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Abstract

This paper reports the use of proof planning to diagnose errors in program
code. In particular it looks at the errors that arise in the base cases of recursive
programs produced by undergraduates. It describes two classes of error that arise
in this situation. The use of test cases would catch these errors but would fail to
distinguish between them. The system adapts proof critics, commonly used to patch
faulty proofs, to diagnose such errors and distinguish between the two classes. It
has been implemented in λClam , a proof planning system, and applied successfully
to a small set of examples.

The use of mathematical proof to show that a computer program meets its specifica-
tion has a long history in Computer Science (e.g. [14, 13]). Considerable time and effort
has been invested in creating computer-based tools to support the process of proving
programs correct (e.g. [15, 8]). However the technique and tools are only used in very
specialised situations in industry where programmers generally rely on testing and bug
reports from users to assess the extent to which a program meets its specification.

There are several reasons why there is such poor uptake of the use of proof in
industry. One is that the final proof will tell you if the program is correct, but failing to
find a proof does not, on immediate inspection, help in locating errors. This problem can
be particularly severe when using automated proof techniques which generally produce
no proof trace in the case of failure. Many cases have been reported where the process
of attempting a proof by hand has highlighted an error, for instance Paulson’s discovery
of new attacks against security protocols [16]. Anecdotal evidence suggests that errors
are located by examining and reflecting on the process of the failed proof attempt.

It is worth noting the comparative success of model checking techniques (e.g. [11]).
Model checkers are automated (though they require an expert user to convert the prob-
lem into an appropriate form) and return counterexamples when they fail. This confirms
the analysis that automated support for error discovery is valuable and might aid a more
widespread uptake of theorem proving technology.

This paper reports preliminary work using the proof planning paradigm (in particular
the concept of proof critics) to diagnose the errors in program code. I focus on two classes
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of error that can arise in the base case of a recursive program and show how a proof
critic can be written to distinguish between these two situations.

1 Proof Planning

Proof planning [1] is an Artificial Intelligence based technique for the automation of
proof. One aspect of proof planning is the inspection of failed proof attempts by means
of proof critics [10] which attempt to patch the proof.

Proof planners use AI-style planning techniques to generate proof plans. A proof
plan is a proof of a theorem at some level of abstraction. The main planning operators
used by a proof planner are called proof methods.

The first proof planner, Clam [3], focused on proof by mathematical induction using
the rippling heuristic (a form of rewriting constrained to be terminating by meta-logical
annotations) [2]. λClam [19, 5], which I used for this work, is a higher-order descendant
of Clamwhich incorporates both a hierarchical method structure and proof critics.

λClam works by using depth-first planning with proof methods. Each node in the
search tree is a subgoal under consideration at that point. The planner checks the
preconditions for the available proof methods at each node and applies those whose
preconditions succeed to create the child nodes. The plan produced is then a record
of the sequence of method applications that lead to a trivial subgoal. λClam ’s proof
methods are believed to be sound although they are not currently reducible to sequences
of inference rule applications. This means that while λClam outputs something that
can be considered a proof in a similar way to a pen-and-paper correctness proof it does
not produce a fully-formal proof.

1.1 Proof Methods

Proof method application is governed by preconditions (which may be either legal or
heuristic in nature) and by a proof strategy (or compound method) which restricts the
methods available depending on the progress through the proof. For instance we may
wish to simplify a goal as much as possible by applying a rewriting method exhaustively
before considering other procedures such as checking for tautologies.

In λClam a proof method can be atomic or compound. If it is compound then it is a
sub-strategy built up from other methods and methodicals1 [18]. Methodicals exist for
repeats, sequencing methods, creating or choices etc. and so complex proof strategies
for controlling the search for a proof can be created.

1.1.1 The Proof Strategy for Induction

The proof strategy for induction can be seen in figure 12. The diagram shows a top
level repeat which attempts a disjunction of methods (in λClam these are attempted

1Analogous to a tactical in an LCF style theorem prover.
2There is no clear semantics for the use of diagrams to represent proof strategies. In this case boxes

are used to indicate methods (both atomic and compound) and arrows to indicate method sequencing.
Methods within methods indicate the method hierarchy, arrows that branch show OR choices and
methods with more than one exit arrow indicate that they produce several goals which are treated
differently.
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Figure 1: The Proof Strategy for Induction

from right to left, the planner backtracking out of failed choices). These include basic
tautology checking, generalisation of common subterms and also symbolic evaluation
and the induction strategy (ind strat). Within the induction strategy, the induction
method chooses an induction scheme and produces subgoals for base and step cases.

The top level strategy is reapplied to the base cases. The step cases are handled
using rippling. The details of rippling are not important to the work described here and
so are omitted from discussion. The results are then passed out to the top level strategy
again. The process terminates when all subgoals have been reduced to true.

This proof strategy is used as the basis of the system for diagnosing errors in recursive
programs discussed in this paper.

1.2 Proof Critics

A proof strategy provides a guide to which proof methods should be chosen at any
given stage of the proof. Knowing which method is expected to apply gives additional
information should the system generating the plan fail to apply it. Proof critics can
be employed to analyse the reasons for failure and propose alternative choices. Critics
are expressed in terms of preconditions and patches. The preconditions examine the
reasons why the method has failed to apply. The proposed patch suggests some change
to the proof plan or strategy. It may choose to propagate this change back through the
plan and then continue from the current point, jump back to a previous point in the
proof plan, or modify the current strategy being used by the planner, for instance by
introducing new methods for consideration at that point.

In λClamv4, used for this work, critics can be built up into strategies using criti-
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cals [9] in the same way that method strategies can be developed.

1.3 Related Work

Monroy [12] has already used proof planning to examine faulty conjectures. He follows
work by Franova and Kodratoff [7] and Protzen [17] and attempts to synthesize a cor-
rective predicate in the course of proof. The idea is that the corrective predicate will
represent the theorem that the user intended to prove. This predicate is represented
by a meta-variable, P , such that P → G where G is the original (non)theorem. P

is instantiated during the course of a proof planning attempt. This approach assumes
that, in some sense, the error arose because the original conjecture was too general.

The work reported here does not attempt to generate a corrective predicate. It
seeks simply to diagnose the point in the code which is causing proof failure and allow
a user to determine the appropriate modification. This allows for a more general class
of errors to be identified beyond over-generalisations. Clearly there are advantages and
disadvantages to both approaches and ideally they might at some point be combined
into a system which both diagnosed the error and suggested a modification.

2 Novice Programs

In order to exploit the proof planning paradigm it is necessary to identify common
patterns of proof in order to structure the proof strategy. In the case of faulty conjectures
this would include identifying common patterns of proof failure which in turn requires
the collection of a large body of data containing errors in order to observe the patterns
of failure involved.

I have opted to study the programs produced by novice programmers, specifically
undergraduates working on functional programming modules. It is relatively easy to
acquire a large number of such programs and they are also likely to be well suited
to proof by mathematical induction for which a mature proof strategy already exists
(described above). On the downside such programs may not have a clear specification.
Also, such programs may not contain the sort of bugs which we would expect to be
generated by real programmers.

2.1 Errors in the Base Cases of Recursive Programs

I analysed a corpus of ML programs produced by students at the University of Edin-
burgh. This was a large set of approximately 150 scripts (attempting up to 4 problems)
of which half were examined (the remainder being kept aside for later testing). These
programs were all recursive in nature and a number of errors were identified and classi-
fied. This paper focuses specifically on errors occurring in the base cases of recursions.

An obvious approach to such problems is to filter the programs through test cases (in
fact this is the approach adopted by many practitioners). However my analysis revealed
two different ways in which errors may appear – these two different circumstances would
not be distinguished by a counter-example alone.

The student programs contained some technical challenges for rippling which pre-
vented the production of the proof plans showing that the step cases were correct. In
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the rest of this paper I use a manufactured example in which the errors are duplicated
but in which the basic problem is altered.

Consider the reverse function on lists3 commonly defined as:

reverse(nil) = nil,

reverse(X :: XS) = reverse(XS) <> (X :: nil).

The two errors that appeared to arise in student code were when either the base case
of the recursion was incorrect in some way or it was omitted. A typical incorrect base
case would be:

reverse(nil) = X :: XS.

The object of the research reported here was to distinguish between these two problems
based on the failed proof attempt.

2.2 The Proof Strategy

The first challenge was to develop some sort of specification for the program. In this
case I assume that the tutor has provided a “correct” version of the program and that
the system is attempting to prove their equivalence4. In this case the initial proof goal
is

∀l. student reverse(l) = tutor reverse(l).

Hand proofs of these equivalences suggest that the proof stalls in the base case of the
induction at either

X :: XS = nil

when the base case is incorrect or

student reverse(nil) = nil

when the base case is missing.
In the case of the incorrect base case both the goal has been reduced to a falsehood

(assuming a free constructor specification).
In the second case (missing base case) we have two inequal terms, one of which has

been reduced to variables and type constructors while the other still contains a defined
term.

2.3 Critics for missing and incorrect base cases

This analysis suggested that there should be a critic on the symbolic evaluation method.
Symbolic Evaluation is, in fact, a compound method consisting of repeated applications
of a rewrite method and is shown in figure 2. I implemented a modification to this
method so that a critic strategy is called if the rewrite method fails. This is shown
in figure 35. The critic strategy calls an atomic critic, check equalities. This is

3In what follows we use nil to indicate the empty list, :: to indicate the cons function that joins
an element to the front of a list and <> to indicate a built-in append function which joins two lists
together.

4Obviously this scenario is unlikely in an industrial setting but was sufficient for the problem at hand.
5A dashed line is used here to indicate that the critic is invoked if the method fails.
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Figure 2: The Symbolic Evaluation Method
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Figure 3: The Symbolic Evaluation Method and Base Case Diagnosis Critic

shown in figure 4 however I have chosen to present this in terms of preconditions and
effects rather than patches since the critic does not patch the proof (or the theorem).
The “known to be false” precondition checks a small internal list of non-theorems for
a match – these assume a free constructor specification (ie. they contain ¬(0 = s(N))
where N is a variable) there are clearly some issues with this assumption and an obvi-
ous area for improving the critic is in making the implementation of this precondition
more rigorous for instance by using I-Axiomatizations [4]. If its preconditions succeed
then check equalities processes its effects which in this case prints out an appropriate
diagnosis message. If the critic succeeds the current strategy is changed so instead of
proceeding as normal a method called stop meth is invoked which closes the current
proof branch immediately. Other proof branches are left open to be explored, poten-
tially finding additional errors in the program (e.g. in the case where two base cases
are incorrect or missing both are diagnosed – this occurs in some examples using the
definition of even). If check equalities fails then the system returns to the normal
proof plan for induction.
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Preconditions

Case 1 The current goal is known to be false.

OR

Case 2 The current goal is an equality and exactly one side of the equality is a simple
term.

Effects

Case 1 Diagnose an incorrect base case.

Case 2 Diagnose a missing base case.

Figure 4: The Base Case Diagnosis Critic

3 Results

There are two sorts of results for the implementation of the base case diagnosis system.
Firstly the system should correctly classify errors and secondly it should not diagnose
actual theorems as faulty6.

A handful of student programs were converted into λClam ’s input format (modifying
the programs in some cases because of the problems they posed to the step case proofs
though preserving the errors) all of these were correctly diagnosed by the system. The
student and tutor programs used are listed as an appendix to this paper. It should be
noted that where a student has chosen and alternative base case, say 1 rather than 0, the
program still diagnoses a missing base case since the two programs are not equivalent
for 0 as input. It could be argued that this is instead an instance of an incorrect base
case or even that it has arisen from an insufficiently well-defined specification on the
part of the tutor. At the moment the system ignores these distinctions though it might
be possible to extend it to identify rewrite rules defined from the student program that
were not used in the proof.

The system was also run on λClam ’s benchmark sets of theorems on lists and natural
numbers – the new critic did not cause any of these to be incorrectly classified as faulty.
The system can also prove the equivalence of the student program to the tutor one if if
they have chosen a more complex form of recursion (eg. in the case of reverse having
two base cases, one for the empty and one for the one element list and then a recursive
case which removes two elements from the head of the list at a time).

6Within reason, I make no claims that this is a decision procedure which can never conclude that a
true theorem has a flaw, however I want to be assured that the critic heuristic is usually correct.
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4 Further Work

There is a risk that a proof has failed to go through because of some missing lemma,
or inference rule. For instance suppose that constructors are not free but the system is
unable to simplify s(p(X)) to X. In this case a falsehood could be detected where none
exists. There are some obvious improvements which can be implemented to the existing
falsehood detection system (already discussed above) but it would also be useful to link
a counter-example generator into the system since the existence of an example where
each program gave a different answer would guarantee that the student program was
incorrect while the diagnosis system could provide additional information and guidance
about the nature of the error.

Similarly in the detection of missing base cases it is possible that the student has
supplied a base case which has been rewritten but to some term about which the system
can not reason further (most obviously they may have used some built-in function
which is not represented in the proof system). Tight integration between the student
programming environment and the proof system would help overcome this but it would
also be useful to detect whether the student side of the equation had been rewritten at
all (in which case they have supplied some sort of base case in the program) or whether
it was simply irreducible from the moment the goal was set up. It is also possible that
they have implicitly made use of some equality between built-in functions which is not
represented in the rewrite rules of the system. Once again the ability to generate a
counter-example would provide a useful sanity check here.

My immediate intention is to port the existing proof plan and critic for base case
diagnosis to IsaPlanner [6]. This is a newly developed proof planner containing much
of the existing work on induction but also containing a wider knowledge base of rewrite
rules, theorems and non-theorems and providing a more robust implementation base
than λClam . Within this framework I hope to implement the more sophisticated ideas
detecting falsehood and missing base cases discussed above. I also hope to investigate
a wider set of examples and to use the actual programs produced by the students as
the basis for theorems rather than porting their errors to functions more amenable to
rippling.

4.1 Incorrect Step Cases

An obvious extension to this work is to look at errors occurring in the recursive case of
functional programs. Several examples of these are also present in the data set. When
the proof fails in these cases it takes place in the “tidying up” phase that follows the
use of the step case method, once again failing during symbolic evaluation.

This will raise more serious issues about false positives since in a number of existing
proof plans symbolic evaluation fails at this point, the method is backtracked out of and
a subsidiary induction attempted7.

7Lucas Dixon (personal communication) has suggested that a lemma speculation critic (already
implemented in IsaPlanner) could solve this problem and would be called before the failure of symbolic
evaluation.

8



5 Conclusion

This paper reported preliminary work to investigate the use of proof critics to diagnose
program errors. It shows that, in principle at least, proof critics can be used to diagnose
such errors and that they can be used to distinguish between different classes of error that
would be picked up by the same counter-example. Potentially proof planning provides
more information to a user about the nature of program error than a counter-example
generator alone could.
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6 Appendix

6.1 Tutor Programs

Insert Everywhere inserteverywhere(N,nil) = (N :: nil) :: nil

inserteverywhere(N,X :: XS) =
(N :: (X :: XS)) :: map(λl.(X :: l), inserteverywhere(N,XS))

Reverse reverse(nil) = nil

reverse(X :: XS) = reverse(XS) <> (X :: nil)

Even even(0) = T

even(s(0)) = F

even(s(s(N)) = even(N)
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6.2 Student Programs

Insert Everywhere

Version 1 inserteverywhere(N,nil) = nil :: nil

inserteverywhere(N,X :: XS) =
(N :: (X :: XS)) :: map(λl.(N :: l), inserteverywhere(N,XS))

Version 2 inserteverywhere(N,nil) = nil

inserteverywhere(N,X :: XS) =
(N :: (X :: XS)) :: map(λl.(N :: l), inserteverywhere(N,XS))

Version 3 inserteverywhere(N,X :: XS) =
(N :: (X :: XS)) :: map(λl.(N :: l), inserteverywhere(N,XS))

Reverse

Version 1 reverse(nil) = X :: XS

reverse(X :: XS) = reverse(XS) <> (X :: nil)

Version 2 reverse(X :: XS) = reverse(XS) <> (X :: nil)

Even

Version 1 even(0) = F

even(s(0)) = F

even(s(s(N)) = even(N)

Version 2 even(s(0)) = F

even(s(s(N)) = even(N)

Version 3 even(0) = T

even(s(s(N)) = even(N)

Version 4 even(s(s(N)) = even(N)
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