi) \mathrm{d} \xi$.
- The orthonormal systems generated are complete in the Paley-Wiener space for the support of the measure $\mathrm{d} \mu$.
- Plethora of possibilities and questions for Φ :
- Approximation properties of Φ ?

Summary and future directions

- There is a one-to-one correspondence between orthonormal systems with a real, skew-symmetric, tridiagonal, irreducible differentiation matrix and orthonormal polynomials with respect to a symmetric probability measure* $\mathrm{d} \mu(\xi)=w(\xi) \mathrm{d} \xi$.
- The orthonormal systems generated are complete in the Paley-Wiener space for the support of the measure $\mathrm{d} \mu$.
- Plethora of possibilities and questions for Φ :
- Approximation properties of Φ ?
- Interesting features? E.g. interlacing roots

Summary and future directions

- There is a one-to-one correspondence between orthonormal systems with a real, skew-symmetric, tridiagonal, irreducible differentiation matrix and orthonormal polynomials with respect to a symmetric probability measure* $\mathrm{d} \mu(\xi)=w(\xi) \mathrm{d} \xi$.
- The orthonormal systems generated are complete in the Paley-Wiener space for the support of the measure $\mathrm{d} \mu$.
- Plethora of possibilities and questions for Φ :
- Approximation properties of Φ ?
- Interesting features? E.g. interlacing roots
- Can expansions be computed rapidly and stably?

Summary and future directions

- There is a one-to-one correspondence between orthonormal systems with a real, skew-symmetric, tridiagonal, irreducible differentiation matrix and orthonormal polynomials with respect to a symmetric probability measure* $\mathrm{d} \mu(\xi)=w(\xi) \mathrm{d} \xi$.
- The orthonormal systems generated are complete in the Paley-Wiener space for the support of the measure $\mathrm{d} \mu$.
- Plethora of possibilities and questions for Φ :
- Approximation properties of Φ ?
- Interesting features? E.g. interlacing roots
- Can expansions be computed rapidly and stably?
- Can e^{aD} be effectively approximated?

Summary and future directions

- There is a one-to-one correspondence between orthonormal systems with a real, skew-symmetric, tridiagonal, irreducible differentiation matrix and orthonormal polynomials with respect to a symmetric probability measure* $\mathrm{d} \mu(\xi)=w(\xi) \mathrm{d} \xi$.
- The orthonormal systems generated are complete in the Paley-Wiener space for the support of the measure $\mathrm{d} \mu$.
- Plethora of possibilities and questions for Φ :
- Approximation properties of Φ ?
- Interesting features? E.g. interlacing roots
- Can expansions be computed rapidly and stably?
- Can e^{aD} be effectively approximated?
- Can new, improved, practical, L_{2} stable spectral methods for time-dependent PDEs be developed following this work?

