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Motivation

• Suppose you have solved an ODE on a time interval [0,T ]
(numerically or analytically),

• and now you want to know if it has singularities in the complex plane.

• Why?

• The singularities may have physical significance. E.g. complex
singularities of Painlevé equations determine the oscillations and
asymptotics along the real line.

• It can inform the mathematical analysis of the ODE. E.g. if all
singularities lie outside the strip |Im(t)| ≤ τ , then the transformation

ζ =
exp(πt/2τ)− 1

exp(πt/2τ) + 1

maps the strip to the unit disc. The solution must have a convergent
expansion in powers of ζ.
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Motivation

• We are thinking about Numerical Analytic Continuation.

• First idea: If we solve the ODE in Chebfun, we get a chebfun u.
What does this polynomial look like in the complex plane?

Figure : A polynomial interpolant (in Chebyshev points scaled and shifted to
[0, 10] here) cannot possibly approximate complex singularities because it is an
entire function.

• A better idea is to use rational functions, because they can have
singularities in the complex plane.
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Motivation: Issues with rational approximation

• Rational approximation is not as popular or as well known as
polynomial approximation.

• One reason is the phenomenon of spurious poles.

• We want a robust rational approximation.
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Rational interpolation and least squares

• Let x = (x0, x1, . . . , xN) ∈ CN+1, and let f : G ⊂ C→ C

• For m + n = N, the Cauchy interpolation problem is to find r ∈ Rm,n

such that
r(x) = f (x)

• May not exist: r ∈ R(1, 1) such that r(±1) = 0, r(0) = 1.

• To deal with this, consider the more general approach: Define

〈f , g〉N =
N∑
i=0

λi f (xi )g(xi ),

where λi > 0, and find p ∈ Pm, q ∈ Pn (and take r = p/q) to

minimise ‖p − fq‖N such that ‖q‖N = 1.
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Rational interpolation and least squares

• Reminder: minimise ‖p − fq‖N such that ‖q‖N = 1

• If m + n = N, then there always exists a solution with
‖p − fq‖N = 0, called a linearised solution.

• If m + n < N, then this gives a linearised least squares solution.
These are not interpolants if ‖p − fq‖N > 0.

• Idea: convert the problem into a linear algebra problem for
coefficients a of p and b of q in a certain polynomial expansion.

• To this aim, we find orthogonal polynomials (Pj)
N
j=0 with respect to

the discrete inner product 〈·, ·〉N .

• Simplest example: if x are roots of unity, take λi = 1 and Pj(x) = x j .
Merely orthogonality of the discrete Fourier basis.
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Rational interpolation and least squares

• If x are Chebyshev points xi = cos(iπ/N), take λ0 = λN = 1
2N ,

λi = 2
N , so that

〈f , g〉N =
2

N

N∑
i=0

′′f (xi )g(xi )

• The ′′ indicates halving the first and last enties. Then we have

〈Tj ,Tk〉N =


2 if j = k = 0,N,
1 if j = k 6= 0,N,
0 if j 6= k.

for the Chebyshev polynomials Tj(x) = cos(j cos−1(x)).

• Assume we have normalised T0 and TN .
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Rational interpolation and least squares

• Let p ∈ Pm and q ∈ Pn be a candidate solution, and let p̂ ∈ PN
interpolate f · q on x. We write them as

p =
N∑
j=0

ajTj , q =
N∑
j=0

bjTj , p̂ =
N∑
j=0

âjTj .

• Let C = (Tj(xi ))Ni ,j=0 and I ′′ = diag( 1
2 , 1, . . . , 1,

1
2 ). Then we have

p(x) = Ca, ‖p‖N = ‖a‖2 etc.,
2

N
C>I ′′C = I .

• Interpolation property of p̂ implies

â =
2

N
C>I ′′FCb, where F = diag(f (x0), . . . , f (xN))

• Interpretation: coeff. space a, b ← DCT → p(x), q(x) value space
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Rational interpolation and least squares

• Now note, ‖p − fq‖N = ‖p − p̂‖N = ‖a− â‖2

= ‖ã‖2 = ‖Z̃b‖2

• Solution to rational interpolation and least squares problem is to take
â = (a, ã)>, and choose b to minimise ‖ã‖2 such that ‖b‖2 = 1.

• We can view â = 2
NC
>I ′′FCb using Z ∈ Cm+1×n+1, Z̃ ∈ CN−m×n+1:(

a
ã

)
=

(
Z

Z̃

)
b

• Then ã = Z̃b, so the solution is:

minimise ‖Z̃b‖2 such that ‖b‖2 = 1,

then compute a = Zb.
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• Solution to rational interpolation and least squares problem is to take
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Uniqueness and robustness

• If m + n = N, then Z̃ is a N −m × n + 1 = n × n + 1 matrix, so has
a nontrivial kernel. I.e. we can find b such that ‖Z̃b‖2 = 0.

• If m + n < N, then Z̃ may not have a nontrivial kernel.

• Either way, we are finding the minimal singular vector

(s)

of Z̃ .
Easily done with SVD.

• If there are d minimal singular vectors, this corresponds to
non-uniqueness and a risk of spurious poles. Most straightforward
thing to do for robustness is to reduce n by d − 1 and start again.

• Repeat this until we have a unique b. The resulting r should have no
spurious poles!
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Robustness

• In Chebfun, there is the ratinterp command that does all of this for
abritrary points in C.

• In machine precision arithmetic, all the robustness procedure of
reducing the degree of q is done to a tolerance parameter tol .

• We reduce n by d − 1 if there are d − 1 singular vectors with singular
values within tol of the minimal singular value.

• We remove trailing coefficients of a and b that are smaller than tol ,
further reducing the degrees of p and q.

• Key point: if we ask for r ∈ Rm,n, we will in fact get r ∈ Rµ,ν with
µ ≤ m, ν ≤ n. This is the exact type of the interpolant.
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Rational interpolation and least squares: Literature

• We call this the PGVT approach after Pachón, Gonnet, Van Deun,
and Trefethen

• PGV 2011 introduces the novel approach for interpolation in arbitrary
points

• GPT 2011 extends to least squares approximation, enabling
robustness, but only for roots of unity

• Covered nicely in Trefethen’s book Approximation Theory and
Approximation Practice

• W 2013 discusses least squares for Chebyshev points, gives some
heuristics for parameters and its usage, and demonstrates with some
interesting ODE examples.
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Revisiting an example

Figure : Ratinterp returns an (20, 6) exact type rational least squares
approximant with appropriate singularity structure.
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Lorenz Attractor

• The Lorenz system is a system of ODEs first studied by Edward
Lorenz in the 1960s as a simplified model of convection rolls in the
upper atmosphere.

dx

dt
= 10(y − x)

dy

dt
= 28x − y − xz

dz

dt
= −8z/3 + xy .

• It is an example of a chaotic system.
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Lorenz Attractor: Numerical Solution
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Solution to the Lorenz Attractor as Scalar Functions

• The two straightforward viewpoints for the solution are as a trajectory
in 3 dimensions, or as three scalar functions.
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Lorenz Attractor: Analytical Solution

• However, a natural way to see the analytical solution is as a function
of a complex variable (see “Complex Singularities of the Lorenz
Attractor”, Viswanath and Sahutoglu 2010)

• The analytical solution can be expressed locally as a Psi-series:

x(t) =
P−1(η)

t − t0
+ P0(η) + P1(η)(t − t0) + P2(η)(t − t0)2 + . . . ,

y(t) =
Q−2(η)

(t − t0)2
+

Q−1(η)

t − t0
+ Q0(η) + Q1(η)(t − t0) + Q2(η)(t − t0)2 + . . . ,

z(t) =
R−2(η)

(t − t0)2
+

R−1(η)

t − t0
+ R0(η) + R1(η)(t − t0) + R2(η)(t − t0)2 + . . . .

• Here η = log(b(t − t0)) where b = ±i , and the Pjs, Qjs and Rjs are
polynomials. x has order 1 pseudo-pole at t0; y and z have order 2
pseudo-poles.
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Lorenz attractor in the complex plane

• The solution on the previous slide is 3 chebfuns of degrees N = 462,
509 and 498.

• A good strategy for ratinterp to find r ∈ Rm,n is to set m ≈ N/2
and n big enough to find some singularities, on N Chebyshev points in
the interval.

• We take the tol parameter to be 10−12, because there will be noise
with magnitude around 10−14 in the numerical solution.

• The command ratinterp(u(:,1), 231, 20, 463, [], 1e-12)

is computed in a fraction of a second.

• A type (173, 10) rational function is returned, with no spurious poles.

• Similarly, we get type (227, 10) and (221, 10) rational approximants
for the other two components.
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Lorenz attractor in the complex plane
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There are still open questions related to the analysis of the Lorenz system!
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Lotka–Volterra

• The Lotka–Volterra system is a simple model for the population of
predators (y) and their prey (x).

dx

dt
= αx − βxy , dy

dt
= −γy + δxy .

x , y , α, β, γ, δ > 0.

• The analysis is quite well understood compared to 3D systems. E.g.
we know that there are always Psi-series singularities in the complex
plane.
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Lotka–Volterra

• We solve using α = β = 1/2, γ = δ = 1, x(0) = 2, y(0) = 3.

• The populations fluctuate periodically.
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Lotka–Volterra

• The Chebfuns are of degrees 743 and 737. We compute (371, 20) and
(366, 20) ratinterp least squares approximants on 743 and 737
Chebyshev points.

• ratinterp returns type (297, 6) and (287, 6) exact type
approximants.
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Error estimates

• Errors creep in at every stage of the approximation.

• Error in solving ODE is (typically) ∼ 10−13

• Error in ratinterp on real line (with tolerance 10−12) is ∼ 10−10

• Error in ratinterp in region up to singularity is ∼ 10−8

• Error in location of singularities is ∼ 10−7 for poles, ∼ 10−2 for
branch points.

• However, the existence of each singularity is reliable. Afterwards
other methods such as steepest ascent can be used to gain accuracy.

• This makes it good for automated singularity location in parabolic
PDEs, parametrised ODEs etc. (see Weideman 2003).
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Vector-valued rational approximation

• Recently I realised the PGVT approach can easily be modified to
simultaneously compute rational approximants that each have the
same singularities, AKA vector-valued rational approximation. (I am
grateful to D. Viswanath for a fruitful correspondence).

• For 3D systems, the goal was to find 3 minimal singular vectors b1,
b2, b3, of 3 matrices Z̃1, Z̃2, Z̃3, hoping that b1 ≈ b2 ≈ b3.

• Instead, find 1 minimal singular vector b of the block matrix:

Z̃ =

 Z̃1

Z̃2

Z̃3


• Then a1 = Z1b, a2 = Z2b, a3 = Z3b.
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Z̃2

Z̃3


• Then a1 = Z1b, a2 = Z2b, a3 = Z3b.
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Summary

• PGVT approach is based on SVD of the linearised rational
interpolation problem

• Uses the singular values to reduce the number of poles

• Usage: use the degree of a chebfun interpolant (N) to choose degree
of numerator, m ≈ N/2

• An interesting application: find complex singularities of ODEs.

• The PGVT approach can be modified to compute vector-valued
rational approximants too.

• Thank you for your attention!

Marcus Webb (m.d.webb@maths.cam.ac.uk) Computing Complex Singularities of Differential Equations 24 / 24



Summary

• PGVT approach is based on SVD of the linearised rational
interpolation problem

• Uses the singular values to reduce the number of poles

• Usage: use the degree of a chebfun interpolant (N) to choose degree
of numerator, m ≈ N/2

• An interesting application: find complex singularities of ODEs.

• The PGVT approach can be modified to compute vector-valued
rational approximants too.

• Thank you for your attention!

Marcus Webb (m.d.webb@maths.cam.ac.uk) Computing Complex Singularities of Differential Equations 24 / 24



Summary

• PGVT approach is based on SVD of the linearised rational
interpolation problem

• Uses the singular values to reduce the number of poles

• Usage: use the degree of a chebfun interpolant (N) to choose degree
of numerator, m ≈ N/2

• An interesting application: find complex singularities of ODEs.

• The PGVT approach can be modified to compute vector-valued
rational approximants too.

• Thank you for your attention!

Marcus Webb (m.d.webb@maths.cam.ac.uk) Computing Complex Singularities of Differential Equations 24 / 24



Summary

• PGVT approach is based on SVD of the linearised rational
interpolation problem

• Uses the singular values to reduce the number of poles

• Usage: use the degree of a chebfun interpolant (N) to choose degree
of numerator, m ≈ N/2

• An interesting application: find complex singularities of ODEs.

• The PGVT approach can be modified to compute vector-valued
rational approximants too.

• Thank you for your attention!

Marcus Webb (m.d.webb@maths.cam.ac.uk) Computing Complex Singularities of Differential Equations 24 / 24



Summary

• PGVT approach is based on SVD of the linearised rational
interpolation problem

• Uses the singular values to reduce the number of poles

• Usage: use the degree of a chebfun interpolant (N) to choose degree
of numerator, m ≈ N/2

• An interesting application: find complex singularities of ODEs.

• The PGVT approach can be modified to compute vector-valued
rational approximants too.

• Thank you for your attention!

Marcus Webb (m.d.webb@maths.cam.ac.uk) Computing Complex Singularities of Differential Equations 24 / 24



Summary

• PGVT approach is based on SVD of the linearised rational
interpolation problem

• Uses the singular values to reduce the number of poles

• Usage: use the degree of a chebfun interpolant (N) to choose degree
of numerator, m ≈ N/2

• An interesting application: find complex singularities of ODEs.

• The PGVT approach can be modified to compute vector-valued
rational approximants too.

• Thank you for your attention!

Marcus Webb (m.d.webb@maths.cam.ac.uk) Computing Complex Singularities of Differential Equations 24 / 24


