
Verifying Autonomous Systems⋆

Louise A. Dennis1[0000−0003−1426−1896]

University of Manchester, Manchester, UK, louise.dennis@manchester.ac.uk

Abstract. This paper focuses on the work of the Autonomy and Veri-
fication Network1. In particular it will look at the use of model-checking
to verify the choices made by a cognitive agent in control of decision
making within an autonomous system. It will consider the assumptions
that need to be made about the environment in which the agent oper-
ates in order to perform that verification and how those assumptions can
be validated via runtime monitoring. Lastly it will consider how compo-
sitional techniques can be used to combine the agent verification with
verification of other components within the autonomous system.

Keywords: Verification · Autonomous Systems · Model-checking · Run-
time Verification

1 Introduction

Autonomous systems are increasingly being used for a range of tasks from explor-
ing dangerous environments, to assistance in our homes. If autonomous systems
are to be deployed in such situations then their safety assurance (and certifica-
tion) must be considered seriously.

Many people are seeking to leverage the power of machine learning to directly
link inputs and outputs in a variety of autonomous systems via a statistical
model. This paper examines an alternative, more modular, approach in which
the decision making component of the system is constructed in a way that makes
it amenable to formal verification. This approach necessitates an integrated ap-
proach to the verification of the whole autonomous system – both in terms of
validating assumptions about the way the environment external to the system
behaves and in terms of compositional verification of the various modules within
the system.

2 A Cognitive Agent Decision Maker

Our decision making component is a cognitive agent programmed using the
Beliefs-Desires-Intentions (BDI) programming paradigm.

At its most general, an agent is an abstract concept that represents an au-
tonomous computational entity that makes its own decisions [39]. A general

⋆ Supported by organization x.
1 https://autonomy-and-verification.github.io



2 L. A. Dennis

agent is simply the encapsulation of some computational component within a
larger system. However, in many settings we desire something more transparent,
where the reasons for choices can be inspected and analysed.

Cognitive agents [7, 33, 40] enable this kind of reasoning. We often describe
a cognitive agent’s beliefs and goals, which in turn determine the agent’s in-
tentions. Such agents make decisions about what action to perform, given their
current beliefs, goals and intentions. This view of cognitive agents is encapsulated
within the Beliefs-Desires-Intentions (BDI) model [32–34]. Beliefs represent the
agent’s (possibly incomplete, possibly incorrect) information about itself, other
agents, and its environment, desires represent the agent’s long-term goals while
intentions represent the goals that the agent is actively pursuing.

There are many different agent programming languages and agent plat-
forms based, at least in part, on the BDI approach [35, 5, 11, 29, 23]. Agents
programmed in these languages commonly contain a set of beliefs, a set of goals,
and a set of plans. Plans determine how an agent acts based on its beliefs and
goals and form the basis for the selection of actions. As a result of executing a
plan, the beliefs and goals of an agent may change and actions may be executed.

We consider agent architectures for autonomous systems in which a cognitive
agent decision maker is supported by other components such as, image classifiers,
sophisticated motion planning systems with statistical techniques for simultane-
ous localisation and mapping, planners and schedulers for determining when and
in what order tasks should be performed, and health monitoring processes to de-
termine if all the system components are functioning as they should. The agent
decision-maker coordinates information and control between these systems.

3 Verifying Autonomous Choices

The starting point of our our approach is the use formal verification in the form
of model-checking [10] (specifically, in our case, program model-checking [37]) for
the cognitive agent.

Formal verification is the process of assessing whether a formal specification
is satisfied on a formal description of a system. For a specific logical property,
φ, there are many different approaches to this [21, 12, 6]. Model-checking takes a
model of the system in question (or, in the case of program model-checking the
implemented system itself), defining all the possible executions, and then checks
a logical property against this model. Model-checking is therefore limited by our
ability to characterise and feasibly explore all such executions.

The properties we verify are based on the choices the agent makes, given
the information that is available to it. This is feasible since, while the space
of possibilities covered by, for instance, the continuous dynamics of a robotic
system is huge (and potentially infinite), the high-level decision-making within
the agent typically involves reasoning within a discrete state space. The agent
rarely, if ever, bases its choices directly on the exact values of sensors, etc. It
might base its decision on values reaching a certain threshold, but relies on other
parts of the system to alert it to this, and such alerts are typically binary valued



Verifying Autonomous Systems 3

(either the threshold has been reached or it has not). We assume this information
is transmitted to the agent in the form of environmental predicates which the
agent then treats as beliefs.

A very simple example of this is shown in Figure 1. In this the agent decision
maker uses two simple plans to choose whether to stop or follow a path. When it
makes the choice it sends a command to an external control system (which can
stop or execute path following behaviour). Information from sensors has been
processed into two possible environmental predicates, obstacle or path. A
property we might wish to verify here is

if the agent believes there is an obstacle then it will try to stop.

With only two predicates and this very simple behaviour we only need to explore
four execution traces to see if the property is correct. The correctness will depend
on the priority of the two plans. If their priority is incorrect then, in the case
where the system detects both an obstacle and a path, it will follow the path
rather than stopping. Errors of this kind, where priorities (or behaviour) are
not correctly specified for situations where multiple events are taking place are
typical of the errors we detect with our approach.

if you believe there is 
an obstacle then stop

if you believe there is a 
path then follow it

No obstacle, no path

Obstacle, no path

No obstacle, path

Obstacle, path

Perception

If the agent believes there is an obstacle then it will try to stop

Data abstracted to 
beliefs/facts/
predicates

Data from Sensors

Control system 
executes 
command

Something happens in the real world

Fig. 1. Verifying a Simple Agent Decision Maker



4 L. A. Dennis

3.1 The MCAPL Framework

We use the MCAPL framework [16, 13] in our work, which provides a route
to the formal verification of cognitive agents and agent-based autonomous sys-
tems using program model-checking. The MCAPL framework has two main
sub-components: the AIL-toolkit for implementing interpreters for BDI agent
programming languages in Java and the AJPF model checker.

Agent JPF (AJPF) is a customisation of Java PathFinder (JPF) that is
optimised for AIL-based language interpreters. JPF is an explicit-state open
source model checker for Java programs [38, 28]2. Agents programmed in lan-
guages that are implemented using the AIL-toolkit can thus be model checked
in AJPF. Furthermore if they run in an environment programmed in Java, then
the whole agent system can be model checked.

AJPF comes with a property specification for stating properties about BDI
agent programs. This language is propositional linear temporal logic (PLTL),
extended with specific modalities for checking the contents of the agent’s belief
base (B), goal base (G), actions taken (A) and intentions (I). This property
specification language is described in [16]. As well as the modalities for beliefs
etc,., the property specification language supports the standard logical connec-
tions (∧, ∨, ¬, =⇒ ) and the temporal operators, □ (where □p means that p is
always true) and ♢ (where ♢p means that p will eventually be true).

4 The Problem with Environments

In order to prove meaningful properties about our cognitive agent we need to
consider the environmental predicates it receives from its environment and, im-
portantly, sequences of these predicates as the situation in which the agent is
operating evolves.

When we model check a decision-making agent in AJPF we have to use
a purely Java environment to supply these predicates since JPF restricts us
to the model-checking of Java programs. However in general agents controlling
autonomous systems operate in a heterogenous environment with components
programmed in a variety of languages and communicating via middleware such
as the Robot Operating System [30] and behaviour ulitmately determined by
the behaviour of the real world.

So when model-checking an autonomous hybrid agent system in AJPF we
have to construct a Java verification environment that represents a simulation
of some ‘real’ environment. We can encode assumptions about the behaviour of
the ‘real’ world in this simulation, but we would prefer to minimize such as-
sumptions. For much of our autonomous systems work we try to have minimal
assumptions where on any given run of the program in the simulated environ-
ment, the environment asserts or retracts the environmental predicates that the
agent receives on an entirely random basis. This means that we do not attempt
to model assumptions about the effects an agent’s actions may have on the

2 https://github.com/javapathfinder



Verifying Autonomous Systems 5

world, or assumptions about the sequence in which perceptions may appear to
the agent. When model checking, the random behaviour of the verification en-
vironment causes the search tree to branch and the model checker to explore all
environmental possibilities [15].

We call this most simple verification environment, where environmental pred-
icates arrive at random, an unstructured abstraction of the world, as it makes no
specific assumptions about the world behaviour and deals only with the possible
incoming perceptions that the system may react to. Unstructured abstractions
obviously lead to significant state space explosion so we have explored a number
of ways to structure these abstractions in order to improve the efficiency of model
checking, for example specifying that some predicates never appear at the same
time. These structured abstractions of the world are grounded on assumptions
that help prune the possible perceptions and hence control state space explosion.

What if these environmental assumptions turn out to be wrong?

Consider a simple intelligent cruise control programmed as a cognitive agent.
This cruise control can perceive the environmental predicates safe, meaning it
is safe to accelerate, at_speed_limit, meaning that the vehicle has reached
its speed limit, driver_brakes and driver_accelerates, meaning that
the driver is braking/accelerating. In order to formally verify the behaviour
of the cruise control agent in an unstructured environment we would explore
the behaviour for all subsets of {safe, at_speed_limit, driver_brakes,
driver_accelerates} each time the vehicle takes an action. The generation
of each subset causes the search space to branch so that, ultimately, all possible
combinations, in all possible sequences of action are explored.

We would like to control the state space exploration by making assump-
tions about the environment. In the case of the cruise control, for instance,
we might suggest that a car can never both brake and accelerate at the same
time: subsets of environmental predicates containing both driver_brakes and
driver_accelerates should not be supplied to the agent during verification,
as they do not correspond to situations that we believe likely in the actual envi-
ronment. However, since this introduces additional assumptions about environ-
mental combinations it is important that we provide a mechanism for checking
whether these assumptions are ever violated.

Runtime Verification We use a technology called runtime verification [36,
17] to monitor the environment that one of our autonomous systems finds itself
in and check that this environment conforms to the assumptions used during
verification. Our methodology is to verify the behaviour of the program using
a structured abstraction prior to deployment – we refer to this as static veri-
fication. Then, during testing and after deployment, we continually check that
the environment behaves as we expect. If it does not then the runtime monitor
issues a violation signal. We do not discuss what should happen when a violation
is detected but options include logging the violation for later analysis, handing
over control to a human operator, or entering some fail-safe mode.



6 L. A. Dennis

We can generate a verification environment for use by AJPF from a trace
expression. Trace expressions are a specification formalism specifically designed
for runtime verification and constrain the ways in which a stream of events may
occur. The semantics of trace expressions is presented in [2]. A Prolog imple-
mentation exists which allows a system’s developers to use trace expressions for
runtime verification by automatically building a trace expression-driven monitor
able to both observe events taking place and check their compliance with the
expression. If the observed event is allowed in the current state – which is rep-
resented by a trace expression itself – it is consumed and a transition function
generates a new trace expression representing the updated current state. If, on
observing an event, no transition can be performed, the event is not allowed. In
this situation an error is “thrown” by the monitor.

A trace expression specifying a verification environment can therefore be
used in the actual execution environment to check that the real world behaves
as the (structured) abstraction assumes. Essentially the verification environment
represents a model of the real world and a runtime monitor can be used to check
that the real world is behaving according to the model.

Figure 2 provides an overview of this system. A trace expression is used to
generate a Java verification environment which is then used to verify an agent
in AJPF (the dotted box on the right of the figure). Once this verification is
successfully completed, the verified agent is used with an abstraction engine
that converts sensor data into environmental predicates. This is shown in the
dotted box on the left of the figure. If, at any point, the monitor observes an
inconsistent event we can conclude that the real world is not behaving according
to the assumptions used in the model during verification.

Verification Results We created trace expressions representing the property
that the driver of a car only accelerates when it is safe to do so, and that the
driver never presses both the brake and acceleration pedals at the same time.

From this trace expression we were able to generate a verification environ-
ment for the cruise control agent and compare it with performance on an un-
structured abstraction. We chose to verify the property:

□(Bcar safe =⇒ □(♢(Bcar safe ∨Bcar braking))) (1)

It is always the case that if the car believes it is safe (at some point) then
it is always the case that eventually the car believes it is safe or the car
believes it braking.

We needed the initial Bcar safe in order to exclude those runs in which the car
never believes it is safe since the braking behaviour is only triggered when the
belief safe is removed.

When model checked using a typical hand-constructed unstructured abstrac-
tion, verification takes 4,906 states and 32:17 minutes to verify. Using the struc-
tured abstraction generated from the trace expression the property took 8:22



Verifying Autonomous Systems 7

Fig. 2. General view of the runtime monitoring framework from [14]

minutes to prove using 1,677 states – this has more than halved the time and
the state space.

As discussed, the structured abstraction may not reflect reality. In the original
cruise control program the software could override the human driver if they
attempted to accelerate in an unsafe situation. We removed this restriction.
Now we had a version of the program that was incorrect with respect to our
property in the unstructured environment model but remained correct in the
structured environment model. We were then able to run our program in a
motorway simulation contained in the MCAPL distribution where the “driver”
could accelerate whenever they liked – the runtime monitor correctly detected
the violation of the environment assumption and flagged up a warning.

Full details of the use of runtime verification with structured abstractions of
environments can be found in [20].

5 Compositional Verification

We now look beyond our agent decision-maker to see how we can derive proper-
ties about the behaviour of an autonomous system of which the agent decision-
maker is only one part. To motivate this we will discuss the verification of a
vehicle platooning system (reported in [26]) and an autonomous search and res-
cue rover.



8 L. A. Dennis

Vehicle Platooning The automotive industry is working on what are vari-
ously called road trains, car convoys, or vehicle platoons. Here, each vehicle
autonomously follows the one in front of it, with the lead vehicle in the pla-
toon/convoy/train being controlled by a human driver.

In these platoons, vehicle-to-vehicle (V2V) communication is used at the
continuous control system level to adjust each vehicle’s position in the lanes and
the spacing between the vehicles. V2V is also used at higher levels, for example
to communicate joining and leaving requests to the platoon’s lead vehicle. It is
these leaving and joining requests that we consider here.

We assume that this lead vehicle serves two roles. It is controlled directly
by a human driver but it also acts as the central decision-making component in
platoon operations such as leaving and joining protocols. Therefore there is a
software agent in the lead vehicle, in all the other vehicles in the platoon and
in any vehicle wishing to join the platoon. These software agents control the
enactment of the protocols for joining and leaving the platoon.

Search and Rescue Rover Consider an autonomous rover deployed in a disaster
situation. The autonomous rover has two types of sensor: the vision sensor is used
for navigation around the area while an infrared sensor detects sources of heat
that might indicate an injured or trapped person. There is a route planner that
works with the vision system to provide obstacle free routes to target locations
and a battery monitoring system that monitors the power level of the rover.
Finally there are two cognitive agents: a goal reasoning agent which takes input
from the sensors to select target locations for searching or recharging and a plan
execution agent that selects and executes route plans based on battery level
information and may send recharge instructions to the goal reasoning agent3.

5.1 Module Level vs. System Level Properties

Vehicle Platoons We implemented the reasoning needed to follow the leaving
and joining protocols for a platoon as a cognitive agent and were able to verify
properties of these agents such as:

If a vehicle has a goal to join a platoon but never believes it has received
confirmation from the leader, then it never initiates joining the platoon.

However we are also interested in properties of the global system, for instance
we might wish to know that

If an agent ever receives a joining agreement from the leader, then the
cars in the platoon at the joining location have created enough space for
the new car to join.

3 Code for these two agents can be found in the
src/examples/eass/compositional/rescue directory of the MCAPL
distribution.



Verifying Autonomous Systems 9

In AJPF’s property specification language this would involve both beliefs of
the joining agent (that it has received an agreement) and actions of the agents
in the specified places in the platoon (that space has opened up). We could, of
course, verify each agent separately – for instance that the leader never sends
an agreement message unless it believes that a space has opened but this fails
to really tell us system behaviour. We also have a second problem. While it
is all very well to verify that eventually an appropriate message is sent or an
appropriate action is performed sometimes we require timing constraints on this
– particularly in an environment such as a motorway where vehicles are moving
at speed. So we are interested in properties like:

Given assumptions about the time taken for a vehicle to move to the
correct spacing, to move to the correct place adjacent to the platoon and
to change lane and for messages to be delivered then the time the required
required for a completed join maneuver is within desired bounds

AJPF’s property specification language simply cannot express these properties.
Therefore we opted to use a different approach to verify global properties

of the system. In this approach the agent is represented as a more simple au-
tomata with many implementation details and edge cases associated with han-
dling unexpected environment behaviour, such as receiving unrequested agree-
ments, removed. This simple automata is then combined with automata repre-
senting other vehicles and communication to verify timing properties using the
UppAal model-checking tool [4, 3]. Meanwhile we use AJPF to prove desired
properties of the agent implementation.

Search and Rescue Rover In the case of the Search and Rescue rover we are
interested in verifying system level properties such as:

If the rover needs to recharge, it will execute actions to move to the
charger location.

This requires, at a minimum, formal guarantees about the behaviour of both
agents and the route planning system, and ideally would also involve some anal-
ysis of the behaviour of the battery monitor.

In this case we can break this down into properties we want to hold of the
individual system components and then combine these. For instance, we want
to establish a couple of properties for the plan execution agent, namely:

If the plan execution agent believes the battery to be low and the current
goal is not the charge position then it will send a recharge message to the
goal agent.

If the plan execution agent believes the current goal is the charge position
and has a plan to get there then it will instruct the control system to
follow the route to the charge position.



10 L. A. Dennis

We want to establish that the goal agent has the property:

If the goal agent believes a recharge is needed then it will set the target
location to be the charge position.

The route-planner is not a BDI agent, but we can model the algorithm it
uses and prove properties of that using Event-B [1]. For instance our route
planner outputs a set of routes R as a sequence of waypoints, w0, . . . , wn so we
established:

The current target location appears as a waypoint in all routes suggested
by the route planner.

We then need a mechanism to combine these proofs.

5.2 Combining Results

In both our case studies we generated a number of formal verification results
using different formalisms and technologies. The challenge is then to combine
these into a system level result.

The Platoon For our platooning system, we established properties both of the
agents controlling the individual vehicles involved in the platoon with details of
the communication and control behaviour abstracted away in an unstructured
verification environment and timing properties of the system behaviour with
details of the agent behaviour abstracted away.

For simplicity, we assume that our system S consists of just two agents/ve-
hicles and our verification works has given us the following:

– V1 and V2: timed automata representing the vehicle control used to verify
properties in UppAal.

– V ′
1 and V ′

2 : untimed abstractions of V1 and V2 represented in an unstructured
verification environment in AJPF.

– A1 and A2: BDI agent implementations used to verify properties in AJPF.
– A′

1 and A′
2: abstractions of A1 and A2 with BDI elements removed used to

verify properties in UppAal.
– Comms12 is a timed automaton representing the inter-vehicle communica-

tions used to verify properties in UppAal.
– Comms12 ′ is an untimed abstraction of Comms12 represented in an un-

structured verification environment in AJPF.

We use ∥ to represent the parallel combination of these automata into a system
S. So V ′

i ∥ Ai ∥ Comms12 ′ represents a system used to prove a property about
agent, Ai, in AJPF, while V1 ∥ A′

1 ∥ Comms12 ∥ A′
2 ∥ V2 is a system con-

sisting of two agent abstractions and timed automata used to prove a property
about interactions of the agents in UppAal. In [26] we prove that individual
proofs about these systems containing abstractions can be conjoined into a single
theorem about the system, S = V1 ∥ A1 ∥ Comms12 ∥ A2 ∥ V2.

We applied this to our platooning system. In AJPF we proved proved:



Verifying Autonomous Systems 11

If a vehicle with a goal of joining the platoon never believes it has re-
ceived confirmation from the leader, then it never initiates joining to the
platoon.

While, in UppAal, we proved:

If an agent ever receives a joining agreement from the leader, then the
preceding agent has increased its space to its front agent.

So the combined system has the property:

If a vehicle never believes it has received confirmation from the leader,
then it never initiates joining to the platoon and if an agent ever re-
ceives a joining agreement from the leader, then the preceding agent has
increased its space to its front agent.

Indicating that an agent never initiates joining the platoon unless the preceding
agent has increased its space to it front agent.

Search and Rescue Rover In the platooning example, our combined prop-
erty was expressed in a mixture of logics as used by the individual verification
tools. For the search and rescue rover example we sought to place this kind of
combination within a framework based on the concept of contracts.

For this system we specify contracts for each module, in the form of assump-
tions and guarantees and show, using first order logic, that these contracts imply
the system properties. The verifications of individual modules allow us to argue
that the module fulfils its contact.

Contracts in First-Order Logic We assume that our system consists of a set
of modules, M, and a signature, Σ, of variables.

For a given module, C ∈ M, we specify its input modules, IC ⊆ M, updates,
UC ⊆ Σ, assumption, AC : Σ → Bool and guarantee, GC : Σ → Bool. Taken
together ⟨IC ,UC ,AC ,GC⟩ form a contract for the module.

We use the notation C↑ to indicate that a C emits some output and C↓ to
indicate that C receives an input.

We assume that all modules, C, obey the following:

∀ϕ, x · x ⊆ Σ\UC ∧ AC ∧ C↓ ∧ ϕ(x) ⇒ ♢(GC ∧ C↑ ∧ ϕ(x)) (2)

Intuitively, this states that if, at some point, C receives an input and its assump-
tion holds then eventually it emits an output and its guarantee holds. Moreover,
for any formula, ϕ, which does not involve any of C’s update variables then, if
ϕ holds when C recieves the input, ϕ also holds when C emits the output – i.e.,
ϕ is unaffected by the execution of C.

We have a second assumption that explains how inputs and outputs between
two modules, C1 and C2, connect:

C↑
1 ∧ C1 ∈ IC2

→ C↓
2 (3)



12 L. A. Dennis

Intuitively this states that if C1 emits an output and is connected to the input
of C2, then C2 recieves an input.

We use these two rules to reason about our system.

Module Contracts As an example module contract, the contract for the goal
reasoning agent was:

Inputs IG: {V,H,E}
Updates UG: g
Assumption AG: ⊤
Guarantee GG: (g ̸= chargePos ⇒

(∃h · h ∈ N ∧ (g, h) ∈ GoalSet ∧ (∀p, h1 · (p, h1) ∈ GoalSet ⇒ h ≥ h1)))
∧(recharge ⇐⇒ g = chargePos)

The goal reasoning agent’s inputs are the outputs of the Vision system V , the
heat sensor, H and the plan execution agent, E. It updates the target goal, g.
It has no assumptions (⊤) and guarantees that:

1. If the target goal, g, (which it updates) is not the charge position then
(g, h) ∈ GoalSet for some heat signal, h, and for all other positions in the
GoalSet the heat for that position is lower than h.

2. If a recharge is needed then g is the charge position

Does the goal reasoning agent meet its contract? We proved, using AJPF, that
if the goal reasoning agent believed a recharge was required then it would set the
goal to be the charging position. We also proved that if recharge was not required
it would select the position with the highest heat signature. Note, however, we
proved this for specific assumed positions (with these assumptions embedded
in a verification environment), rather than the general properties stated in the
contract.

Using our contracts we proved:

If at any point all plans sent to the plan execution agent by the plan-
ner module are longer than available battery power, then eventually the
current plan will contain the charging position as the goal or there is no
route to the charging position

□(GP ∧ (∀p · p ∈ PlanSet → length(p) > b− t) ∧ E↓) =⇒
♢((g = chargePos ∧ g ∈ plan) ∨ PlanSet ̸= ∅)) (4)

using the two rules (3) and (2).

In a series of works [18, 9, 8] we have considered a number of variations on
this example, as well as different kinds of contracts and sets of rules for reasoning
about them.



Verifying Autonomous Systems 13

6 Conclusion

This paper has focused on work performed by members of the Autonomy and
Verification Network. In particular we have focused on the use of the MCAPL
framework for verifying decision-making agents in autonomous systems [16, 15],
the use of runtime verification to check that environments behave as assumed
by abstractions [19, 20] and techniques for combining heterogenous verifications
of different components or aspects of an autonomous system [26, 18, 9, 8].

Our approach is built upon constructing verifiable autonomous systems by
locating key high-level decisions in a declarative component based upon the
BDI-model of agency.

AJPF is not the only tool aimed at enabling the verification of autonomous
systems. Tools are being developed for analysing the behaviour of image classi-
fiers [25], reasoning about control systems [22], programming planning systems
with defined formal properties [27] and validating both the models used by plan-
ning systems [31] and the plans produced [24]. This is why the work on compo-
sitional verification is so critical. To truly verify an autonomous system we need
to consider all the software components that make up the system, verify each of
them with the appropriate tools and then combine those verifications together.

Acknowledgements: This work has been supported by EPSRC, through
Model-Checking Agent Programming Languages (EP/D052548), Engineer-
ing Autonomous Space Software (EP/F037201/1), Reconfigurable Autonomy
(EP/J011770), Verifiable Autonomy (EP/L024845/1), Robotics and AI for Nu-
clear (EP/R026084/1), Future AI and Robotics for Space (EP/R026092/1),
and the Trustworthy Autonomous Systems Verifiability Node (EP/V026801/1).
Thanks are due to Rafael C. Cardoso, Marie Farrell, Angelo Ferrando, Michael
Fisher, Maryam Kamali and Matthew Luckcuck for much of the work presented
in this paper.

Data Access Statement The MCAPL framework, including most of the exam-
ples in this paper, is available on github, https://github.com/mcapl/mcapl, and
archived at Zenodo, https://zenodo.org/record/5720861. The only example not
available with the framework is the platooning example which can be found
at https://github.com/VerifiableAutonomy/AgentPlatooning.

References

1. Abrial, J.R.: Modeling in Event-B. Cambridge University Press (2010)
2. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear

temporal logic for runtime verification. In: Theory and Practice of Formal Methods:
Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday. Lecture
Notes in Computer Science, vol. 9660, pp. 47–64. Springer (2016)

3. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: International
School on Formal Methods for the Design of Computer, Communication, and Soft-
ware Systems, Revised Lectures. Lecture Notes in Computer Science, vol. 3185,
pp. 200–236. Springer (2004)



14 L. A. Dennis

4. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal — a Tool
Suite for Automatic Verification of Real–Time Systems. In: Proc. of Workshop on
Verification and Control of Hybrid Systems III. pp. 232–243. No. 1066 in Lecture
Notes in Computer Science, Springer (Oct 1995)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. John Wiley & Sons (2007)

6. Boyer, R.S., Strother Moore, J. (eds.): The Correctness Problem in Computer
Science. Academic Press (1981)

7. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press
(1987)

8. Cardoso, R.C., Dennis, L.A., Farrell, M., Fisher, M., Luckcuck, M.: Towards com-
positional verification for modular robotic systems. In: Proc. 2nd International
Workshop on Formal Methods for Autonomous Systems (FMAS 2020) (2020)

9. Cardoso, R.C., Farrell, M., Luckcuck, M., Ferrando, A., Fisher, M.: Heterogeneous
verification of an autonomous curiosity rover. In: Proc. 12th International NASA
Formal Methods Symposium (NFM). Lecture Notes in Computer Science, vol.
12229, pp. 353–360. Springer (2020)

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
11. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent sys-

tems in 3APL. chap. 2, pp. 39–67
12. DeMillo, R.A., Lipton, R.J., Perlis, A.: Social Processes and Proofs of Theorems

of Programs. ACM Communications 22(5), 271–280 (1979)
13. Dennis, L.A.: The MCAPL Framework including the Agent Infrastructure Layer

and Agent Java Pathfinder. The Journal of Open Source Software 3(24) (2018)
14. Dennis, L.A., Fisher, M.: Verifiable Autonomous Systems: Using Rational Agents

to Provide Assurance about Decisions made by Machines. Cambridge University
Press, in press

15. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical Ver-
ification of Decision-Making in Agent-Based Autonomous Systems. Automated
Software Engineering 23(3), 305–359 (2016). https://doi.org/10.1007/s10515-014-
0168-9, http://dx.doi.org/10.1007/s10515-014-0168-9

16. Dennis, L.A., Fisher, M., Webster, M., Bordini, R.H.: Model Checking Agent Pro-
gramming Languages. Automated Software Engineering 19(1), 5–63 (2012)

17. Falcone, Y., Havelund, K., Reger, G.: A Tutorial on Runtime Verification. In:
Engineering Dependable Software Systems, pp. 141–175. IOS Press (2013)

18. Farrell, M., Cardoso, R.C., Dennis, L.A., Dixon, C., Fisher, M., Kourtis, G., Lisitsa,
A., Luckcuck, M., Webster, M.: Modular verification of autonomous space robotics
(2019)

19. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and
validating autonomous systems: Towards an integrated approach. In: Colombo, C.,
Leucker, M. (eds.) Runtime Verification. Lecture Notes in Computer Science, vol.
11237, pp. 263–281. Springer (2018)

20. Ferrando, A., Dennis, L.A., Cardoso, R.C., Fisher, M., Ancona, D., Mas-
cardi, V.: Toward a holistic approach to verification and validation of au-
tonomous cognitive systems. ACM Transactions on Software Engineering
and Methodology 30(4), 43:1–43:43 (2021). https://doi.org/10.1145/3447246,
https://doi.org/10.1145/3447246

21. Fetzer, J.H.: Program Verification: The Very Idea. ACM Communications 31(9),
1048–1063 (1988)

22. Garoche, P.L.: Formal Verification of Control System Software. Princeton Univer-
sity Press (2019), http://www.jstor.org/stable/j.ctv80cd4v



Verifying Autonomous Systems 15

23. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming: Lan-
guages, Tools and Applications. pp. 119–157. Springer US, Boston, MA (2009)

24. Howey, R., Long, D., Fox, M.: VAL: Automatic Plan Validation, Continuous Effects
and Mixed Initiative Planning us ing PDDL. In: Proc. ICTAI. pp. 294–301 (2004).
https://doi.org/10.1109/ICTAI.2004.120

25. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E.,
Wu, M., Yi, X.: A Survey of Safety and Trustworthiness of Deep
Neural Networks: Verification, Testing, Adversarial Attack and De-
fence, and Interpretability. Computer Science Review 37, 100270
(2020). https://doi.org/https://doi.org/10.1016/j.cosrev.2020.100270,
http://www.sciencedirect.com/science/article/pii/S1574013719302527

26. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal Verification
of Autonomous Vehicle Platooning. Science of Computer Programming 148, 88–
106 (2017), http://arxiv.org/abs/1602.01718

27. Lacerda, B., Faruq, F., Parker, D., Hawes, N.: Probabilistic Planning with For-
mal Performance Guarantees for Mobile Service Robots. International Journal
of Robotics Research 38(9) (2019). https://doi.org/10.1177/0278364919856695,
https://doi.org/10.1177/0278364919856695

28. Mehlitz, P.C., Rungta, N., Visser, W.: A Hands-on Java PathFinder Tutorial. In:
Proc. 35th International Conference on Software Engineering (ICSE). pp. 1493–
1495. IEEE / ACM (2013), http://dl.acm.org/citation.cfm?id=2486788

29. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. pp.
149–174

30. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.Y.: ROS: An open-source robot operating system. In: Proc.
ICRA Workshop on Open Source Software (2009)

31. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a tool to ver-
ify PDDL planning domains. In: Proc. ICAPS’09 (2009),
http://lvl.info.ucl.ac.be/Publications/PDVerAToolToVerifyPDDLPlanningDomains

32. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Proc.
2nd Int. Conf. Principles of Knowledge Representation and Reasoning (KR&R).
pp. 473–484. Morgan Kaufmann (1991)

33. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Proc.
Int. Conf. Knowledge Representation and Reasoning (KR&R). pp. 439–449. Mor-
gan Kaufmann (1992)

34. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proc. 1st Int.
Conf. Multi-Agent Systems (ICMAS). pp. 312–319. San Francisco, USA (1995)

35. Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Agents Breaking Away: Proc. 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World. LNCS, vol. 1038, pp. 42–55. Springer
(1996)

36. Rosu, G., Havelund, K.: Rewriting-Based Techniques for Runtime Verification.
Automated Software Engineering 12(2), 151–197 (2005)

37. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10(2), 203–232 (2003)

38. Visser, W., Mehlitz, P.C.: Model Checking Programs with Java PathFinder. In:
Proc. 12th International SPIN Workshop. Lecture Notes in Computer Science,
vol. 3639, p. 27. Springer (2005)

39. Wooldridge, M.: An Introduction to Multiagent Systems. JohnWiley & Sons (2002)



16 L. A. Dennis

40. Wooldridge, M., Rao, A. (eds.): Foundations of Rational Agency. Applied Logic
Series, Kluwer Academic Publishers (1999)


