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Motivation: Time-dependent PDEs

u ∈ C∞([0,∞); H1(R)), t ∈ [0,∞), x ∈ R.

Diffusion:
∂u

∂t
=

∂

∂x

[
a(t, x , u)

∂u

∂x

]
, a ≥ 0

Semi-classical Schrödinger:

iε
∂u

∂t
= −ε2 ∂

2u

∂x2
+ V (t, x , u)u, 0 < ε� 1, Imag(V ) = 0

Nonlinear advection:

∂u

∂t
=
∂u

∂x
+ f (u), v · f (v) ≤ 0

Common property? L2 stability:

d

dt

∫ ∞
−∞
|u(t, x)|2 dx ≤ 0, for all t ≥ 0.
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L2 stability of these PDEs

d

dt

∫
|u(t, x)|2 dx =

∫
∂

∂t
|u(t, x)|2 dx = 2Re

∫
u(t, x)

∂u

∂t
(t, x) dx

Diffusion:

d

dt

∫ ∞
−∞
|u|2 dx = 2

∫ ∞
−∞

u
∂

∂x

(
a(t, x , u)

∂u

∂x

)
dx

= −2

∫ ∞
−∞

a(t, x , u)

(
∂u

∂x

)2

dx ≤ 0

Schrödinger:

d

dt

∫ ∞
−∞
|u|2 dx = 2Re

∫ ∞
−∞

u

(
iε
∂2u

∂x2
− iε−1V (t, x , u)u

)
dx

= −2Re

∫ ∞
−∞

iε

∣∣∣∣∂u∂x
∣∣∣∣2 + iε−1V (t, x , u)|u|2 dx = 0
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Numerical solution of these PDEs

Suppose we want a numerical solution to the diffusion equation
∂tu = ∂x(a(x) · ∂xu).

Obtain a semi-discretised PDE:

u′(t) = DADu(t), u(0) = u0 ∈ CN

E.g. finite difference method on a grid x1, x2, . . . , xN

u(t) = (u(t, x1), u(t, x2), . . . , u(t, xN))T ∈ CN

D is a matrix encoding a finite-difference approximation to the partial
derivative ∂x .

A is a diagonal matrix with entries (a(x1), . . . , a(xN)).
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Numerical solution of these PDEs

Suppose we want to approximate the solution to the diffusion equation
∂tu = ∂x(a(x) · ∂xu).

Obtain a semi-discretised PDE:

u′(t) = DADu(t), u(0) = u0 ∈ `2

E.g. spectral method for a basis Φ = {ϕn}n∈Z+ of L2(R)

u(t, ·) =
∞∑
n=0

un(t)ϕn

D and A are infinite-dimensional matrices encoding:

ϕ′k(x) =
∞∑
j=0

Dk,jϕj(x), a(x)ϕk(x) =
∞∑
j=0

Ak,jϕj(x)
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`2 stability of (semi-)discretised PDEs

Diffusion:
u′(t) = DADu(t)

d‖u‖2
`2

dt
= 2uTu′ = 2uTDADu = 2(DTu)A(Du),

Nonlinear advection:
u′(t) = Du(t) + f(u(t))

d‖u‖2
`2

dt
= 2uTu′ = 2uTDu + 2uT f(u) ≤ 2uTDu,

We want D to be a skew-symmetric matrix. Differential operator is
skew-Hermitian.

Geometric Numerical Integration

The field of research on discretisation of differential equations which respects
qualitative properties of the analytical solution (see Hairer-Lubich-Wanner 2006)
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The joy and pain of skew-symmetry

The simplest second-order finite difference scheme gives

D =
1

2∆x



0 1 0 · · · 0

−1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0 1
0 · · · 0 −1 0



Looking good! This is the highest order skew-symmetric differentiation
matrix on an equispaced grid (Iserles 2014)

Higher-order skew-symmetric differentiation matrices on special grids are
possible but complicated (Hairer-Iserles 2016,2017).
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Known example: Fourier spectral methods

Take the Fourier basis:

ϕ0(x) ≡ 1

(2π)1/2
, ϕ2n(x) =

cos nx

π1/2
, ϕ2n+1(x) =

sin nx

π1/2
, n ∈ N

– note that the basis is orthonormal.

The differentiation matrix is

D =



0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
0 −1 0 0 0 0 0 · · ·
0 0 0 0 2 0 0 · · ·
0 0 0 −2 0 0 0 · · ·
0 0 0 0 0 0 3 · · ·
0 0 0 0 0 −3 0 · · ·
...

...
...

...
...

...
...

. . .


.

For periodic boundary conditions only.
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Known example: Hermite spectral methods

Hermite functions are familiar in mathematical physics:

ϕn(x) =
(−1)n

(2nn!)1/2π1/4
e−x

2/2Hn(x), n ∈ Z+, x ∈ R,

where Hn is the nth Hermite polynomial.

Orthonormal basis for L2(R)

Uniformly bounded, and smooth

Eigenfunctions of the Fourier transform

-8 -6 -4 -2 0 2 4 6 8

-1

-0.5

0

0.5

1

Hermite Functions
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Known example: Hermite spectral methods

Hermite functions obey the ODE

ϕ′0(x) = −
√

1

2
ϕ1(x),

ϕ′n(x) =

√
n

2
ϕn−1(x)−

√
n + 1

2
ϕn+1(x), n ∈ N.

In other words,

D =



0 −
√

1
2 0 0 · · ·√

1
2 0 −

√
2
2 0 · · ·

0
√

2
2 0 −

√
3
2

. . .

... 0
√

3
2

. . .
. . .

...
...

. . .
. . .

. . .


,

a skew-symmetric, tridiagonal differentiation matrix.
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Nonstandard example: Spherical Bessel Functions

Solutions to the ODE x2 d2y
dx2 + 2x dy

dx + (x2 − n(n + 1))y = 0, for each n ∈ Z+, are
the spherical Bessel functions jn(x).

j0(x) =
sin(x)

x
, j1(x) =

sin(x)

x2
− cos(x)

x
, j2(x) =

(
3

x2
− 1

)
sin(x)

x
− 3 cos(x)

x2
.

Writing ϕn(x) =
√

2n+1
π jn(x), one can obtain the known result

ϕ′n(x) = − n√
(2n − 1)(2n + 1)

ϕn−1(x) +
n + 1√

(2n + 1)(2n + 3)
ϕn+1(x)

-8 -6 -4 -2 0 2 4 6 8

-0.4

-0.2

0

0.2

0.4

0.6

Spherical Bessel Functions
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Aims of the talk

Aim 1

Find a system of functions Φ = {ϕn}n∈Z+ , and nonzero scalars {bn}n∈Z+ such that

ϕ′0(x) = b0ϕ1(x),

ϕ′n(x) = −bn−1ϕn−1(x) + bnϕn+1(x), n ∈ N.

Φ has real, skew-symmetric, tridiagonal irreducible differentiation matrix

Aim 2

Determine systems which are also orthonormal in L2(R):

u(x) =
∞∑
n=0

ukϕk(x) =⇒ ‖u‖`2 = ‖u‖L2(R) (1)

Our continuing mission: to explore strange new bases, to seek out new methods
and new special functions, to boldly go...
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Elementary construction

Let ϕ0 ∈ C∞(R) and {bn}n∈Z+ be given.

n = 0 : ϕ1(x) =
1

b0
ϕ′0(x),

n = 1 : ϕ2(x) =
1

b1
[ϕ′1(x) + b0ϕ0(x)] =

1

b0b1
[b2

0ϕ0(x) + ϕ′′0 (x)],

n = 2 : ϕ3(x) =
1

b2
[ϕ′2(x) + b1ϕ1(x)] =

1

b0b1b2
[(b2

0 + b2
1)ϕ′0(x) + ϕ′′′0 (x)]

and so on. Easy induction confirms that

ϕn(x) =
1

b0b1 · · · bn−1

bn/2c∑
`=0

αn,`ϕ
(n−2`)
0 (x), n ∈ N,

αn+1,0 = 1, αn+1,` = b2
n−1αn−1,`−1 + αn,`, ` = 1, . . . ,

⌊n
2

⌋
.

This method works in some sense. How to tell if orthogonal?

Marcus Webb (KU Leuven) Skew-symmetric differentiation matrices 12 / 26



Elementary construction

Let ϕ0 ∈ C∞(R) and {bn}n∈Z+ be given.

n = 0 : ϕ1(x) =
1

b0
ϕ′0(x),

n = 1 : ϕ2(x) =
1

b1
[ϕ′1(x) + b0ϕ0(x)] =

1

b0b1
[b2

0ϕ0(x) + ϕ′′0 (x)],

n = 2 : ϕ3(x) =
1

b2
[ϕ′2(x) + b1ϕ1(x)] =

1

b0b1b2
[(b2

0 + b2
1)ϕ′0(x) + ϕ′′′0 (x)]

and so on. Easy induction confirms that

ϕn(x) =
1

b0b1 · · · bn−1

bn/2c∑
`=0

αn,`ϕ
(n−2`)
0 (x), n ∈ N,

αn+1,0 = 1, αn+1,` = b2
n−1αn−1,`−1 + αn,`, ` = 1, . . . ,

⌊n
2

⌋
.

This method works in some sense. How to tell if orthogonal?

Marcus Webb (KU Leuven) Skew-symmetric differentiation matrices 12 / 26



Elementary construction

Let ϕ0 ∈ C∞(R) and {bn}n∈Z+ be given.

n = 0 : ϕ1(x) =
1

b0
ϕ′0(x),

n = 1 : ϕ2(x) =
1

b1
[ϕ′1(x) + b0ϕ0(x)] =

1

b0b1
[b2

0ϕ0(x) + ϕ′′0 (x)],

n = 2 : ϕ3(x) =
1

b2
[ϕ′2(x) + b1ϕ1(x)] =

1

b0b1b2
[(b2

0 + b2
1)ϕ′0(x) + ϕ′′′0 (x)]

and so on.

Easy induction confirms that

ϕn(x) =
1

b0b1 · · · bn−1

bn/2c∑
`=0

αn,`ϕ
(n−2`)
0 (x), n ∈ N,

αn+1,0 = 1, αn+1,` = b2
n−1αn−1,`−1 + αn,`, ` = 1, . . . ,

⌊n
2

⌋
.

This method works in some sense. How to tell if orthogonal?

Marcus Webb (KU Leuven) Skew-symmetric differentiation matrices 12 / 26



Elementary construction
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[ϕ′1(x) + b0ϕ0(x)] =

1
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[b2
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The Fourier transform

The unitary Fourier transform and its inverse:

F [ϕ](ξ) =
1√
2π

∫ ∞
−∞

ϕ(x)e−ixξ dx , F−1[ϕ](ξ) =
1√
2π

∫ ∞
−∞

ϕ(x)eixξ dx

Well known differentiation formula:

F [ϕ′](ξ) = iξF [ϕ](ξ).

Define the transformed functions

ψn(ξ) = (−i)nF [ϕn](ξ).

Then

ξψn(ξ) = (−i)nξF [ϕn](ξ) = (−i)n+1(iξ)F [ϕn](ξ) = (−i)n+1F [ϕ′n](ξ).
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The transformed functions

Fourier differentiation formula implies

ψn(ξ) = (−i)nF [ϕn](ξ), ξψn(ξ) = (−i)n+1F [ϕ′n](ξ), n ∈ Z+.

Using the skew-symmetric differentiation formula,

ξψ0(ξ) = b0(−i)F [ϕ1](ξ) = b0ψ1(ξ),

ξψn(ξ) = −bn−1(−i)n+1F [ϕn−1](ξ) + bn(−i)n+1F [ϕn+1](ξ)

= bn−1ψn−1(ξ) + bnψn+1(ξ).

They satisfy a symmetric recurrence!

Therefore, they are of the form ψn(ξ) = pn(ξ)ψ0(ξ), where

p0(ξ) = 1, p1(ξ) = b−1
0 ξ

pn+1(ξ) =
ξ

bn
pn(ξ)− bn−1

bn
pn−1(ξ), n ∈ N.
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Favard’s Theorem

Theorem (Favard)

Let P = {pn}n∈Z+ be a sequence of real polynomials such that deg(pn) = n. P is
an orthogonal system with respect to the inner product
〈f , g〉µ =

∫
f (ξ)g(ξ) dµ(ξ) for some probability measure dµ on the real line if

and only if the polynomials satisfy the three-term recurrence,

pn+1(ξ) = (αn − βnξ)pn(ξ)− γnpn−1(ξ), n ∈ Z+,

for some real sequences {αn}n∈Z+ , {βn}n∈Z+ , {γn}n∈Z+ with γ0 = 0 and
γnβn−1/βn > 0 for all n ∈ N.

dµ is symmetric (i.e. dµ(−ξ) = dµ(ξ)) if and only if αn = 0

P is orthonormal if and only if γnβn−1/βn = 1

For us: pn+1(ξ) = ξ
bn
pn(ξ)− bn−1

bn
pn−1(ξ)
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Fourier characterisation for Φ

We can now deduce for our Φ = {ϕn}n∈Z+ :

inF [ϕn](ξ) = ψn(ξ) = ψ0(ξ)pn(ξ), so ϕn(x) = (−i)nF−1[ψ0 · pn]

The mapping can be (carefully) followed both ways:

({ϕn}n∈Z+ , {bn}n∈Z+ )↔ ({pn}n∈Z+ , ψ0)

Theorem (Iserles-Webb 2018)

The sequence Φ = {ϕn}n∈Z+ has a real, skew-symmetric, tridiagonal, irreducible,
differentiation matrix if and only if

ϕn(x) = (−i)nF−1[g · pn],

where P = {pn}n∈Z+ is an orthonormal polynomial system on the real line with
respect to a symmetric probability measure dµ, and g = ψ0 = F [ϕ0].
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Legendre and Bessel functions

The Legendre polynomials P = {P0,P1, . . .} satisfy∫ 1

−1

Pn(ξ)Pm(ξ) dξ =

(
n +

1

2

)−1

δn,m

It is known (see DLMF) that the Fourier transform of the normalised Legendre
polynomials (denoted pn) is

(−i)n√
2π

∫ 1

−1

pn(x)eixξ dx =

√
2n + 1

π
jn(ξ).

We obtain the spherical Bessel functions again! (g(ξ) = χ[−1,1](ξ))
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Orthogonal systems

We have the formula, ϕn(x) = (−i)nF−1[g · pn], where g = F [ϕ0] and
P = {pn}n∈Z+ are orthonormal with respect to a symmetric measure.

How can we tell if Φ is an orthogonal system?

Parseval’s Theorem: For all ϕ,ψ ∈ L2(R),∫ ∞
−∞
F [ϕ](ξ)F [ψ](ξ) dξ =

∫ ∞
−∞

ϕ(x)ψ(x) dx

Simple! ∫ ∞
−∞

ϕn(x)ϕm(x) dx = (−i)m−n
∫

pn(ξ)pm(ξ)|g(ξ)|2 dξ

Theorem (Iserles-Webb 2018)

Φ is orthogonal in L2(R) if and only if P is orthogonal with respect to the
measure |g(ξ)|2dξ. Note, g = F [ϕ0].
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Hermite revisited

ϕn(x) =
(−1)n

(2nn!)1/2π1/4
e−x

2/2Hn(x), n ∈ Z+, x ∈ R,

As mentioned earlier, the Hermite functions are eigenfunctions of the
Fourier transform:

F [ϕn](ξ) = (−i)nϕn(ξ) (2)

Therefore, the Hermite functions are, in a sense, a fixed point of our
correspondence

Theorem (Iserles-Webb 2018)

Up to trivial rescaling, the only orthogonal system that consists of
“quasi-polynomials” is the Hermite system.
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Transformed Chebyshev functions

The Chebyshev polynomials of the second kind, U0,U1,U2, . . . are
orthonormal with respect to the measure

dµ(ξ) =
2

π
χ[−1,1](ξ)

√
1− ξ2 dξ.

We have bn = 1
2 for all n ∈ Z+ (so D is also a Toeplitz matrix)

ϕ0(x) ∝
∫ 1

−1

(1− ξ2)1/4eixξdξ ∝ J1(x)

x

ϕ1(x) ∝
∫ 1

−1

ξ(1− ξ2)1/4eixξdξ ∝ J2(x)

x
,

Here Jn(x) is the Bessel function of degree n.

The expressions get more complicated...
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Transformed Chebyshev functions
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The generated Hilbert space

Well known that Hermite functions are complete in L2(R)

What about transformed Legendre functions (spherical Bessel functions) or
transformed Chebyshev functions?

Clearly, their Fourier transforms are compactly supported in [−1, 1]

The Paley-Wiener spaces are closed subspaces of L2(R) obtained by
restricting Fourier transforms to a set Ω ⊂ R:

PWΩ(R) := {ϕ ∈ L2(R) : F [ϕ](ξ) = 0 for a.e. ξ ∈ R \ Ω},

Keywords: Band-limiting, band-limited function spaces. Numerous
applications and relevance in signal processing
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Transformed Carlitz functions

Consider the hyperbolic secant measure

dµ(ξ) = sech2(πξ) dξ

This measure (after heroic algebra) is related to the Carlitz polynomials on a line
in the complex plane.

bn =
(n + 1)2√

(2n + 1)(2n + 3)

Up to a constant scaling,

ϕ0(x) = sech(x)

ϕ1(x) = −
√

3 tanh(x)sech(x)

ϕ2(x) =

√
5

2

(
2sech(x)− 3sech3(x)

)
ϕ3(x) =

√
7

2
tanh(x)

(
2sech2(x)− 5sech4(x)

)
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Transformed Carlitz functions

Consider the hyperbolic secant measure

dµ(ξ) = sech2(πξ) dξ

This measure (after heroic algebra) is related to the Carlitz polynomials on a line
in the complex plane.

bn =
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Transformed Carlitz functions

(9)(9)

> > 

> > 

> > 
> > 

(19)(19)

> > 

> > 

(18)(18)
cosh x 4 7 cosh x 2 63

8
 11  sinh x

cosh x 6

5 x
cosh x 4 7 cosh x 2 63

8
 11  sinh x

cosh x 6

5
x

cosh x 4 7 cosh x 2 63
8

 11  sinh x

cosh x 6

plot 0 x , 1 x , 2 x , 3 x , 4 x , 5 x , x = 6 ..6, thickness = 2, color
= "LightPink", "LightCoral", "OrangeRed", "red", "Red", "DarkRed"
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Transformed Freud functions

Polynomials orthogonal with respect to the measure dµ(ξ) = e−ξ
4

dξ are a
particular instance of Freud polynomials.

ϕ0(x) =
2

3
4

4Γ( 3
4 )

{
2π0F2

[
—;
1
2 ,

3
4 ;

x4

128

]
− x2Γ2

(
3

4

)
0F2

[
—;
5
4 ,

3
2 ;

x4

128

]}
,

The coefficients {bn}n∈Z+ satisfy so-called string relations (see Clarkson 2016).

(7)(7)

> > 

(23)(23)

(62)(62)

(43)(43)

(10)(10)

> > 

> > 

(35)(35)

(57)(57)

> > 

> > 

> > 

(61)(61)

> > 

> > 

(60)(60)

(48)(48)

(11)(11)

> > 

> > 

(9)(9)

> > 

> > 

(32)(32)

(29)(29)

(58)(58)

> > 

> > 

> > 

x
8 6 4 2 0 2 4 6 8

1

1

2
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Summary and future directions

There is a one-to-one correspondence between orthonormal systems with a
real, skew-symmetric, tridiagonal, irreducible differentiation matrix and
orthonormal polynomials with respect to a symmetric probability measure∗

dµ(ξ) = w(ξ)dξ.

The orthonormal systems generated are complete in the Paley-Wiener
space for the support of the measure dµ.

Plethora of possibilities and questions for Φ:

Approximation properties of Φ?
Interesting features? E.g. interlacing roots
Can expansions be computed rapidly and stably?
Can eaD be effectively approximated?
Can new, improved, practical, L2 stable spectral methods for time-dependent
PDEs be developed following this work?
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