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Verification and validation are required to help assure the safety, reliability, func-
tional correctness and trustworthiness of systems. Verification demonstrates that the 
system conforms to its requirements and validation that it meets the needs of the 
stakeholders. Formal verification involves a mathematical analysis of all behaviours 
of a system often using logics and tools such as theorem provers or model check-
ers. Model checkers [1–3] are based on an automated, algorithmic method to show 
whether a property holds on all runs of the system. As input, model checkers require 
a model of the system and a property relating to the requirements in some (temporal) 
logical language. Commonly used logics to express change over time are proposi-
tional linear time temporal logic (LTL) [4, 5] and computational tree logic (CTL) 
[6]. Theorem proving, see, e.g., [7–10] for calculi and tools for temporal resolution, 
involves specifying both the system and the property in some logical language and 
using mathematical proof to show that the property is a logical conclusion from the 
formulae specifying the system. A number of tools and techniques have been devel-
oped to carry out theorem proving and model checking. While formal verification 
has the advantages of being exhaustive (considering all states in the system), precise 
details of the system often have to be represented in an abstract form to minimise the 
amount of time and memory required during the formal verification process.

Non-formal techniques can also be used for verification, e.g., simulation-based 
testing [11], or end-user experiments [12]. While not exhaustive, i.e., not every path 
through the system will be tested and not every scenario can be examined, the sys-
tem being tested is more realistic than the abstracted model above.
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Different verification methods might be used depending on the system under 
consideration. A combination of different types of verification using both formal 
and non-formal techniques can help to improve the confidence in the system [13].

In this chapter, we discuss a range of tools and techniques applicable to the 
verification and validation of autonomous space systems. In particular we describe:

•• verification techniques for robotics and autonomous systems;
•• theorem proving for space robotics using modal and temporal logics;
•• verifiable space robot architectures;
•• simulation and verification of the Mars Curiosity rover;
•• verification of astronaut–rover teamwork as modelled by the Brahms agent 

modelling system originally developed at NASA;
•• modelling and verification of multi-objects systems (such as swarms of satel-

lites or sensor network protocols).

11.1   Formal specification and verification techniques

In this section, we provide an overview of formal specification and verification tech-
niques that have been applied to robotics and autonomous systems that can be found 
in the literature. Additionally, we discuss some particular formal verification tech-
niques and how they might be applied to autonomous space systems. We believe that 
many of the issues for verifying systems for space are similar to those for robotics 
and autonomous systems in other extreme and dangerous environments.

11.1.1   Formal specification and verification for autonomous 
robotic systems
The work summarised in this section was originally published in [14, 15]. In par-
ticular, [14] contains a comprehensive survey of the literature in relation to formal 
specification and verification of autonomous robotic systems. This work identified 
a number of distinct challenges for formal specification and verification of robotic 
systems and some of these are described in the position paper which advocates the 
use of integrated formal methods in this domain [15].

11.1.1.1   Methodology
In this work, we began by identifying the following three research questions:

RQ1: What are the challenges when formally specifying and verifying the 
behaviour of (autonomous) robotic systems?

RQ2: What are the current formalisms, tools and approaches used when 
addressing the answer to RQ1?

RQ3: What are the current limitations of the answers to RQ2 and are there 
developing solutions aiming to address them?
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We investigated these questions by carrying out a systematic literature survey on 
formal modelling of (autonomous) robotic systems, formal specification of (autono-
mous) robotic systems and formal verification of (autonomous) robotic systems. This 
search applied to papers published from 2007 to 2018, inclusive. A summary of the 
results can be found in [16].

11.1.1.2   Answering RQ1: challenges
By analysing the literature, we were able to identify a number of challenges for for-
mal specification and verification. We partitioned the challenges into those that are 
external and those that are internal to the robotic system. The challenges that were 
deemed as external to the robotic system were modelling the physical environment 
and providing evidence for certification and trust. The challenges that were deemed 
to be internal to the robotic system were agent-based systems, multi-robot systems 
and self-adaptive and reconfigurable systems. These challenges and current efforts 
for solving them are summarised in detail in [14, §3–4].

Interestingly, tackling the internal challenges may help to minimise the effects 
of the external challenges. For example, reconfigurability can help an autonomous 
robotic system to handle an uncertain and dynamic environment. Similarly, rational 
agents, which can provide reasons for their choices, can help with evidence for cer-
tification and public trust.

11.1.1.3   Answering RQ2: formalisms, tools and approaches
To answer RQ2, we quantified and described the formalisms, tools and approaches 
used in the literature [14, §5–6]. We have summarised these findings briefly in 
Tables 11.1 and 11.2. In particular, Table 11.1 reveals that most used a state-transition 
formalism to specify or build a model of their system. Whereas, most used a logic, 
normally temporal logic, to specify the properties of the system to be verified.

This could be a result of model checkers being the most favourable approach as 
indicated by Table 11.2, which generally take a state-transition system as input to 
verify against logical properties, often temporal logic. This choice of model check-
ing may be due to the fact that it is generally easy to explain to stakeholders as 
‘exhaustive testing’, a concept that most are familiar with. The lack of popularity of 

Table 11.1  � Summary of the types of formalisms for specifying the system and the 
properties to be checked [14, table 2]

Formalism System Property

Set-based 5 0
State-transition 33 0
Logic 6 32
Process algebra 3 1
Ontology 4 0
Other 5 8
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theorem provers is likely due to their usability issues since they are generally dif-
ficult to operate for non-expert users.

11.1.1.4   Answering RQ3: limitations
We address this question in detail in [14, §7]. The most obvious limitation is the lack 
of adoption of formal methods by robotic software developers. It is often the case 
that these developers view formal methods as difficult to use and as a complicated 
additional step in the development process. Further, a lack of appropriate tools often 
impedes the application of formal methods [16].

As indicated by [14, Table 3], there is a huge variety of tools that have been 
developed for the same formalism. This indicates a lack of interoperability between 
different formalisms and tools. The development of a common framework for trans-
lating between, relating or integrating different formalisms would be useful in this 
domain and is an open problem in this domain [15].

Furthermore, formalising the last link between specification and implementable 
code is another limitation not only in this area but also in software engineering, in 
general. In particular, ensuring that the software implementation matches the associ-
ated formal specification requires a formalised translation.

11.1.1.5   Application to space robotics
Of course, this survey [14], the associated position paper [15] and summary [16] 
are quite broad and do not specifically target space systems, although some of the 
surveyed materials do. Since space is an appropriate domain where reliable autono-
mous robotic systems are required, it is important to understand the current state-
of-the-art approaches to formal specification and verification of autonomous robotic 
systems in general and this survey provides the relevant details [14–16].

11.2   Theorem proving for space robotics using modal and 
temporal logics

We are developing tools and techniques for verification that can be applied to robot-
ics and autonomous systems. In particular, we are interested in the development of 

Table 11.2  � Summary of the verification approaches used throughout the 
literature [14, table 4]

Approach Total

Model checking 32
Theorem proving 3
Runtime monitoring 3
Integrated formal methods 8
Formal software frameworks/architectures 10
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tools and techniques for different dimensions such as temporal logics that consider 
how systems change over time [3], modal logics [17] that consider possible worlds 
where the relationships between worlds may represent necessity/possibility, belief or 
knowledge [18], temporal logics that incorporate probabilities such as Probabilistic 
Computation Tree Logic (PCTL) [19] or specific time bounds like Metric Temporal 
Logics (MTLs) [20].

We discuss some deductive methods that have been developed, including cal-
culi and associated theorem-proving tools for different temporal and modal logics. 
These are resolution-based methods that follow the overall approach developed for 
LTL in [7] and extended to the branching-time temporal logic CTL in [9]. Using 
this approach, we can encode the system as a logical formula (S) and a property we 
want to prove of this system (P) in some logic. If we want to show ‍S ! P‍ is valid, 
we negate ‍S ! P‍ obtaining ‍S ^ :P‍ and show that the negated formula is unsat-
isfiable. The general approach is to translate the original formula ‍'‍ into another 
equi-satisfiable formula ‍'‍ of a particular form (termed a normal form). Following 
this, a number of proof rules are applied that generate new normal form formulae 
(often called clauses). The process stops when no new clauses can be derived or a 
contradiction can be obtained. With the temporal and modal logics we discuss here, 
the key thing is to make sure that formulae relate to the same world so that the proof 
rules can be applied.

11.2.1   The multi-modal logic K
There has been interest in modal logics (see, e.g., [21]) in relation to theoretical 
results, the development of practical tools such as theorem provers and their appli-
cation to systems. A calculus [22] and theorem prover [23] have been developed 
for the multi-modal logic K. This modal logic has two modal operators: ﻿‍�‍ denoted 
necessity and ‍̇ ‍possibility. These operators can be indexed for different agents, e.g., 
below ‍�a‍ (‍̇ a‍) denotes that it is necessary (possible) for the astronaut, whereas ‍�r‍ 
(‍̇ r‍) denotes that it is necessary (possible) for the rover. The example below consid-
ers two agents, an astronaut and a rover, where the astronaut can go outside a lunar 
habitat to survey the moon surface and the rover must accompany the astronaut dur-
ing dangerous situations.

‍�a(out ! danger)‍ For the astronaut it is necessarily the case that 
if they are out of the habitat then they are 
in danger

‍�a(survey ! out)‍ For the astronaut it is necessarily the case that 
if they are surveying then they are out of 
the habitat

‍�a(danger ! �raccompany)‍ For the astronaut it is necessarily the case 
that if they are in danger then the rover 
necessarily accompanies them

‍̇ asurvey‍ It is possible that the astronaut does a survey
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From this, we can prove that it is possible that the astronaut is necessarily 
accompanied by the rover (‍̇ a�raccompany‍).

A resolution calculus has been developed for this logic that only allows the 
deduction rules to be applied to the same modal depth of formula [22]. This makes 
the prover for this calculus [23] perform well on formulae with a high level of nest-
ing of modal formulae compared to other modal theorem provers for this logic.

11.2.2   Metric temporal logic
MTLs have models that are timed sequences of states. In MTL, the temporal opera-
tors such as ﻿‍�‍ (‘now and at every future moment’), ‍̇ ‍ (‘at sometime in the future’) 
and ‍�‍ (‘in the next moment in time’) include an interval that provides temporal con-
straints about when formulae should hold. For example, ‍�[0,4]'‍ denotes that ‍'‍ holds 
at all states that occur between zero and four time points from now, and ‍�[3,1]'‍ 
denotes that ‍'‍ holds at all states that occur at least three time points onwards. In the 
statements below, we provide some MTL formulae describing some formulae for the 
astronaut–rover scenario.

‍�[0,1](start_survey ! ˙[0,6]:out)‍ It is always the case that once the astronaut starts 
surveying they must return to the habitat within six 
time units

‍�[0,1](end_survey ! �[0,3]rest)‍ It is always the case that once the astronaut finishes the 
period of surveying then they must rest for three time 
units

 

If we consider a natural numbers model where states are mapped to the natural 
numbers, we can translate such formulae into formulae of LTL. Then we can apply 
provers that have been developed for LTL to obtain a route to theorem proving 
for MTL formulae. Two different translations have been developed and applied to 
two different versions of the semantics. An experimental analysis has been applied 
translating these alternatives to input to a range of LTL provers to investigate their 
behaviour [24, 25]. This approach is useful as it allows the re-use of a range of prov-
ers for temporal logics that can be applied to problems for MTL over the natural 
numbers. A related approach is taken in [26], where translations from a similar logic 
(Mission-Time LTL) into model checkers for LTL are provided.

11.3   Verifiable space robot architectures

Robotic systems combine many hardware and software components, usually rep-
resented as node-based architectures. Each node in a robotic system may require 
different verification techniques, ranging from software testing to formal methods. 
In fact, integrating (formal and non-formal) verification techniques is crucial for 
the robotics domain [15]. Verification should be carried out using the most suitable 
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technique or formalism for each node. However, linking heterogeneous verification 
results of individual nodes is difficult and the current state-of-the-art for robotic soft-
ware development does not provide an easy way of achieving this. In this section, 
we summarise ongoing work that was originally presented in [27].

In Figure 11.1, we consider a simple space robotic system: a planetary rover 
undertaking a remote inspection task. Here, we have nodes representing the Vision 
system, a Planner that returns a set of potential plans between the current location 
and the next point to inspect, an autonomous Plan Reasoning Agent that selects a 
plan and a Hardware Interface that sends commands to the rover’s actuators.

As illustrated in Figure 11.1, we could use logical specifications (e.g., tempo-
ral logic), model-based specifications (e.g., Event-B [28] or Z [29]) or algebraic 
specifications (e.g., Communicating Sequential Processes (CSP) [30] or Common 
Algebraic Specification Language (CASL) [31]) among others to specify the nodes 
in a robotic system. Each of these formalisms offers its own range of benefits, and 
each tends to suit the verification of particular types of behaviour. However, in some 
cases we may only have access to the black-box or white-box implementation of a 
node and, so, we must use (simulation-based) testing techniques for verification.

Our approach facilitates the use of heterogeneous verification techniques for the 
nodes in a robotic system. We achieve this by specifying contracts as properties in 
First-Order Logic (FOL), as high-level node specifications, and we employ temporal 
logic for reasoning about the combination of these FOL specifications. Thus, we 
attach the assumptions (‍A(i)‍) and guarantees (‍G(o)‍) to individual nodes (shown in 
Figure 11.1). This abstract specification can be seen as a logical prototype for indi-
vidual nodes and thus the entire robotic system.

11.3.1   FOL contract specifications
For each node, N, we specify ‍AN(iN)‍ and ‍GN(oN)‍, where ‍iN ‍ is a variable represent-
ing the input to the node, ‍oN ‍ is a variable representing the output from the node and 
‍AN(iN)‍ and ‍GN(oN)‍ are FOL formulae describing the assumptions and guarantees, 
respectively, of this node.

Each individual node, N, obeys the following implication

Figure 11.1  � We specify the Assume-Guarantee contracts for each node (denoted 
by ‍A(i)‍ and ‍G(o)‍, respectively). These are then used to guide the 
verification approach applied to each node, denoted by dashed 
lines, such as software testing for a black-box implementation of the 
Vision node. The solid arrows represent data flow between nodes 
and that the assumptions of the next node should follow from the 
guarantee of the previous node.
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‍8iN, oN � AN(iN) ) ˙GN(oN)‍
where ‘‍̇ ‍’ is LTL’s [4] ‘eventually’ operator. So, this implication means that if the 
assumptions, ‍AN(iN)‍, hold then eventually the guarantee, ‍GN(oN)‍, will hold. Note that 
our use of temporal operators here is motivated by the temporal nature of robotic 
systems and will be of use in later extensions of this work.

Consider the autonomous Plan Reasoning Agent in Figure 11.1; we can specify 
the following simple assumption ‍A3(i3)‍:

‍A3(i3) = 8p � p 2 PlanSet ) goal 2 p‍
which ensures that every plan that is returned by the Planner contains the ‍goal‍ loca-
tion. Then, we might specify the guarantee that the agent chooses the shortest ‍plan‍ 
as follows:

‍G3(o3) = (plan 2 PlanSet) ^ (8p � p 2 PlanSet) ^ (p ¤ plan) ) (length(plan) � length(p))‍

Once the FOL assumption and guarantee are specified, then we use these high-
level specifications as properties to be verified of the individual nodes. For the 
autonomous Plan Reasoning Agent, we can use a number of techniques for verify-
ing that it meets its associated FOL specification. For example, we can specify the 
node using the Gwendolen agent programming language and then use the Agent 
Java PathFinder (AJPF) model checker to verify that it behaves as specified [32].

Nodes in a modular robotic architecture are linked together and transmit data 
between them so long as their types/requirements match. Similarly, we can compose 
the contract specifications of individual nodes in a number of ways and we are work-
ing towards a calculus of inference rules that capture this behaviour. To this end, 
we are developing rules for sequentially composing, joining, branching and looping 
between nodes.

11.3.2   Measuring confidence in verification
A key question is how using these different verification techniques affects our confi-
dence in the verification of the whole system. One might think that a formal proof of 
correctness corresponds to a higher level of confidence than simple testing methods 
(especially over unbounded environments). However, formal verification is usually 
only feasible on an abstraction of the system whereas testing can be carried out on 
the implemented code. Therefore, it is our view that we achieve higher levels of 
confidence in verification when multiple verification methods have been employed 
for each node in the system [13].

We have broadly partitioned current verification techniques into three catego-
ries: testing, simulation-based testing and formal methods. We have determined 
which of these techniques might be employed for each node in our simple example 
as shown in Table 11.3. We then provide a score for our level of confidence in the 
verification of the whole system as ‍9/12‍, resulting in a confidence measure of 75 
percent. Examining how this metric can be calculated for more complex systems 
with loops is a future direction for this work.
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When verifying complex robotic systems, it is clear that no single verification 
technique is suitable for every node in the system [15] and so a logical framework 
that allows us to integrate the results from distinct verification techniques is needed. 
We have outlined an initial approach to specifying assumptions and guarantees using 
FOL for individual nodes in robotic systems and we have used a simple, illustrative 
example of a planetary rover to convey our approach. Once the FOL specifications 
have been constructed, they are then used to guide the more detailed verification of 
each node. Furthermore, we introduce the notion of confidence in verification tech-
niques and provide a broad categorisation.

Our current work involves developing a calculus for reasoning about and com-
bining the contract specifications of individual nodes. In the future, we plan to pro-
vide tool support for this and to evaluate it using a set of more complex robotic 
space missions. We also intend to further investigate the suitability of the confidence 
levels that we have proposed.

11.3.3   Related work
Our approach draws inspiration from Broy’s approach to systems engineering [33], 
which uses logical predicates in the form of assertions, with relationships defined 
between them that extend to assume/commitment contracts. The treatment of these 
contracts is purely logical, and we present a similar technique that is specialised 
to the software engineering of robotic systems – a domain which has not received 
much attention in this branch of the literature before.

In terms of compositional verification, related work includes CoCoSpec [34], 
which allows users to specify contracts for reactive systems in terms of assumptions 
and guarantees. This work is specialised for synchronous communications and thus it 
differs from the event-based communications that we target here. Further, their con-
tract semantics is more restrictive than ours. It is also not clear how their support for 
compositional verification can be extended to support heterogeneous components such 
as those in our example. Other related approaches include OCRA [35] and AGREE 
[36], although neither explicitly incorporates heterogeneous verification techniques.

Table 11.3    Verification techniques applied to each node

Testing Simulation-based testing Formal methods

Vision ✓ ✗ ✗
Planner ✓ ✓ ✓
Plan reasoning agent ✓ ✓ ✓
Hardware interface ✓ ✓ ✗
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11.4   Case study 1: Simulation and verification of the Mars 
Curiosity rover

Autonomous robots are especially relevant in scenarios with communication bottle-
necks. For example, in planetary space exploration it can take a long time for human 
operators to send commands from Earth to the robot, and then the same amount of 
time to receive any feedback data from the command that was sent. The Curiosity 
rover1 is one of the most complex rovers successfully deployed in a planetary explo-
ration mission to date. It was sent by NASA to explore the surface of Mars. Its main 
objectives include determining signs of life, characterising climate and geology and 
preparing for human exploration.

However, one of the biggest challenges faced by the Curiosity is the long 
communication delay between Earth and Mars. Depending on the orbital position 
of both planets, it can take anywhere from 4 to 24 minutes for a message to be 
transmitted between Earth and Mars. Thus, if the Curiosity could be controlled 
autonomously it would be able to perform its activities much faster. One of the 
major challenges preventing the use of autonomy in such scenarios is the lack of 
assurance that the autonomous behaviour will work as expected. To this end, it is 
important to take a corroborative approach [13] when trying to provide assurances 
about autonomy.

In [37], system scenario tests are described for the validation of the Mars 
Curiosity rover surface operations. These tests were performed before the launch, 
over the period of one year, to test high-priority objectives in typical missions that 
would take place for the duration of a Martian day. Testing-based approaches are 
essential for validating a system; however, they are not exhaustive and can often 
miss edge cases, particularly when testing autonomous systems.

The presence of autonomy (without any input from Earth) in the original 
mission was restricted to the AEGIS (Autonomous Exploration for Gathering 
Increased Science) component [38]. This component provides the autonomous 
targeting of surfaces to be processed by the remote geochemical spectrometer. 
It has been validated through comprehensive testing both in simulation before 
the launch and on Mars after the launch, but no concrete formal verification was 
made public. While we do not have the AEGIS in our (much simpler) simulation, 
we use a rational agent to perform autonomous operations that would usually be 
delegated to Earth operators and use formal techniques to verify the behaviour 
of the agent.

In this section, we present a simulation of the Mars Curiosity rover controlled 
via an autonomous agent. Then, we discuss the formal verification of this agent 
through the use of model checking. Finally, we verify it at runtime by deploying 
runtime monitors. This combination of simulation-based testing, and the use of two 

1 https://mars.nasa.gov/msl/



Verification for space robotics  11

distinct formal methods, gives us a basis for providing assurances about the use of 
autonomy in extreme environments that could be transferred and applied to other 
similar case studies. We refer the reader to [39] for a more in-depth discussion about 
the use of different verification techniques applied to a similar case study to the one 
presented in the section.

11.4.1   Simulation
Modular architectures are typically employed to speed up and make the develop-
ment of robotic systems easier. The Robot Operating System (ROS) [40] is an exam-
ple of a popular middleware that can be used to develop a modular robotic system. 
In ROS, nodes are used to effectively capture robotic software in terms of a graph 
that describes the communication between distinct nodes. Some of the advantages of 
decoupling the system in this way include more precise failure handling and recov-
ery mechanisms, since failures can be traced to individual nodes and the complexity 
of the code is reduced when compared to monolithic systems, making it easier to 
add, replace or remove functionality (i.e., nodes).

Even though the software deployed with the real Curiosity was not ROS-based, 
a ROS version has been developed by the ROS teaching website The Construct2 
using official data and 3D models of Curiosity and Mars terrain that NASA made 
public. The simulation uses ROS and runs in Gazebo, a 3D simulator with sev-
eral high-performance physics engines. The 3D model of the Curiosity running in 
Gazebo is shown in Figure  11.2a, and the Mars world used in the simulation is 
shown in Figure 11.2b.

RVIZ is a 3D visualiser tool that displays state information about the virtual 
model of the robot and live sensor data such as camera feeds, infrared measurements 
and more. Most of the Curiosity’s effectors are included in the simulation, as shown 
in Figure 11.3. It has all six wheels, along with the suspension system, the complete 
chassis of the rover, a 7-foot retractable arm with four joints and a retractable mast 

2 https://bitbucket.org/theconstructcore/curiosity_mars_rover/src/master/

(a) (b)

Figure 11.2  � The Mars Curiosity rover simulation in Gazebo. (a) The Mars 
Curiosity model in Gazebo. (b) The Mars world in Gazebo.
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with two joints and a camera (Mastcam) on top. Some of the sensors are missing 
(such as chemical and weather sensors), as these would require the sensor data to be 
simulated in some way.

The standard control of the Curiosity rover in the original simulation was imple-
mented using ROS services and needs to be teleoperated by a human. Services can 
be provided by ROS nodes and are defined by a pair of request and reply mes-
sages. This interaction is similar to a remote procedure call. Action libraries follow 
a client-server model that is similar to ROS services, both can receive a request to 
perform some task and then generate a reply. The difference in using action librar-
ies is that the user can cancel the action, as well as receive feedback about the task 
execution. Thus, action libraries are more suited when autonomy is used, allowing 
more fine-grained autonomous control of the robot.

We implemented three action libraries: wheels, arm and mast. The client of the 
wheels can receive high-level action commands to move forward, backward, turn 
left and turn right, which are then passed over to the server. The server has control 
over each of the six wheels and publishes speed commands to the appropriate wheels 
depending on the direction requested in the action. After any movement action, the 
server always calls a stop action that sets all wheels speed to zero. The arm and mast 
action libraries are responsible for controlling the joints of the arm and the mast, 
respectively.

Agent-based control allows a system to dynamically adapt to changes in the 
environment through the use of modularity, decentralisation, autonomy, scalability 
and reusability [41]. We use the Gwendolen agent language to program the high-
level control and autonomous behaviour of the Mars Curiosity rover. Agent pro-
gramming languages abstract the environment and other external sources, focusing 
on programming autonomous control at high-level, resulting in smaller and more 
modular code than other languages. Furthermore, due to the agent’s reasoning cycle 

Figure 11.3  � RVIZ view with all of the effectors in the simulated Mars Curiosity 
rover
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and mental attitudes, an execution trace can clearly show how the agent came to a 
decision, thus providing us with explainability. Finally, using Gwendolen, proper-
ties of the agent’s reasoning can be formally verified, allowing us to safeguard criti-
cal behaviours.

Gwendolen [42] agents follow the Belief-Desire-Intention (BDI) model [43]. 
These mental attitudes represent, respectively, the information, motivational and 
deliberative states of the agent. The belief revision function is used to process incom-
ing perceptions from the environment (e.g., obtained through sensors) and triggers 
the update of the belief (what the agent believes to be true about its environment and 
other agents) base. The option generation function uses the belief base and the inten-
tion base to generate more options and update the desire (the desired states that the 
agent hopes to achieve) base. The filter is responsible for updating the intention (a 
sequence of actions that an agent wants to carry out to achieve a desired state) base, 
taking into account its previous intentions and the belief and desire bases. Finally, 
the action selection function outputs an action from the intention that was chosen to 
be executed.

It is not possible to integrate Gwendolen, which is implemented in Java, directly 
with ROS, which is implemented in Python/C++. There are two possible solutions 
to this problem: use the rosjava library or use the rosbridge library. The former is 
a third-party library that is not available in all recent versions of ROS; since it re-
implements parts of ROS in Java it can be an arduous process to update it for newer 
versions. The latter is a compact library that is less dependent on ROS version, as it 
does not change anything in the core, but rather uses WebSocket communication to 
interface ROS with external languages through JavaScript Object Notation (JSON) 
messages.

We developed a Gwendolen environment3 that can communicate with ROS 
through the rosbridge library. This environment is not domain-specific, i.e., it could 
be used in other robots as long as they are running ROS. It allows Gwendolen agents 
to publish and subscribe to ROS topics. Generally, when the agent executes an 
action in the environment, the action is processed and published to the appropriate 
ROS topic associated with that action. The environment can also create subscribers 
that keep listening to predetermined topics, and then when a message is received it is 
processed and, if it is the case, perceptions are created and sent to the agent.

The Gwendolen agent has access to three high-level actions. The action con-
trol_wheels has three parameters: direction of movement (forward, backward, left, 
or right), speed (an integer, if moving backwards should be negative, otherwise it 
should be positive) and distance (in seconds). This action is defined in the Gwendolen 
environment, as shown in Listing 11.1, which basically receives the parameters set 
by the agent, converts it into a Move3 message (a message type defined in ROS) and 
then publishes the message to the appropriate ROS topic. The remaining actions 

3 Source code is available at: https://github.com/autonomy-and-verification-uol/gwendolen-rosbridge
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are control_arm and control_mast, both require one parameter with possible values 
either open or close.

Listing 11.1 Environment code for the control wheels action
 

Our simulation4 contains an inspection mission, where the Curiosity patrols 
between four different waypoints (A, B, C and D) that are spread across Mars ter-
rain. The agent has previous knowledge about the terrain, with map coordinates to 
each of the waypoints.

The simulation starts with the deployment of the Curiosity and a start-up period 
where it initialises all three control modules (wheels, arms and mast). After the 
agent receives confirmation that all modules are ready, it autonomously controls the 
Curiosity to move to the waypoints. Movement through the waypoints is done in 
order and loops back when arriving at the last one (A ﻿‍!‍ B ﻿‍!‍ C ﻿‍!‍ D ﻿‍!‍ A). When 
moving to waypoint A and D, the agent ensures that the arm is retracted and that 
the mast is extended upwards, since in both of these waypoints, the mission of the 
Curiosity is to take images of the terrain. Otherwise, when moving to waypoint B 
and C, the arm is fully extended to manipulate soil and rock samples, and the mast 
is retracted due to extreme weather conditions, to preserve power and the condition 
of the mast.

The plan of the Gwendolen agent that shows the start of the movement from 
waypoint A to B is shown in Listing 11.2. The head of the plan (movement_com-
plete) is a trigger event that is activated when the belief with the same name is added 
to the agent’s belief base. The guard of the plan, enclosed by curly brackets, deter-
mines the precondition of the plan (what has to be true for the plan to be selected 
for execution), which in this case is the belief that the agent is patrolling waypoint 
A and that it is time to turn to go to the next waypoint. The body of the plan begins 
after the left arrow sign, with each operation (e.g., the removal of the belief patrol 
turn) or action (e.g., closing the mast) separated by a comma and a semicolon after 
the last element in the body of the plan.

Listing 11.2 Plan for turning to move to waypoint B
 

4 Source code is available at: https://github.com/autonomy-and-verification-uol/gwendolen-ros-curiosity
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11.4.2   Model checking
Model checking [1] is the process of exhaustively performing a state space search to 
check if some desired property holds. This can be done either with a formal model of 
the system, encoded in some specification language, or directly within the program, 
called program model checking. The property that we want to verify also has to be 
specified using some language, usually logic-based. For example, we may want to 
verify a property that states that the Curiosity will not move its arm while it is col-
lecting soil and rock data, to prevent damaging the collection.

AJPF [32] is an extension of Java PathFinder [44], a model checker that works 
directly on Java program code instead of on a mathematical model of the program’s 
execution. This extension allows for formal verification of BDI-based agent pro-
gramming languages by providing a property specification language based on LTL 
that supports the description of terms usually found in BDI agents.

Some of the properties that we verified of the implementation of our agent were:

	﻿‍ �(Arovermove_waypoint(A) ! ˙Brover(patrol(A)))‍�
	﻿‍ �(Arovermove_waypoint(B) ! ˙Brover(patrol(B)))‍�
	﻿‍ �(Arovermove_waypoint(C) ! ˙Brover(patrol(C))‍�
	﻿‍ �(Arovermove_waypoint(D) ! ˙Brover(patrol(D))‍�
These properties state that it is always the case (﻿‍�‍) that if the rover agent executes 
the action move_waypoint (to either A, B, C or D), then eventually (‍̇ ‍) the rover 
agent will believe that it is currently patrolling that waypoint.

11.4.3   Runtime verification
Runtime verification (RV) [45] is a more lightweight approach that is usually more 
suitable for examining ‘black box’ software components. RV focuses on analysing 
only what the system produces while it is being executed and, because of this, it can 
only conclude the satisfaction/violation of properties regarding the current observed 
execution.

ROSMonitoring5 is a framework for runtime monitoring of ROS topics. It cre-
ates monitors that are placed between ROS nodes to intercept messages on relevant 
topics and check the events generated by these messages against formally specified 
properties in an oracle. We applied this framework to the Curiosity case study using 
the filter action to intercept external messages sources from the agent that violate 
our property.

As an example of the filter action, consider an action library in ROS that con-
trols the wheels of the rover. The content of the message includes the parameters 
discussed previously in the control wheels action: the direction for the rover to 

5 https://github.com/autonomy-and-verification-uol/ROSMonitoring
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move, the speed of the wheels and the distance that it should move. The configura-
tion file in ROSMonitoring for this example is shown in Listing 11.3.

Listing 11.3 Configuration file for the first Curiosity example
 

Due to the gravity and rocky/difficult terrain in Mars, the Curiosity has to be 
careful with its speed. Thus, when we intercept a message in the wheels_control 
topic, the message is sent to the oracle to verify the following property:

‍ ‍ 

That is, if the direction is left or right (i.e., a turn action) then the speed cannot be 
greater than 10, and if the direction is forward or backward then the speed cannot be  
greater than 15. These are arbitrary numbers that were defined based on testing to 
prevent the Curiosity from suffering any accidents. After the error is intercepted 
by the oracle, the agent could use this information to adapt its plan. For instance, 
using the agent reconfigurability approach introduced in [46], the agent could detect 
that a failure happened and better understand why it happened to reconfigure itself 
accordingly.

11.5   Case study 2: Verification of astronaut–rover teams

Sections 11.1, 11.3 and 11.4 used the example of a planetary surface rover perform-
ing autonomous inspection and surveying tasks on nearby planetary bodies such as 
the Moon or Mars, e.g., the Curiosity rover used on the Mars Science Laboratory 
mission since 2012. Such planetary rovers have been used in several missions 
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starting with the Soviet Union’s Lunokhod 1 in 1970, and a number of further rover-
based missions are being planned by various space agencies. Early rovers were 
limited in autonomous operations and were primarily remotely operated. However, 
autonomous systems are increasingly used to increase the reliability and efficiency 
of mission activities [47]. The increased use of autonomy also enables the proposed 
use of astronaut–rover teams, in which astronauts are assisted during missions by 
autonomous rovers [48–50]. For example, astronaut–rover teams have been evalu-
ated for use in planetary outpost assembly [51], may employ multiagent planning 
systems to distribute tasks between team members [52] and can be assessed at the 
mission conception stage using simulators [53] and terrestrial field tests with robot 
prototypes [54].

As described in the previous sections, it is possible to use formal methods in the 
form of model checking to formally verify the rover’s behaviour in the astronaut–
rover team. In Section 11.4, the Gwendolen agent programming language was used 
to specify the behaviour of a decision-making agent in control of the rover. In this 
case, however, a different approach was taken due to the need to model the behav-
iour of one or more astronauts in the astronaut–rover team. This new approach used 
a multiagent workflow specification language called Brahms [55, 56] to model the 
behaviour of the astronaut–rover team. Brahms has been used before for modelling 
human–robot teamwork as part of the Mobile Agents Architecture at NASA Ames 
Research Center [57]. It has also been used to implement systems for mission con-
trol for the International Space Station [58] and health monitoring of astronauts [59].

Brahms consists of a modelling language and an integrated development envi-
ronment (IDE). The modelling language allows multiagent systems to be specified 
in terms of interacting agents. Each agent has a set of beliefs that resemble common 
programming language variables types such as Booleans and integers. Agents can be 
given a location within a topological ‘geography’ within the Brahms model. Agent 
can perform activities or movements that can take a period of time. Each agent’s 
behaviour is specified through workframes and thoughtframes. The former allows 
the agent to perform activities, move and update beliefs, whereas the latter only 
allows instantaneous belief updates, known as inferences. Workframes can also be 
interrupted by the receipt of new information from another agent. Communication 
between agents is modelled using a primitive ‘communicate’ construct. The design 
of the Brahms language allows for detailed models of multiagent systems to be 
developed in an intuitive way. Once a model has been developed, it is possible to 
run simulations of the model using the Brahms IDE, known as the ‘Composer’. The 
results of these simulations can be displayed in the form of a timeline showing agent 
locations, workframes and activities as horizontal bars, and with communications 
shown as vertical lines (see Figure 11.4).

A Brahms model of an astronaut–rover team was developed. The model was 
based on a scenario similar to those used during NASA field tests and demonstra-
tions of astronaut–rover teamwork [48, 50, 57], in which astronauts and a rover 
work together to achieve mission goals at a (simulated) outpost on the Moon or 
Mars. During the scenario, the rover assists the astronaut and performs autonomous 
behaviours when its assistance is not needed. For example, when the astronaut is 
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performing construction or geological surveying tasks, the rover will assist the 
astronaut, e.g., by following the astronaut and providing a mobile platform for tools 
and materials. During the video extra-vehicular activity (EVA) the rover assists by 
turning on the camera stream and filming the astronaut so that they can be monitored 
by the ground team. A similar behaviour is performed when the astronaut enters 
or leaves the habitat as these operations are especially hazardous. If the astronaut 
chooses to perform a miscellaneous activity then the rover will recognise that its 
assistance is not needed and will perform a solo geological survey. Also, whenever 
the astronaut is in the habitat, the rover performs a habitat-monitoring activity to 
ensure that the integrity of the habitat’s life-support systems is maintained.

The Brahms model of the scenario used three agents: one to model an astro-
naut’s behaviour, the second to model the autonomous rover’s behaviour and the 
third, called the campanile clock, to assist in measuring the passage of time. The 
model examines the events over the course of a typical work day. The astronaut 
begins the day in the habitat and at some point decides to leave the habitat and start 
work. Leaving the habitat involves donning a spacesuit, depressurising the airlock 
and moving outside through the external door. Once the astronaut is outside, they 
can choose from a number of different behaviours: construction, geological survey-
ing, video-recorded EVA or miscellaneous activities. At the end of the work day 
the astronaut returns to and enters the habitat. After entering the astronaut repres-
surises the airlock and doffs the spacesuit. The astronaut then remains in the habitat 
for the rest of the work day. The astronaut’s choice between different behaviours is 
modelled as a non-deterministic choice between workframes in the astronaut agent.

As mentioned earlier, the Brahms Composer IDE can be used to display the 
results of simulations using a Brahms model. An excerpt of a simulation of the 
astronaut–rover model is shown in Figure 11.4. The behaviour of the three agents 
(astronaut, rover and campanile clock) are shown as horizontal bands. Time pro-
gresses from the left to the right. The locations of the agents are shown at the top of 

Figure 11.4  � Simulation of the astronaut–rover scenario using the Brahms 
Composer IDE
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the bands. For example, at the start of this excerpt the astronaut agent is at the work 
site, is in the ‘perform construction’ workframe and is performing the ‘perform con-
struction’ activity. While this is happening the rover is in the ‘assist construction’ 
workframe and is performing the ‘assist construction’ activity. After completing 
the construction task the astronaut decides to return to the habitat. The rover stops 
working while the astronaut moves to the habitat access point. When the astronaut 
enters the habitat the rover begins monitoring the astronaut by entering the ‘moni-
tor astronaut’ workframe. During the entire simulation the campanile clock agent is 
monitoring the time and announcing it to the other agents. The campanile clock is 
used as a means of synchronising agent behaviours. For example, at the end of the 
work day the campanile clock informs the other agents that the work day has ended. 
When this happens the astronaut agent will stop work and return to the habitat.

It is possible to simulate this scenario many times using Brahms to determine 
whether the behaviour of the autonomous rover satisfies mission requirements. 
However, it is difficult to tell using simulation whether these requirements are sat-
isfied in all cases. Therefore it may be useful to perform an exhaustive analysis 
using model checking to determine whether requirements hold for the agent-based 
decision-making system. This can be done for the Brahms model of the astronaut–
rover scenario by translating the Brahms model code into the input language for a 
model checker. This was done automatically using the BrahmsToPromela software, 
which translates Brahms model code into Promela, the input language for the Spin 
model checker [2]. Once translation is complete, Spin can be used to exhaustively 
analyse the Promela model to determine whether it satisfies requirements encoded 
formally as properties in LTL. The results of the model checking will also apply to 
the Brahms model as long as we have validated the automatic translation performed 
by BrahmsToPromela. Validation was achieved by developing BrahmsToPromela 
with respect to a formal semantics of Brahms [60] and through extensive applica-
tions in other human–robot team scenarios [61, 62].

To demonstrate the approach, an initial set of four mission- or safety-critical 
requirements were examined:

1.	 The rover should perform a solo geological survey whenever the astronaut is 
performing a miscellaneous activity. [Mission-critical.]

2.	 The rover should assist the astronaut during construction tasks. [Mission-critical.]
3.	 The rover should monitor the astronaut when they are leaving the habitat. 

[Safety-critical.]
4.	 The rover should monitor the habitat whenever the astronaut is located inside 

the habitat. [Safety-critical.]

These requirements were formalised as four LTL properties. These are shown 
in Table 11.4 LTL allows the formalisation of concepts relating to time, e.g., ‘now 
and at all points in the future’ (via the ﻿‍�‍ operator), ‘now or at some point in the 
future’ (‍̇ ‍) and ‘in the next state’ (‍�‍) [63]. This enables formalisation of safety 
requirements (something bad never happens, ‍�:bad‍), liveness properties (e.g., 
something good eventually happens, ‍̇ good‍) and fairness properties (e.g., if one 
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thing occurs infinitely often so does another, e.g., ‍�˙send D) �˙receive‍). Using 
BrahmsToPromela extends Spin’s property specification language with a belief 
operator, ‘﻿‍B‍’. This allows us to specify that an agent has a belief, e.g., ‍BRoverx‍ means 
that the Rover agent believes x is true.

No errors were found by the model checker and therefore all properties held for 
the Promela model, meaning that the autonomous behaviour of the robot, was correct 
with respect to the requirements. Using this approach we were able to determine that 
it is possible to use formal methods, in particular, model checking, to formally verify 
the behaviour of an autonomous rover within a realistic astronaut–rover scenario.

11.6   Modelling and verification of multi-objects systems

1.6.1   Motivation
Sections 11.1, 11.3 and 11.4 presented various ways to model and verify the behav-
iour of a single autonomous planetary rover operating on nearby planetary bod-
ies such as the Moon or Mars. Section 11.5 provided a methodology to model and 
verify the rover’s behaviour in an astronaut–rover team. In this section, we consider 
generalisations of the above scenarios with two or more identical rovers working in 
cooperation. Such scenarios present many challenges with regard to coordination 

Table 11.4  �  Properties verified for the Brahms model of the astronaut–rover 
scenario

Req. Property Description

1
	
‍
�

2
64
BAstro(goalPerformMisc) D)

˙ BRover(goalSoloGeoSurvey)

3
75
‍�

It is always the case that if the astronaut agent 
believes that it is performing a miscellaneous 
activity (i.e., an activity that does not require 
the assistance of the rover), then the rover will 
perform a solo geological survey after a period 
of time.

2
	
‍
�

2
64
BAstro(goalPerformConstr) D)

˙ BRover(goalAssistConstr)

3
75
‍�

It is always the case that if the astronaut agent 
believes that it has a goal to start construction, 
then the rover agent will form a corresponding 
goal to assist in the construction task after a 
period of time.

3
	
‍
�

2
64
BAstro(goalLeaveHabitat) D)

˙ BRover(cameraStream)

3
75
‍�

It is always the case that if the astronaut decides to 
leave the habitat, the rover will start monitoring 
by setting the camera stream variable to true, 
indicating that a video stream is being sent 
back to the habitat (and then back to the ground 
station for monitoring, if needed).

4
	
‍
�

2
64
Astro.location = Habitat D)

˙ BRover(goalSoloMonitorHab)

3
75
‍�

It is always the case that if the astronaut is in 
the habitat, then the rover will form a goal to 
autonomously monitor the habitat.
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and resource management, hence it is important to address these challenges at the 
appropriate level of abstraction.

To motivate our presentation, let us discuss a simple generalisation of the sce-
nario in Section 1.5. In our version of the scenario, we have a team of an astronaut 
working with k (‍k > 1‍) autonomous planetary rovers ‍r1, : : : , rk‍ to perform an action. 
Our mission- and safety-critical requirements will be as follows:

1.	 Each rover should perform a solo geological survey whenever the astronaut is 
performing a miscellaneous activity. [Mission-critical.]

2.	 One rover should assist the astronaut during construction tasks. [Mission-critical.]
3.	 One rover should monitor the astronaut when they are leaving the habitat. 

[Safety-critical.]
4.	 One rover should monitor the habitat whenever the astronaut is located inside 

the habitat. [Safety-critical.]

Given the above requirements, we would like to state analogues of the proper-
ties in Table 11.4. To simplify matters, let us forget about the belief operators in 
Section 5.

If the number k is fixed, the most obvious way to encode the above require-
ments is to use LTL. For the astronaut, we can introduce four propositional variables 
‘astrGoalPerformMisc’, ‘astrGoalPerformConstruction’, ‘astrGoalLeaveHabitat’ 
and ‘astrInHabitat’, to be viewed as stating, respectively, that ‘the astronaut has 
a goal to perform miscellaneous activity’, ‘the astronaut has a goal to start con-
struction’, ‘the astronaut decides to leave the habitat’ and ‘the astronaut is in the 
habitat’. For the rover requirements, we can introduce for each rover ri (‍1 � i � k ‍)  
four propositional variables ‘rvGoalSoloSurveyi’, ‘rvGoalAssistConstruction’, 
‘rvCameraStreami’ and ‘rvGoalSoloMonitorHabi’, to be viewed as stating, respec-
tively, that ‘rover ri will perform a solo geological survey’, ‘rover ri will assist the 
astronaut’s construction task’, ‘rover ri will send a camera stream back to the ground 
station’ and ‘rover ri will autonomously monitor the habitat’. Now, requirements 
1–4 can be stated as follows:

1.	 ‍�[astrGoalPerformMisc D)
V

1�i�k ˙ rvGoalSoloSurveyi]‍
2.	 ‍�[astrGoalPerformConstruction D)

W
1�i�k ˙ rvGoalAssistConstructioni]‍

3.	 ‍�[astrGoalLeaveHabitat D)
W

1�i�k ˙ rvCameraStreami]‍
4.	 ‍�[astrInHabitat D)

W
1�i�k ˙ rvGoalSoloMonitorHabi]‍

The above specification of our requirements has two main disadvantages. First, it 
depends on the number k being fixed. Thus, it can only answer the question ‘given a 
value of k (e.g., 5), does the above system of the astronaut and the rovers ‍r1, : : : , rk‍ have 
a given property ﻿‍P‍?’, whereas it would be ideal to answer the more general question 
‘does the system have the property ﻿‍P‍ for all values of k?’. Second, the above specifica-
tion is not succinct, since it requires each rover to be mentioned individually in every 
formula that refers to the totality of rovers. This also makes it difficult to keep track of 
messages in the system in more complex scenarios that involve communication. It is 
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natural then to seek more expressive languages than LTL that allow each individual in 
a system like the above to be referred to in a more abstract manner.

11.6.2   Logics for parameterised systems
Recognising the need for better abstractions and formal languages in the verification 
of parameterised systems, i.e., systems comprising arbitrary numbers of identical 
components (such as the above system of rovers), various approaches have been 
proposed in recent decades. Two of the most popular are model checking for param-
eterised and infinite state-systems [64, 65] and constraint-based verification using 
counting abstractions [66–68]. The model-checking approach has been applied to 
several scenarios verifying safety properties and some liveness properties, but is in 
general incomplete. Constraint-based approaches [67] do provide complete proce-
dures for checking safety properties, but these procedures have non-primitive recur-
sive upper bounds, and thus do not scale well for large instances. In addition, they 
usually lead to undecidability when applied to liveness properties.

Another approach is first-order temporal logic (FOTL), which can be viewed 
as a first-order generalisation of LTL. Although this logic is incomplete (not finitely 
axiomatisable) [69] and generally undecidable [70], it is valuable from a practical 
standpoint because a certain syntactic restriction to it, referred to as monodic FOTL, 
is finitely axiomatisable [71], in many cases decidable [70] and can naturally model 
systems of identical, communicating finite-state machines arising frequently in the 
verification of distributed systems and protocols [72, 73]. In the ensuing part, we 
briefly present the syntax and semantics of FOTL, as well as the syntactic restriction 
of monodicity and show how it can be used in the specification and verification of 
practical systems.

The symbols used in FOTL are predicate symbols ‍P0,P1, : : :‍, each of fixed arity (0-
ary or nullary predicate symbols are allowed and correspond to propositions); variables 
‍x0, x1, : : :‍, constants ‍c0, c1, : : :‍; the propositional constants ﻿‍>‍ (true) and ﻿‍?‍ (false); the 
usual Boolean connectives (‍:,_,^,),,‍); the quantifiers ﻿‍8‍ (for all) and ﻿‍9‍ (exists); 
and the temporal operators ﻿‍�‍ (always in the future), ‍̇ ‍ (sometime in the future), ‍�‍ (at 
the next moment), ﻿‍U ‍ (until) and start (at the first moment). Neither equality nor func-
tion symbols are allowed. The syntax of FOTL is as follows [70, 74]:

•• ‍>‍and ﻿‍?‍ are atomic FOTL-formulae;
•• if P is an n-ary predicate symbol and ti, ‍1 � i � n‍, are variables or constants, 

then ‍P(t1, : : : , tn)‍ is an atomic FOTL-formula;
•• if ‍�‍ and ‍ ‍ are FOTL-formulae, so are ‍:�‍, ‍� ^  ‍, ‍� _  ‍, ‍� )  ‍, and ‍� ,  ‍;
•• if ‍�‍ is an FOTL-formula and x is a variable, then ‍8x�‍ and ‍9x�‍ are 

FOTL-formulae;
•• if ‍�‍ and ‍ ‍ are FOTL-formulae, then so are ‍��‍, ‍̇ �‍, ‍��‍, ‍� U ‍, and start.

FOTL-formulae are interpreted in first-order temporal structures, i.e., sequences 
‍M = A0,A1, : : :‍ of first-order structures over a common universe A. In more detail, 
if A is a non-empty set, each ‍An‍ (‍n 2 N‍) is a pair ‍hA, Ini‍, where ‍In‍ is an interpretation 
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of predicate and constant symbols over A, assigning to each predicate symbol P a 
predicate ﻿‍PAn‍ on A of the same arity as P (if P is a nullary predicate, ﻿‍PAn‍ is simply 
one of the propositional constants ﻿‍>‍ or ﻿‍?‍), and to each constant symbol c an element 
‍cAn‍ of A. We require that the interpretation of constants be rigid, i.e., ‍In(c) = Im(c)‍,  
for all ‍n,m 2 N‍. Intuitively, each ‍An‍ (‍n 2 N‍) represents the state of the world at 
time n and truth values in different worlds are associated via temporal operators. An 
assignment‍a‍ in A is a function from the set of variables ‍fx0, x1, : : :g‍ to A. The truth 
relation ‍(M,An) jDa �‍ (or simply ‍An jDa �‍) in the model ﻿‍M‍ is defined in a manner 
analogous to LTL. See Figure 11.5 for details. We say that ﻿‍M‍ is a model for a for-
mula ‍�‍ or that ‍�‍ is true in ﻿‍M‍ if there exists an assignment ﻿‍a‍ such that ‍A0 jDa �‍. A 
formula is satisfiable if it has a model and valid if it is true in any temporal structure 
under any assignment.

As discussed earlier, FOTL is incomplete [69] and generally undecidable 
[70]. We now define a subset of all possible FOTL-formulae, the monodic FOTL-
formulae, that allow us to regain finite axiomatisability and in many cases decid-
ability. An FOTL-formula is called monodic if any subformula of ‍�‍ of the form 
‍� ‍, ‍̇  ‍, ‍� ‍, or ‍ 1 U 2‍ has at most one free variable. For example, the formu-
lae ‍� 8x(p(x) ) �q(x))‍ and ‍8x˙9y p(x, y)‍ are monodic, whereas the formula 
‍8x8y(p(x, y) ) �q(x, y))‍ is not monodic. The set of all monodic FOTL-formulae 
form the monodic fragment, abbreviated MFOTL, of FOTL. MFOTL is finitely axi-
omatisable [71] and decidable (in 2-NExpTime) if, roughly speaking, one restricts 

Figure 11.5  Semantics of FOTL
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the pure classical (first-order) part of monodic formulae to any decidable fragment 
of first-order logic [70].

For a larger example, let us revisit the requirements for the autonomous plan-
etary rovers considered earlier. We shall keep the propositional variables (nullary 
predicates) ‘astrGoalPerformMisc’, ‘astrGoalPerformConstruction’, ‘astrGoal-
LeaveHabitat’ and ‘astrInHabitat’ and their intended meaning. But instead of the 
propositional variables corresponding to each individual rover, we now use four 
unary predicates ‘rvGoalSoloSurvey‍(x)‍’, ‘rvGoalAssistConstruction‍(x)‍’, ‘rvCam-
eraStream‍(x)‍’ and ‘rvGoalSoloMonitorHab‍(x)‍’ referring to an arbitrary rover x, 
to be viewed as stating, respectively, that ‘rover x will perform a solo geological 
survey’, ‘rover x will assist the astronaut’s construction task’, ‘rover x will send a 
camera stream back to the ground station’ and ‘rover x will autonomously monitor 
the habitat’. Using MFOTL, requirements 1–4 stated previously, can now be stated 
as follows:

1.	 ‍�[astrGoalPerformMisc D) 8x˙ rvGoalSoloSurvey(x)]‍
2.	 ‍�[astrGoalPerformConstruction D) 9x˙ rvGoalAssistConstruction(x)]‍
3.	 ‍�[astrGoalLeaveHabitat D) 9x˙ rvCameraStream(x)]‍
4.	 ‍�[astrInHabitat D) 9x˙ rvGoalSoloMonitorHab(x)]‍

Notice that at no point is a reference made to an individual rover or the number 
of rovers in the system. If our specification is proved correct, its correctness applies 
to systems of rovers of any size.

From a practical standpoint, two theorem provers are available for FOTL: 
TeMP [75] and TSPASS [76, 77]. TeMP has been successfully applied to problems 
from several domains [78], in particular, to examples specified in the temporal log-
ics of knowledge (the fusion of propositional LTL with multi-modal S5) [79–81]. 
TSPASS has been used (among other things) to reason about contract violations 
[82] and accountability [83, 84] in distributed protocols as well as the behaviour of 
robots and robot swarms [85]. We remark that the above provers implement FOTL 
with so-called expanding domain semantics. This allows them to use a simplified 
clausal resolution calculus [86]. In contrast, in our presentation of FOTL we used 
so-called constant domain semantics. This detail does not affect the reader: satisfi-
ability with constant domain semantics and satisfiability with expanding domain 
semantics can be reduced to each other with only a polynomial increase in the  
size of the formulae [87].

11.6.3   Translating broadcast protocols to MFOTL
Writing specifications in MFOTL can seem difficult at first to people unfamiliar 
with logic. Since a lot of verification tasks involve distributed protocols, it is natural 
to ask whether some commonly used language for the specification of distributed 
protocols can automatically be translated to MFOTL. Indeed, distributed protocols 
are often represented as collections of finite-state machines exchanging messages. 
We now give a brief overview of a distributed system model comprising an arbitrary 
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number of identical finite-state machines communicating by broadcasting messages. 
This model is quite expressive, capturing many interesting and useful systems, and 
distributed protocols described in its terms can be automatically be translated in 
MFOTL [72, 73]. In particular, it is rich enough to describe (possibly with small 
extensions) such diverse systems as cache coherence protocols [67] or distributed 
atomic commitment protocols including the two- and three-phase commit protocols 
[88, 89] and their modifications [90, 91].

In the aforementioned distributed system model, we have a collection of k (‍k > 1‍)  
identical finite-state machines in a network environment. The transitions of these 
finite-state machines correspond to three types of actions: (a) broadcast a message 
‍�‍ (denoted ‍�‍); (b) receive a message ‍�‍ (denoted ‍�‍) and (c) local (i.e., an action not 
related to the network). The delivery of messages in the network is guaranteed. At 
each moment of time, each machine in the network performs an action depending on 
its local state at that time or is idle, i.e., performs no action at all. (The latter is useful 
for modelling asynchrony.) See [72, 73] for more technical details.

Now, given such a distributed system, say D, we can construct a MFOTL-
formula ‍TD‍ such that to each valid execution (run) of D corresponds a temporal 
model of ‍TD‍ and vice versa. In other words, ‍TD‍ completely captures the operation of 
D. (Again, for more details, see [72, 73].) Thus, to check whether the operation of D 
has a property ﻿‍P ‍, we can (assuming that ﻿‍P ‍ is expressible in MFOTL) check whether 
the MFOTL-formula ‍TD ) P ‍ is valid. This obviates the need to specify the opera-
tion of D in MFOTL: the specification in MFOTL can be obtained automatically 
from the state machine description of the system. ‍TD‍ is written over the signature ‍†D‍ 
containing a unary predicate symbol ‍Pq(x)‍ for each state q of the machines, a unary 
predicate ‍A� (x)‍ for each transition ﻿‍�‍ of the machines (corresponding to actions (a), 
(b) or (c) above) and a nullary predicate (proposition) ‍�‍ for each message ‍�‍ that 
can be broadcast. Intuitively, ‍Pq(x)‍ is to be viewed as stating that ‘machine x is in 
state q’, ‍A� (x)‍ as stating that ‘machine x performs action ﻿‍�‍’ and ‍�‍ as stating that ‘the 
message ‍�‍ is in transition’.

To clarify the above, let us consider an example relevant to the system of plane-
tary rovers described earlier. Suppose that all rovers in the system are away from the 
astronaut, each performing a solo geological survey as described in requirement 1.  
Suppose, then, the astronaut requests the assistance of a rover for a construction 
task. Adhering to requirement 2, one of the rovers must move towards the astronaut 
for assistance. Suppose, further, that, for energy conservation, we would like exactly 
one of the rovers to go to the astronaut. (This is something that we can include in 
our requirements.) In distributed systems terminology, this is a scenario in which the 
rovers must achieve consensus [92]. That is, the rovers must agree on which of them 
will go to the astronaut. Suppose, now, there is a proposal that rover ri (‍1 � i � k ‍),  
e.g., go to the astronaut, and the rovers vote on whether to reject (0) or accept (1) 
the proposal.

Let the rovers use the following simplified (asynchronous) variant of the 
FloodSet algorithm [92, p. 105] modelled in FOTL in [73]. Each rover has a preset 
default bit d (0 for reject and 1 for accept). Each rover has a result bit r, which will 
eventually contain the result of each rover’s decision (0 for reject and 1 for accept). 
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The goal of the algorithm is for all rovers to reach a consensus, i.e., to eventually 
produce the same result bit. It is also required that if all rovers have been initialised 
with the same default bit, that bit should be produced as a result. The protocol pro-
ceeds in the following rounds:

•• At the first round, every rover broadcasts (the value of) its preset default bit.
•• At every round the result bit is set to the minimum value ever received so far.

Thus, each rover’s behaviour is described by the finite-state machine in 
Figure 11.6, where the states d0, d1, r0 and r1 denote, respectively, that ‘the preset 
default bit is 0’, ‘the preset default bit is 1’, ‘the result bit is 0’ and ‘the result bit 
is 1’; and the transitions ‍0‍, ﻿‍1‍, ‍0‍ and ﻿‍1‍ correspond, respectively, to ‘broadcasting 0’, 
‘broadcasting 1’, ‘receiving 0’ and ‘receiving 1’. Now, as discussed earlier, let ‍TFlood‍ 
be the MFOTL-formula that captures the above system, over the signature ‍†Flood‍ 
containing the unary predicates ‍Pd0 (x)‍ (‘rover x is in state d0’), ‍Pd1 (x)‍ (‘rover x is 
in state d1’), ‍Pr0 (x)‍ (‘rover x is in state r0’) and ‍Pr1 (x)‍ (‘rover x is in state r1’); ‍A0(x)‍ 
(‘rover x broadcasts ‍0‍’), ‍A1(x)‍ (‘rover x broadcasts ﻿‍1‍’), ‍A0(x)‍ (‘rover x receives ‍0‍’) 
and ‍A1(x)‍ (‘rover x receives ﻿‍1‍’); and the nullary predicates (propositions) ‍0‍ (‘mes-
sage ‍0‍ in transition’) and ﻿‍1‍ (‘message ﻿‍1‍ in transition’). Recall that ‍TFlood‍ can be 
obtained automatically from Figure 11.6, so we need not know its content. To prove 
that the algorithm achieves the informal goal stated above, we check that the follow-
ing MFOTL-formula is valid:

	﻿‍ TFlood D) ˙(8x Pr0 (x) _ 8x Pr1 (x)).‍�
Thus using FOTL provides a route to verifying multi-robot systems with an 

arbitrary number of identical components. As we have already mentioned, while full 
FOTL is incomplete and in general undecidable, using monodic FOTL-formulae, 
we regain finite axiomatisability and in many cases decidability. However, the dis-
advantage is that this restriction limits what we can express in the logic. Also the 
theorem-proving tools for FOTL are not as developed in terms of usability as many 
model checkers.
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Figure 11.6   Each rover’s voting behaviour
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11.7   Conclusions, recommendations and future trends

Verification techniques such as formal verification, simulation and testing are use-
ful when ensuring systems are safe, trustworthy and meet their stated requirements. 
They are needed for space robotics as failures in space may be much more critical, 
costly and harder to resolve. We have discussed several tools and techniques for 
verification of space robotics with reference to some simple space scenarios.

Recommendations include designing systems for verification using a modular 
approach separating concerns, embedding verification and validation into engineer-
ing process, and using a range of tools and techniques to improve confidence in 
space systems. Future trends include the greater need for and use of autonomy in 
space robotics, e.g., to support planetary missions with robots working closely with 
astronauts, where safety and functional correctness is crucial. Additionally, veri-
fication and validation is needed for the New Space sector to conform regulation 
and standards for applications such as satellite communication, imaging, navigation, 
space tourism and mining.
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