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Autonomous robotic systems are complex, hybrid, and often safety critical; this makes their formal spec-

ification and verification uniquely challenging. Though commonly used, testing and simulation alone are

insufficient to ensure the correctness of, or provide sufficient evidence for the certification of, autonomous

robotics. Formal methods for autonomous robotics have received some attention in the literature, but no

resource provides a current overview. This article systematically surveys the state of the art in formal speci-

fication and verification for autonomous robotics. Specially, it identifies and categorizes the challenges posed

by, the formalisms aimed at, and the formal approaches for the specification and verification of autonomous

robotics.
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1 INTRODUCTION, METHODOLOGY, AND RELATED WORK

An autonomous system is an artificially intelligent entity that makes decisions in response to in-
put, independent of human interaction. Robotic systems are physical entities that interact with
the physical world. Thus, we consider an autonomous robotic system as a machine that uses Ar-
tificial Intelligence (AI) and has a physical presence in and interacts with the real world. They
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are complex, inherently hybrid, systems, combining both hardware and software; they often re-
quire close safety, legal, and ethical considerations. Autonomous robotics are increasingly being
used in commonplace scenarios, such as driverless cars [68], pilotless aircraft [176], and domestic
assistants [60, 174].

While for many engineered systems testing, either through real deployment or via simulation,
is deemed sufficient, the unique challenges of autonomous robotics, their dependence on sophis-
ticated software control and decision making, and their increasing deployment in safety-critical
scenarios require a stronger form of verification. This leads us toward using formal methods, which
are mathematically based techniques for the specification and verification of software systems, to
ensure the correctness of, and provide sufficient evidence for the certification of, robotic systems.

We contribute an overview and analysis of the state of the art in formal specification and ver-
ification of autonomous robotics. Section 1.1 outlines the scope, research questions, and search
criteria for our survey. Section 1.2 describes related work concerning formal methods for robotics
and differentiates them from our work. We recognize the important role that middleware archi-
tectures and non- and semiformal techniques have in the development of reliable robotics and
we briefly summarize some of these techniques in Section 2. The specification and verification
challenges raised by autonomous robotic systems are discussed next: Section 3 describes the chal-
lenges of their context (the external challenges) and Section 4 describes the challenges of their
organization (the internal challenges). Section 5 discusses the formalisms used in the literature for
specification and verification of autonomous robotics. Section 6 characterizes the approaches to
formal specification and verification of autonomous robotics found in the literature. Finally, Sec-
tion 7 discusses the results of our survey and presents our observations on the future directions
of formal methods for autonomous robotic systems.

1.1 Methodology

In this section, we outline the methodology that was followed when conducting this review. First
we discuss the factors that delimit the scope of our survey, and then we identify the research
questions that we analyzed and outline the search criteria that were followed.

Scope: Our primary concern is the formal specification and verification of autonomous robotic
systems. This hides a wealth of detail and often conflicting definitions. Therefore, we delimit the
scope of our survey as follows:

• We target systems that (eventually) have some physical effect on the world, not purely
software-based systems. In this sense, some of the work that we examine falls within,
though does not fully cover, the realm of cyber-physical systems (which are typically tackled
by hybrid formalisms).

• We cover not only systems that affect humans but also those that can be controlled by
humans, though we do not model human behaviour in detail as this is beyond the current
capabilities of formal methods.

• While some robotic systems may, as above, be controlled remotely by a human, we allow
for the full range of autonomy, from human controlled, to adaptive (i.e., driven by environ-
mental interactions), and on to fully autonomous systems (i.e., that can choose to ignore
environmental stimuli and make their own decisions).

• We address a range of formal properties, including safety, security, reliability, efficiency,
and so forth, primarily concerning the functional behavior of autonomous robotic systems
software. In particular, we do not consider mechanical, materials, or physics issues since
our focus is on the software that is controlling these systems.
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• By “formalisms” we mean mathematically based techniques for software and systems devel-
opment. We do not cover techniques based on, for example, systems of differential equations
except to mention them as part of hybrid approaches.

Research Questions: Our objectives in this article are to enumerate and analyze the formal meth-
ods used for the formal specification and verification of autonomous robotic systems. To this end,
we seek to answer the following three research questions:

RQ1: What are the challenges when formally specifying and verifying the behavior of (au-
tonomous) robotic systems?

RQ2: What are the current formalisms, tools, and approaches used when addressing the answer
to RQ1?

RQ3: What are the current limitations of the answers to RQ2, and are there developing solutions
aiming to address them?

There are, of course, many other questions that could be posed, but we begin with the above.
Indeed, these are enough to expose a wide variety of research in the core areas. We answer RQ1 in
Section 3 and Section 4 where we identify the current external and internal challenges, respectively,
to formally specifying and verifying autonomous robotic systems that we have derived from our
examination of the literature. We provide a thorough analysis of our findings in Section 5 and
Section 6, where we examine potential answers to RQ2 and RQ3. Section 7 provides a thorough
discussion of how we answer these research questions and our observations of the literature.

Search Criteria: Our search queries were formal modeling of (autonomous) robotic systems, for-

mal specification of (autonomous) robotic systems, and formal verification of (autonomous) robotic

systems. Our search traveled five pages deep of Google Scholar (on May 21, 2018) and discounted
any results that were obviously out of scope. In total, we surveyed 156 papers of which 63 were
deemed to be in scope, and these are described in Table 1. We restricted our search to papers that
were published in the last 10 years (2007–2018). Note that we include those that were published
up until the date the search was carried out in 2018. To contextualize these results we did some
“snowballing” from the core set of 63 papers and these will be mentioned throughout this survey;
however, our analysis specifically focuses on this core set in order to preserve the integrity of our
results.

We have broadly followed the methodology in [107] by delineating research questions, scope,
and search criteria. However, unlike the usual systematic review, we have employed “snowballing”
to provide a more rounded view of the topic and to minimize omissions. Generally, systematic
reviews provide a detailed enumeration of the tools or approaches used in a specific domain. They
do not normally, however, describe or discuss these tools or approaches in great detail. We have
crafted this survey to not only summarize and enumerate the current state of the art but also
educate the reader and provide a point of reference for researchers in this area.

1.2 Related Work

To our knowledge, there is no survey of the recent literature for formal specification and verifica-
tion of autonomous robotic systems. This section differentiates related work from ours.

Robotic systems often have safety-critical consequences. A survey on safety-critical robot-
ics [82] identified seven focus areas for the development of robots that can safely work along-
side humans and other robots, in unstructured environments. These areas are (1) modeling and
simulation of the physical environment to enable better safety analysis, (2) formal verification of
robot systems, (3) controllers that are correct by construction, (4) identification and monitoring
of hazardous situations, (5) models of human-robot interaction, (6) online safety monitoring that
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adapts to the robot’s context, and (7) certification evidence. In contrast, our survey focuses on the
application of formal methods to any type of autonomous robotic system.

Nordmann et al. [131] present a detailed survey of Domain-Specific Modeling Languages for
robotics. Their study focusses on nonformal modeling but was influential to the depth and orga-
nization of our survey. They analyze languages by both the applicable domain and development
phase. The use of model-driven engineering approaches in building robotic systems seems too
prevalent to ignore, as we discuss in Section 2.

In applying formal verification methods to programming languages for autonomous software,
Simmons et al. [156] identified three challenges for the automatic verification of autonomous sys-
tems: (1) “special purpose languages use special-purpose interpreters or compilers” that must be
verified, (2) “application-specific programs written in these languages need to be verified for in-
ternal correctness” (safety, liveness, etc.), and (3) “programs need to be verified for external cor-
rectness” (how they interact with the overall software system).

Weyns et al. [177] present a survey of formal methods for self-adaptive systems. While robotic
systems may be required to adapt themselves, this behavior is not required of all robotic systems
and so it is somewhat tangential to our survey. We discuss the specific challenges of formally
specifying and verifying self-adaptive robotic systems in Section 4.3.

Rouff et al. [149, 150] survey formal methods for intelligent swarms. As we discuss in Sec-
tion 4.2.1, the challenges posed by robot swarms are an extension of those of single autonomous
robotic systems. They compare a wide range of formalisms, covering process algebras, model-
based notations, and various logics, among others. They conclude that no single formalism is
suitable to the range of challenges posed by intelligent robot swarms. Their focus is, again, nar-
rower than ours and Section 4.2.1 offers a more recent perspective on formal methods for robot
swarms.

2 GENERAL SOFTWARE ENGINEERING TECHNIQUES FOR ROBOTIC SYSTEMS

The complex task of engineering a reliable robotic system is often addressed using a variety of
software engineering techniques. Though the focus of this survey is formal approaches to spec-
ifying and verifying robotic systems, this section introduces some of the less formal approaches,
particularly where they are potentially useful inputs to, or could be integrated with, a formal tech-
nique. We intend this section to provide the reader with a more rounded and complete view of
robotic system engineering, beginning with the commonly used middleware architectures.

Middleware Architectures: Architectures for developing robotic systems generally adopt the
paradigm of communicating components/nodes. Among the most popular in the literature are
ROS [140], OPRoS [100], OpenRTM [13], Orocos [151], and GenoM [73]. Each of these supports en-
gineering a robotic system in a slightly different way, but most share a common set of component-
based, modular concepts [155] to facilitate reuse of modules between different frameworks. Sup-
porting the integration of middleware frameworks, [5] presents a robotic software manager with
a high-level API that bridges the gaps between ROS, OPRoS, and OpenRTM.

It is often assumed that a middleware is sound, and this is key to trusting the robotic system [75].
However, given the heterogeneity of the systems that can be produced using such architectures
and their parameterizable nature, guaranteeing correct robot behavior is challenging [86]. Thus,
we have identified the following categories of non- and semiformal methods.

Testing and Simulation: Both testing and simulation are useful when developing robotic systems,
particularly simulation, which enables the examination of the system’s behavior in statistically
unlikely situations. However, they are time-consuming and examine part of the program’s state
space, so they cannot be used to reason reliably about properties of the whole program. Moreover,
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field tests are potentially dangerous to life and the robot hardware. Examples include the following
uses of field tests [75, 86, 110, 128] and/or simulations [9, 110].

Domain-Specific Languages (DSLs): An extensive literature survey identified 137 state-of-the-art
DSLs for robotics [131], the majority of which were for capturing robotics architectures and for use
within mature subdomains (e.g., robot motion). Conversely, fewer DSLs were aimed at emerging
subdomains (e.g., force control). The majority of surveyed DSLs were designed to describe the
basic components of the system at the early stages of development, but very few were suited to
application at runtime. The identified DSLs were often defined using Ecore [162] meta-models.
Related work on providing a robotics-specific Integrated Development Environment (IDE) [161]
aims to integrate the various phases of robotics software development by guiding the user through
a standardised development process. The Declarative Robot Safety language (DeRoS) [4] is a DSL
for describing a robot’s safety rules and corresponding corrective actions. Usefully, this provides
automatic code generation to integrate these rules with runtime monitoring by generating an ROS
safety monitoring node.

Graphical Notations: Graphical notations are present and examined throughout the literature.
They usually aim to provide an easy-to-use mechanism for designing robotic software that en-
ables communication between engineers from the various distinct disciplines involved in robotics
[87, 124, 171]. Statecharts [87] form the basis for several of these graphical notations, such as Ar-
marX statecharts [171], which are executable as C++ programs. A similar executable notation is
restricted Finite State Machine (rFSM) Statecharts [124], which represent a subset of UML 2 and
Statecharts [87]. Other notations include RoboFlow [10], which adopts the style of flow charts.
RoboFlow is specifically designed for engineering robot movement and manipulation tasks.

MDE/XML: Numerous Model-Driven Engineering (MDE) approaches use the Eclipse Modeling
Framework’s Ecore meta-meta-model [72]. The work in [94] presents a mapping from the XML-
based AutomationML into ROS program code. The BRICS Component Model [38] translates high-
level models into platform-specific component models for Orocos and ROS. Another model-driven
approach is the MontiArcAutomaton architecture description language [145], which translates
models into program code, mostly for ROS [3]. Performance Level Profiles [33] is an XML-based
language for describing the expected properties of functional modules. They provide tools for the
automatic generation of code for runtime monitoring of described properties. They again target
the ROS framework, but the output from their tool is flexible and not tied to ROS. RADAR is a novel
procedural language, with a Python implementation, for describing robot event responses [28].

Discussion: Middleware frameworks provide a flexible standard interface to the robotic hard-
ware, and the above non- and semiformal approaches aim to adapt the parts of software engineer-
ing practice that are relevant to the robotics domain. DSLs abstractly describe properties about
specific parts of the system, often improving the understanding or interoperability of the system.
Graphical notations aid in communication and visualization. However, more formal languages
provide unambiguous semantics and enable reasoning about the whole program rather than only
a particular set of program behaviors. Next, we describe the external challenges faced when ap-
plying formal methods to robotic systems. These challenges are external to the robotic system and
are independent of the type of robotic system being developed.

3 EXTERNAL CHALLENGES OF AUTONOMOUS ROBOTIC SYSTEMS

This section discusses the inherent challenges of formally specifying and verifying any au-
tonomous robotic system. We categorize them as external challenges because they are independent
of the robotic system’s internal design.
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Section 3.1 discusses the challenge of modeling a robotic system’s physical environment and
verifying its behavior within that environment. This process is of paramount importance because
real-world interactions can significantly impact safety.

Section 3.2 discusses the challenge of providing sufficient evidence for both certification and
public trust. For some robotic systems, the domain in which they are deployed has a certification
body (e.g., in the nuclear industry) that describes the evidence required to certify the system for
use. Other robotic systems are being used in domains where there is no certification body (e.g.,
domestic assistants), so evidence must be provided to gain trust in their safety. Both situations are
challenging because of the technical nature of both robotic systems and formal verification.

3.1 Modeling the Physical Environment

As mentioned in Section 1, we consider an autonomous robot as a machine that implements AI
techniques, has a physical presence, and interacts with the world. Thus, one of the most prominent
challenges in verifying robotic systems is its interaction with an unstructured environment. This
is further complicated by differing sensor accuracy or motor performance, or components that are
degraded or damaged.

Interactions between a robot and its physical environment can have a major influence on its
behavior, because the robot may be reacting to environmental conditions not considered at design
time. Indeed, the behavior of adaptive systems is directly driven by environmental interactions.
While it is accepted that formally modeling a robotic system within its physical environment is
important [71, 172], it has had limited attention in the literature. We believe that this is due to the
sheer complexity of this task: aside from the difficulty of modeling the real world, a robot only
has partial knowledge of its surroundings. Sensing limitations caused by sensor blind-spots and
interference between sensors add extra complexity to the modeling process [31, 88, 134].

To address the challenge of combining discrete computations and a continuous environment,
a robotic system is typically separated into several layers [8, 71]. At the bottom, the functional
layer consists of control software for the robot’s hardware. Then, the intermediate layer generally
utilizes a middleware framework (such as ROS [140] or GenoM [73]) that provides an interface
to the hardware components. The upper layer contains the decision-making components of the
robotic system, which capture its autonomous behavior.

Some previous work has focused on a robot’s decision making, ignoring its environment [110,
120]. Others assume that the environment is static and known, prior to the robot’s deployment [76,
128, 174], which is often neither possible nor feasible [88]. For example, the environment may
contain both fixed and mobile objects whose future behavior is unknown [31], or the robot’s goal
may be to map the environment, so the layout is unknown. Hybrid architectures often take a third
approach: to abstract away from the environment and assume that a component has the ability to
provide predicates that represent the continuous sensor data about the robot’s environment [55,
57, 71, 163, 168]. While this encapsulates the high-level control, insulating it from the environment,
the implicit assumption of a static, known environment can often remain.

Using models of the environment that are static and assume prior knowledge may limit their
effectiveness. However, Sotiropoulos et al. [160] examine the ability of low-fidelity environmental
simulations to reproduce bugs that were found during field tests of the same robot. Of the
33 bugs that occured during the field test, only one could not be reproduced in the low-fidelity
simulation. Perhaps similar results might be obtained with low-fidelity formal models of a robot’s
environment.

Probabilistic models are a popular approach to capturing dynamic and uncertain environments.
In [130], a PRISM model captures the environment of a domestic assistant robot. Nonrobot ac-
tors in the environment are specified using probabilistic behaviors, to represent the uncertainty
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about their behavior. The robot model is also written in PRISM, so that it can be reasoned about
within this probabilistic environment. This is a useful step that accepts the changing nature of the
environment. However, for the model checker to explore outcomes based on a certain behavior,
its probability must be encoded into the environment model. This still leaves the possibility of
unforeseen situations having a detrimental effect on the robot’s behavior.

Similarly, Hoffmann et al. [93] formalize a pilotless aircraft and its physical environment using
an extension of Probabilistic Finite-State Machines (PFSMs). They use PRISM to verify properties
about their model, with the pilotless aircraft tasked with foraging for objects, which it must return
to a drop-off location. Their approach involves running small-scale simulations of the pilotless air-
craft in its environment to determine the probabilities and timing values for their formal model. In
contrast, Costelha and Lima [49] divide their models into layers and try to obtain a model of the ro-
bot’s environment that is as realistic as possible. Their work uses Petri Nets with the environment
model using untimed direct transitions and other layers in the models using stochastic Petri Nets.

Modeling the environment is particularly relevant for navigation, and tackling collision avoid-
ance and safe robot navigation [31, 125, 134, 138] often feature in the literature. Although several
navigation algorithms exist, some cannot be used in safety-critical scenarios because they have
not been verified [134]. The Simplex architecture [154] provides a gateway to using these unveri-
fied algorithms with the concept of advanced controllers (ACs). ACs are used alongside a verified
baseline controller (BC) and a decision module, which chooses which controller is active. The de-
cision module monitors the system, and if it determines that the AC will violate one of the safety
properties, then the BC takes control. Other work employs reachability analysis to generate a ma-
neuver automaton for collision avoidance of road vehicles [88]. Here, differential equations model
the continuous behaviour of the system. Runtime fault monitoring is useful for catching irregular
behaviors in running systems, but it does not ensure safety in all situations.

Mitsch et al. [125] use differential dynamic logic (dL) [135], designed for hybrid systems, to de-
scribe the discrete and continuous navigation behavior of a ground robot. Their approach uses hy-
brid programs for modeling a robot that follows the dynamic window algorithm and for modeling
the behavior of moving objects in the environment. Using the hybrid theorem prover KeYmaera,
Mitsch et al. verify that the robot will not collide with, and maintains a sufficient distance from,
stationary and moving obstacles. In proving these safety properties, 85% of the proof steps were
carried out automatically.

In further work, Mitsch et al. [126] verify a safety property that makes less conservative driving
assumptions, allowing for imperfect sensors, and add liveness proofs to guarantee progress. They
extend their approach to add runtime monitors that can be automatically synthesized from their
hybrid models. They note that all models deviate from reality, so their runtime monitors comple-
ment the offline proofs by checking for mismatches between the verified model and the real world.

Formal and nonformal models of the real world are prone to the problem of the reality gap, where
models produced are never close enough to the real world to ensure successful transfer of their
results [71, 172]. This is especially problematic when real-world interactions can impact safety.
Bridging the gap between discrete models of behavior and the continuous nature of the real world
in a way that allows strong verification is often intractable [58]. Moreover, in a multirobot setting
one robot can be part of another’s environment [115]. There is also a tradeoff between ensuring
that the system is safe and ensuring that it is not so restrictive that it is unusable in practice [172].

3.2 Evidence for Certification and Trust

Robotic systems are frequently deployed in safety-critical domains, such as nuclear or aerospace.
These systems require certification, and each domain usually has a specific certification body. En-
suring that the engineering techniques used for developing robotic systems are able to provide
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appropriate certification evidence is thus essential. However, autonomous robotic systems devel-
opment often falls short of providing sufficient evidence, or evidence in the correct form, for these
certification bodies [75].

When certifying a piloted aircraft, the certification bodies assume that it will have a suitably
qualified and competent crew in control. When an autonomous system is in control of a pilotless
aircraft, this system must also be certified. However, the regulatory requirements for such a pi-
lotless aircraft are still under development [173]. Choosing an appropriate formal method for a
particular system is no mean feat as there are currently no standard guidelines available to aid de-
velopers in choosing the most suitable approach [112]. In fact, one of the main difficulties here is in
choosing a formalism so that a good compromise is reached between how expressive the formal-
ism is and the complexity of its analysis/synthesis algorithms [22]. This also presents a challenge
for certification bodies that need to be able to determine the reliability of safety-critical robotic
systems and the formal methods that were employed during development.

Autonomous vehicles are usually regulated by the relevant vehicle authority for the territory
they are used in. However, their introduction also requires public trust. The majority of respon-
dents of a recent survey on public attitudes toward driverless cars (United Kingdom, United States,
and Australia) had both a high expectation of their benefits and a high level of concern over their
safety and security [152].

In contrast to the nuclear and aerospace domains, robots used in domestic or care environments
do not have strong certification requirements but must be shown to be safe and trustworthy. This
covers both safety and the public perception of safety; notions of usability and reliability; and a
perception that the robot will not do anything unexpected, unsafe, or unfriendly [60]. This lack
of both trust and safety assurances can hamper adoption of robotic systems in wider society [76],
even where they could be extremely useful and potentially improve the quality of human life.

Isabelle/HOL and temporal logic have been used to formalize a subset of traffic rules for vehicle
overtaking in Germany [147]. As we move toward driverless cars, a key concern is enumerating
how much one robot needs to know about the goals and constraints of other vehicles on the road to
not be considered at blame for any accident [125]. In related work, Webster et al. [176] utilize model
checking to provide certification evidence for an autonomous pilotless aircraft system using the
Gwendolen agent language and the Agent Java PathFinder (AJPF) approach as an improvement
over Promela and SPIN.

The certification process often requires safety cases that provide a structured argument of a
system’s safety in a certain context, given certain assumptions. Automating safety case generation
is challenging; safety cases must combine elements of the physical design, software design, and
the maintenance of both. Denney and Pai [52] have described a methodology for automatically
generating safety cases for the Swift pilotless aircraft system using a domain theory and their
AutoCert tool [53], which automates the generation of safety case fragments.

Related to trust is the issue of ethical robotic behavior. Several approaches to constraining the
behavior of a robotic or autonomous system have focused on the distinction between ethical and
nonethical choices [16, 17, 37]. Worryingly, they ignore the potential situation where no ethical
choice is available, and there seems to be little consideration of this situation in the literature [55].
Clearly, reasoning about ethical behaviour is at least as difficult with robots as it is with humans.

3.3 Summary of External Challenges

This section identified two main external challenges to the specification and verification of robotic
systems in the literature. External challenges come from the operating and design environment
of the robotic system. The challenges are (1) modeling the physical environment and (2) pro-
viding sufficient (and appropriate) trust and certification evidence. With respect to modeling the
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physical environment, two approaches appear to dominate the literature; these are to either model
or monitor the physical environment. Temporal logics, for example, have been used to model
the environment, with model checking used for verification. Specifying a monitor to restrict the
robotic system to safe behaviors within its environment reduces the verification burden, as only
the runtime monitor needs to be verified. However, comprehensively capturing all unsafe situa-
tions so that they can be mitigated in advance is extremely difficult.

Certain tasks, such as navigating an unknown and dynamic environment, are challenging for
robotic systems, and a number of navigation algorithms exist in this domain. However, not all can
be employed in safety-critical scenarios as they have not been verified [134]. This suggests that
there are limitations in the use of current formal methods to verify these algorithms, which leads
to hybrid approaches that have high computational complexity. Clearly, a recurring challenge is
the complexity (both computationally and in terms of usability) of formal models, particularly if
we consider the modeling of a complex physical environment.

Formal techniques can be used to provide trust and certification evidence, but it is clear that
current techniques are insufficient. This is further complicated by the small number of available
guidelines to help developers to identify the most appropriate formal method(s) to specify and
verify their system [112]. Regulators are more concerned with the evidence of safety than with
the specific methods used to produce the evidence; therefore, determining suitable and robust
formal methods for distinct robotic systems remains an open problem.

These are the challenges, external to the robotic system, that our survey identified. Next, we
discuss the internal challenges, which stem from how a robotic system is engineered.

4 INTERNAL CHALLENGES OF AUTONOMOUS ROBOTIC SYSTEMS

Autonomous robotic systems are increasingly prevalent and are attractive for removing humans
from hazardous environments such as nuclear waste disposal or space exploration [77]. Our survey
identified agent-based approaches as a popular way of providing the autonomy that these systems
need; we discuss the challenges that this approach brings to formal specification and verification in
Section 4.1. Multirobot systems are also an active area of research; Section 4.2.1 and Section 4.2.2
describe the challenges of formally specifying and verifying homogeneous and heterogeneous
multirobot systems, respectively. In hazardous environments, autonomous robotic systems need
to be capable of adaptation and reconfiguration in response to changes in the environment, system,
or mission; Section 4.3 discusses the challenges posed by these systems.

4.1 Agent-Based Systems

An agent encapsulates the system’s decision-making capability into one component. This helps
to provide rational autonomy (where a system can explain its reasoning), which is crucial for
providing evidence to gain public trust or for certification (discussed in Section 3.2). Since the im-
plementation of the Procedural Reasoning System (PRS) [78], Belief-Desire-Intention (BDI) agents
received a great deal of attention [142]. BDI systems can use a single or multiple agents, depending
on their requirements. The BDI model of agency appears to be prevalent in the surveyed literature.

The distributed Multiagent Reasoning System (dMARS) is an implementation of PRS with the
BDI model operationalized by plans [59]. A formal Z specification of dMARS provides a formal
foundation for the semantics of dMARS agents [59]. These agents monitor both the world and their
own internal state. They are composed predominantly of a plan library, functions for intention,
event and plan selection, belief domain, and goal domain [59].

Webster et al. [173, 176] verify an autonomous pilotless aircraft using a program model checker.
The aircraft is controlled by a BDI agent, written in the GWENDOLEN language [54], and verified
by the AJPF model checker [56]. The verified agent is plugged into a flight simulator [173] to
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visualize the verified scenarios. The work in [101, 102] describes a GWENDOLEN agent controlling
a driverless car in a vehicle platoon. AJPF is used to verify safety properties related to the car
joining and leaving a platoon, and for maintaining a safe distance during platooning. Verification
of the timing properties is handled by Uppaal.

Similarly, Choi et al. model a system of nine heterogeneous agents with one representing the
robot’s physical environment [44]. They used the Model Checker for Multigent Systems (MCMAS)
[119] to verify the system and illustrated that MCMAS performed dramatically better than SMV
in this setting. Molnar and Veres also used MCMAS to verify autonomous underwater vehicles
[129]. They use natural language programming (sEnglish), which results in an ontology that is
used to represent a labeled transition system. This is then translated into Stateflow and verified
with MCMAS. Interestingly, they represent the human interface as an agent, as does [30]. This
links human behavior and the formal model that they have developed.

Hoffmann et al. characterize the autonomous behavior of an agent (based on the BDI model)
as a PFSM extended with a weight function to map weights onto actions, which they call an
Autonomous Probabilistic Finite-State Machine (APFSM) [93]. Due to the addition of the weight
function, an APFSM is a discrete-time Markov chain. They use this formalism of agent autonomy
to verify properties about a pilotless aircraft on a foraging mission.

Bozzano et al. [32] propose the Autonomous Reasoning Engine (ARE) for controlling spacecraft;
it provides plan generation, validation, execution, monitoring, and fault detection. It communicates
with the ground station, performs autonomous reasoning, receives sensor data, and sends com-
mands to actuators. A prototype ARE, developed using NuSMV, has been used in ESA rover and
satellite projects to provide a model-based approach to on-board autonomy.

Podorozhny et al. [136] use Alloy to verify multiagent negotiations. Their work enables proper-
ties of agent coordination and interaction to be checked and properties of complex data structures
(which may be shared between agents). Their work centers on a system where multiple agents
cooperate to reach and negotiate to optimize achieving their common goal(s). They model agents’
negotiations as Finite-State Machines (FSMs), which are then translated into an Alloy specifica-
tion and verified using Alloy Analyzer. The main challenge was ensuring tractability of the Alloy
models.

4.2 Multirobot Systems

Robotic systems composed of several robots present challenges that must be tackled in addition
to those faced when developing single-robot systems. Two broad categories of multirobot systems
exist: swarms, where all of the robots exhibit the same behavior, and teams, where the robots may
each behave distinctly. In both cases, the behavioral requirements of the system must be consid-
ered at both the microscopic level (individual robots) and the macroscopic level (whole system).
Multirobot systems can present difficulties for ensuring safety and liveness properties due to the
number of concurrent, interacting agents and the changeability of the system’s environment [7].

The work in [80] presents a methodology for verifying cooperative robots with distributed con-
trol. They use the formal language Klaim, which was designed for distributed systems; its sto-
chastic extension, StoKlaim; and its related tool set. They formalize a specification of the robot’s
behavior and physical environment, in Klaim, and then add stochastic execution times for actions,
in StoKlaim. They validate their modeling approach by comparing their results to those obtained
from physics-based simulations of the same system. The case study contains three homogeneous
robots, cooperating under distributed control, to transport objects. In this system, the robots have
homogeneous behavior but are too few in number to be considered a swarm.

One approach to easing multirobot system development formally relates the languages used
at the macro- and micro-levels of abstraction. To this end, Smith and Li [159] present MAZE,
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an extension of Object-Z for multiagent systems, which includes Back’s action refinement. They
describe a top-down refinement-based development process and several shorthand notations to
improve robot specification at the micro-level.

Next, we discuss the specific challenges faced when developing homogeneous robot systems,
specifically swarms (in Section 4.2.1), and heterogeneous robot systems, specifically teams (in Sec-
tion 4.2.2).

4.2.1 Swarms. A robot swarm is a decentralized collection of robots that work together [23],
often taking inspiration from swarms of ants or bees. Robot swarms generally contain robots that
are adaptive, large in number, not grouped together, relatively incapable or inefficient, and able to
send and communicate locally [187]. However, these criteria are not exhaustive, and should simply
be used to decide to what degree the term “swarm robotics” might apply [63].

Formal methods have obvious benefits for specifying the behavior of swarm robot systems,
because field tests and simulations only cover a particular instance of the swarm’s behavior [110].
However, the large number of robots in a swarm can explode the state space and thus hinder
verification using conventional model-checking approaches [110]. A further issue is scalability: if
you prove a property for a swarm of n robots, does the property hold for n ± 1 robots?

Robot swarms are often used for their resilience. Winfield and Nembrini [183] examined the fault
tolerance of robot swarms navigating using the alpha algorithm and found that robustness arises
from the inherent properties of a swarm: simple parallel robots, operating in a fully distributed
way, with high redundancy. Of particular interest, they found that the partial failure of a robot was
more problematic than a robot’s total failure. In their example, a robot that was fully functioning,
apart from its wheels not turning, anchored the swarm in place.

Determining if failures will propagate through the swarm and determining a lower bound on the
number of robots that must remain functioning for the swarm to complete its mission is an active
area of research [114]. Kouvaros and Lomuscio [114] present an approach that uses temporal logic
and fault injection to determine the ratio of faulty to functioning robots in a swarm navigating
using the alpha algorithm. They specify temporal-epistemic properties and then they find the
threshold at which the swarm no longer satisfies these properties. Crucially, their approach is
designed to work with swarms where the number of agents is unknown at design time.

Programs for robot swarms are often developed in an ad hoc manner, using trial and error. The
developers tend to follow a bottom-up approach that involves programming individual robots be-
fore combining them to form a swarm that displays a certain set of behaviors [35, 120, 128]. This de-
velopment process can reduce the effectiveness of formal engineering approaches; the application
of formal methods often does not guarantee that the implementation matches the specification,
because the programs are built manually from the specification [120]. Winfield et al. [182] present
a straightforward approach to modeling the macroscopic behavior of the swarm using a PFSM.
First, they estimate the transition probabilities in the PFSM; then, they validate these probabilities
by simulations in Player/Stage.1

Markov chains have been used to model the probabilities of members of a robot swarm joining
or leaving aggregates of robots [48]. The probabilities were a function of the size of the aggregate,
and were based on a biological study of cockroach aggregation. The model was used to predict the
probability of a swarm aggregating, without capturing spatial information. Despite the limitation
of assuming that an aggregate can only grow or shrink linearly, they conclude that robots need a
minimal speed or sensor range to enable aggregation.

1http://playerstage.sourceforge.net.
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Rouff et al. compared four different specification formalisms (Communicating Sequential Pro-
cesses (CSP), Weighted Synchronous CCS (WSCCS), Unity Logic, and X-Machines) for specifying
and verifying emergent swarm behavior [150]. They concluded that a blending of these formalisms
offered the best approach to specify emergent swarm behavior as none was sufficient in isolation.
It is thus clear that only the use of multiple, specialized tools and methodologies can achieve a
high level of confidence in software for robot swarms and, more generally, software for robotic
systems [92]. For example, the NASA Remote Agent uses specialized languages for each of the
planner, executive, and fault diagnosis components [156]. We explore the use of integrated formal
methods for the specification and verification of robotic systems in Section 6.4.

4.2.2 Teams. A robot team is similar to a swarm but contains robots with different capabili-
ties or behaviors to one another. For example, a search-and-rescue robot team might contain an
autonomous aircraft to search the area, a wheeled robot to carry equipment, and a robot with
caterpillar tracks that is capable of moving obstacles. The heterogeneity of the robot’s capabilities
and behavior increases the likelihood that they will each need different formal methods during
verification. Linking verification at the micro-level to the macro-level is therefore challenging. We
discuss the use of integrated formal methods in more detail in Section 6.4.

The work in [108] presents a methodology for automating the development of robot teams,
using a version of Linear Time Logic without the “next” operator (LTL-X). They model-check a
transition system describing the behavior of the robot team for execution traces that satisfy an
LTL-X formula. This trace is mapped to the communication and control strategy for each robot.
Büchi Automata (BA) then produce a communication strategy that reduces the number of “stop
and wait” synchronizations that the team has to perform.

Robot teams often include robots with different capabilities, which produce different patterns of
interaction. The work in [89] captures part of the Satisfaction-Altruism Model [157] to provide a
formal model of the different and changing roles that different agents in a team can play. Each role
defines a pattern of interaction. They propose using their model for specification and verification
of a robotic team, and eventual refinement to code. Their model is formalized using an integrated
formal method (discussed in Section 6.4) that combines Object-Z and Statecharts [87].

Previous work in this area has assumed that a robot and a human are in close contact and that
the robot can continually observe the human’s behavior, allowing it to predict the human’s plan.
Talamadupula et al. [164] describe a First-Order Logic (FOL) formalization of beliefs and intentions
that allows a robot to predict another agent’s plan. They explore a human-robot cooperation task
where the robot must predict a human’s plan based on mutually understood beliefs and intentions.
The FOL predicates representing the beliefs and intentions of another agent (human or robotic) are
input to the robot’s planning system, which predicts the other agent’s plan. An extension caters
to incomplete knowledge of the other agent’s goals.

4.3 Self-Adaptive and Reconfigurable Systems

Ensuring fault tolerance of robotic systems that operate in hazardous environments, potentially
isolated from human interaction, is crucial. These systems must be able to diagnose and to recon-
figure themselves to adapt to changes in their requirements or operating environment. Reconfigu-
ration can help maintain quality of service or meet functional objectives [178]. This is particularly
relevant for robotic systems that are deployed in hostile environments, such as in space or the deep
ocean [77, 165]. Rational autonomy, where a system can explain its reasoning, is crucial for safe
reconfiguration. Therefore, modeling the motivations and decisions of the system is an important
line of current work. Ideally, this should be done in a way that enables formal verification of the
autonomous decisions [71]. This is discussed in more detail in Section 4.1.
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A self-adaptive system continually alters its behavior in an environmentally driven feedback
loop. The findings of a literature survey indicated that while there are no standard tools for the for-
mal modeling and verification of self-adaptive systems, 40% of the studies they surveyed used for-
mal modeling or validation tools, and 30% of those tools were model checkers [177]. Architecture-
based self-adaptive systems are a specific class of self-adaptive system where the system reasons
about a model of itself and the environment and adapts according to some adaptation goals. In
this case, the feedback loop consists of Monitor, Analyze, Plan, and Execute components and run-
time models that provide Knowledge (MAPE-K) [51]. A series of MAPE-K templates has been for-
mally verified using Timed Automata (TA) and Timed Computation Tree Logic (TCTL) to aid in
development.

Related to the notion of adaptation is the concept of a reconfigurable system, which senses
the environment and makes a decision about how best to reconfigure itself to suit changes in
its requirements or the physical environment. Reconfiguration is essential for ensuring the fault
tolerance of a safety-critical robotic system [165]. The reconfigurable systems literature focuses on
two research questions: (1) how to specify and analyze a reconfigurable system [130] and (2) how
to compare different configurations of the system [130, 178]. Therefore, it seems crucial that formal
techniques applied to reconfigurable systems are able to tackle these questions.

The development of reconfigurable machines is an area where a substantial amount of research
has been carried out with respect to the hardware for such machines, but developing software
that can autonomously reconfigure the system is a challenge for the entire community [27]. The
development of such systems places a heavy emphasis on designing these systems to be modular,
thus making reconfiguration a more approachable endeavor.

Reconfigurability can be achieved by developing a flexible control system that can reconfigure
itself when a fault is detected [34]. Specifying this can be challenging, however. The work in [98]
presents a collection of TA models for different modes of operation and a module that enables
them to be swapped during their execution on a Virtual Machine (VM). Executing the TA models
ensures that the model’s verified behavior is the program’s runtime behavior. Recent work includes
a methodology for verifying reconfigurable timed net condition/event systems [84] and stochastic
Petri Nets to verify reconfigurable manufacturing systems [167].

One avenue of research suggests providing (both semiformal and formal) models to be used at
runtime [42]. This agenda considers approaches such as automatic test case generation and formal
model checking. This relies on the fact that many variables that are unknown during the design of
a system can be quantified at runtime, which helps to control the problems of state space explosion.
This has the benefit of providing online assurance of an adaptive system while it is adapting, which
can improve the trust in results regarding safety.

Decentralized systems can bring their own set of challenges for adaptation and reconfigurability.
Iftikhar and Weyns [97] use a traffic monitoring system as their case study, where a collection of
cameras monitor the traffic on a stretch of road. When a traffic jam is detected, the cameras collab-
orate in a master-slave architecture to report information about the traffic. This self-adaptation is
managed without a central control unit to avoid the communications bottleneck this would cause.
They model this system using TA and describe invariants and correctness properties using TCTL.
Related work utilized a Monte Carlo approach to probabilistically verify a system of cooperating
agents (autonomous vehicles) that implement a policy-based collision avoidance algorithm [133].

4.4 Summary of Internal Challenges

This section identified three internal challenges to the specification and verification of robotic
systems related to how the robotic system is designed and built. These challenges are agent based,
multirobot, and reconfigurable systems.

ACM Computing Surveys, Vol. 52, No. 5, Article 100. Publication date: September 2019.



Formal Specification and Verification of Autonomous Robotic Systems 100:17

Table 2. Summary of the Types of Formalisms Found in the Literature for Specifying the System

and the Properties to Be Checked

System Property

Formalism References Total References Total

Set Based [81], [89], [117], [178], [179] 5 0

State-Transition

[1], [20], [18], [25], [36], [39], [40],
[41], [48], [49], [61], [62], [66],
[70], [83], [88], [97], [98], [51],
[99], [104], [108], [110], [111],
[115], [116], [129], [141], [146],
[174], [175], [182], [186]

33 0

Logics 6 32

Temporal Logic 0

[29], [36], [57], [55], [61], [62],
[70], [71], [83], [95], [97], [98],
[51], [99], [104], [108], [110],
[111], [115], [116], [123], [129],
[138], [141], [176], [174], [175]

27

Dynamic Logic [113], [125] 2 [113], [125] 2

Other Logics [29], [64], [80], [164] 4 [64], [80], [164] 3

Process Algebra [6], [123], [132] 3 [132] 1

Ontology [11], [129], [137], [166] 4 0

Other [57], [55], [71], [138], [176] 5
[1], [20], [18], [25], [40], [41], [66],
[180]

8

Note: Some references appear in one half of the table but not the other because they only describe the specification of

the system (or vice versa). Logics have been further subdivided into Temporal, Dynamic, and Other Logics.

Agent-based systems are not the only model of autonomy, but they encapsulate the description
of autonomous behavior into one component and can be used to model interactions with other
actors and the environment. A rational agent can explain its reasoning, which can be helpful during
verification and in tackling the challenge of providing sufficient evidence for a certification body
or to gain public trust (recall Section 3.2). Ensuring that agents are verifiable is a focus in the
literature.

Multirobot systems—both homogeneous swarms and heterogeneous teams—provide an inter-
esting challenge to robotic systems. They provide resilient architectures, but their decentralization
brings specific challenges for formal verification. Reconfigurable systems are key to dealing with
changing environments and mission goals. However, ensuring that they reconfigure themselves
in a safe way is a challenge, and the key focus in the literature.

These are the internal challenges that we derived from the literature, but of course, there
may be others. For example, machine-learning systems are becoming more prevalent in au-
tonomous robotic systems and are notoriously difficult to formally verify, although recent work
has emerged [96, 153].

5 FORMALISMS FOR ROBOTIC SYSTEMS

This section discusses the formalisms found in the literature, following the methodology from
Section 1.1, that have been used to specify or verify robotic systems. Table 2 summarizes the cat-
egories of formalisms being used to specify both the system and the properties being checked.2

2We note that these are not definitive categories but represent common terms for each type of formalism.
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Table 3. Summary of the Formal Verification Tools, and the Type of Tools, Identified in the Core Set

of 63 Papers Surveyed

Type of Tool Tool References Total Type Total

Model Checkers

PRISM [110], [123], [111], [36] 4

25

NuSMV [61], [62] 2

Uppaal [97], [98], [51] 3

SAL [89] 1

SPIN [174], [175], [50], [70], [176] 5

Beryl [138], [139] 2

Aldebaran [43] 1

Dfinder [24], [18], [25], [1] 4

Unspecified [40], [30], [104] 3

Program Model

Checkers

AJPF [71], [55], [57], [176] 4
7

MCMAS [114], [44], [129] 3

Theorem Provers
KeyMaera [125], [113] 2

3
SteP [89] 1

Others

Bio-PEPA Tool Suite [123] 1

14

TmeNET [49] 1

TuLiP [116] 1

LTLMoP [116], [141] 2

Alloy [29], [81] 2

Evaluator [20] 1

minisat [20] 1

MissionLab (VIPARS) [132] 1

RV-BIP [66] 1

Community Z Tools [117],[178], [179] 3

Some approaches use multiple tools, often to verify different parts of a system, with the most suitable tool chosen

for each individual component of the system.

We explicitly display the formalisms used to specify both the system and the properties because
it illustrates the (well-known) links between types of formalism (e.g., state-transition systems and
temporal logics); it also highlights potential gaps in the literature or areas to focus on when pro-
ducing tools.

We found that systems were normally specified as state-transition systems and the properties
using a logic—typically, a temporal logic. The “Other” category contains those which do not fit in
the other categories but are not numerous enough to warrant their own. Examples include the re-
lax [180] requirements language and the Quartz language used with the Averest framework [138].

Table 3 summarizes the wide variety of formal analysis tools that were found using our
methodology. Several studies use tools that specify properties in temporal logic (e.g., Uppaal [14],
PRISM [35], etc.). The number of tools in use for temporal logic is commensurate with their preva-
lence as illustrated in Table 2.

In this section, we describe the formalisms used to specify and verify robotic systems. Section 5.1
discusses set-based formalisms. Section 5.2 describes approaches using automata. Section 5.3 de-
scribes approaches using logics (temporal, dynamic, and others). Section 5.4 discusses process al-
gebras. Section 5.5 outlines ontologies that have been used, and Section 5.6 describes other existing
formalisms. Finally, Section 5.7 summarizes.
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5.1 Set-Based Formalisms

Set-based formalisms (such as the B-Method and Z) specify a system using set-theoretic represen-
tation and manipulation of data. They are well suited to capturing complicated data structures but
usually only provide limited, if any, features for capturing behavior.

As mentioned in Section 4.3, self-adaptive (or reconfigurable) behavior is often key for au-
tonomous robotic systems. Weyns et al. describe a formal reference model for self-adaptive sys-
tems, called FORMS [178], which provides a Z model that describes an arbitrary self-adaptive
system. They suggest that this model could be used in conjunction with various existing tools to
type check the adaptations to ensure that they are valid, visualize the model using animators, auto-
matically generate test cases, or transform the model into other notations for other types of anal-
ysis. The model provides a method of describing a self-adaptive system to enable communication
about the adapting architecture during system design and comparison of different architectural
configurations.

Liang et al. [117] use the Java animator for Z specifications, combined with a Java debugger, to
provide a runtime monitoring system. A Z specification describes the system’s behavior, which is
animated and compared to the running program via the jdb Java debugger to check that the run-
ning program implements the Z specification. They demonstrate this approach on a robotic assem-
bly system, designed to build robots for the NASA ANTS project.3 Two advantages of combining
the Z animator with a Java debugger are that it keeps the monitor and program code separate and
that the approach doesn’t require any alterations to the monitored program.

In [165], Event-B specifications are combined with probabilistic properties to derive reconfig-
urable architectures for an on-board satellite system. Event-B evolved from the B-Method and is
more suitable to modeling the dynamic behavior of a system than its predecessor [2]. The com-
bination of these formalisms allows the models of reconfigurations to be checked using PRISM
for both the derivation (via refinement) of the system from its specification and the probabilistic
assessment of their reliability and performance.

5.2 State-Transition Formalisms

Petri Nets, FSMs, and Finite-State Automata (FSA) are approaches to specifying behavior as a
state-transition system. Formalisms for discrete-event systems include those capturing time (e.g.,
TA or Timed Petri Nets) and probabilistic transitions (e.g., PFSM or Generalized Stochastic Petri
Net (GSPN)). State-transition systems specify behavior during the design phase, which is checked
for properties like deadlock freedom or used as an input to a tool that usually checks them for
properties described in another formal language (e.g., a temporal logic; see Section 5.3.1). There
is a close link between varieties of temporal logic and varieties of FSA [169], and many works
combine both.

Petri Nets have had some use in modeling robotic systems. The work in [39] uses them to capture
the abstract architecture of multiple reactive agents and they are analyzed for deadlock freedom.
In [186], Ziparo et al. extend Petri Nets to capture robot plans. This extension to Petri Nets is a
set,G, of Goal Markings, which is a proper subset of the reachable markings for the Petri Net that
represents the desired result of the plan. The Petri Net Plans can be executed to find a sequence of
transitions from the initial to the goal markings.

Costelha and Lima [49] use four layers of Petri Nets to model a robot’s task plans; each layer
describes a distinct element at a different level of abstraction. They use Marked Ordinary Petri Nets
(MOPNs) to specify the robot’s environment to enable a more realistic model. Then they capture

3https://attic.gsfc.nasa.gov/ants/.
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the actions that a robot can take, the task plans, and the roles of various robots working together,
using GSPNs. These models can be analyzed for deadlocks and resource usage.

The Uppaal model checker uses networks of TA to describe input models, which are checked
against temporal logic properties. The work in [86] targets the ROS middleware framework, cap-
turing the communication between nodes using TA. The low-level information (e.g., queue sizes
and timeouts) allows the verification of safety and liveness properties with Uppaal. In [97], TAs
are used to model a decentralized traffic monitoring system and TCTL to describe system invari-
ants and correctness properties of the system’s self-adaptive behavior, which are verified using
Uppaal.

The work in [121] uses FSA and a Gaussian model of the environment, based on a probability
distribution of obstacle positions. These models are combined in MissionLab, a graphical robot
mission designer. The robot FSA models are automatically translated into MissionLab’s internal
process algebra, Process Algebra for Robot Schemas (PARS), which will be discussed in Section 5.4.

As described in Section 4.1, Hoffmann et al. [93] extend PFSMs with a weight function to map
weights onto actions, which they call an APFSM. Because of the addition of the weight function, an
APFSM is a discrete-time Markov chain. They use this formalism to describe autonomous behavior
and PRISM to verify properties about a pilotless aircraft on a foraging mission, with probabilistic
modeling used to capture the physical environment. Markov chains have also been used to build
models for predicting the likelihood of a robot swarm aggregating [48]. Each robot is represented
by a Markov chain, where the probabilities to join or leave an aggregate are a function of the size of
the aggregate (larger aggregates are preferred). The authors of [48] find that their model correlates
closely with results from simulations.

5.3 Logics

Logics are the second most prevalent formalism found during our literature search, the majority
of which are some variety of temporal logic. We also found work using dynamic logics and a
variety of logics that didn’t warrant their own category (e.g., FOL). Temporal logics are discussed
in Section 5.3.1, dynamic logics in Section 5.3.2, and other logics in Section 5.3.3.

5.3.1 Temporal Logics. Temporal logics are used for specifying dynamic properties about a sys-
tem over linear or branching time, which feature heavily in the literature (Table 2). There are a
variety of temporal logics: Linear-time Temporal Logic (LTL) and Computation Tree Logic (CTL)
deal with events occuring next, globally, or eventually; extensions like Probabilistic Temporal Logic
(PTL) and Probabilistic Computation Tree Logic (PCTL) add notions of probability. Temporal logics
have been used extensively to address the challenges that we identified in Section 3 and Section 4.

Modeling a robot’s environment is a key challenge when building robotic systems (Section 3.1).
One approach [83] uses a BA to model the environment and synthesizes a motion controller by
model-checking it to find an accepting path that satisfies an LTL task specification. The BA is
updated at runtime with new environmental information and checked again to revise the motion
controller.

The work in [99] presents a probabilistic approach to modeling a BDI robotic agent and its
environment. The agent can be captured as either a Discrete-Time Markov Chain (DTMC) or a
Markov Decision Process (MDP). Then, they use PCTL to specify properties, which are model-
checked, using PRISM. They apply this technique to an autonomous mine detector, showing how
their approach can be used for both design-time checking and runtime monitoring (which we
discuss in Section 6.3). The runtime safety monitors for autonomous systems presented in [122]
are specified in CTL. The work in [58], aimed generally at safe robotics, captures assumptions
about the real world using Signal Temporal Logic (STL) and uses them for runtime monitoring.
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Another example, this time aimed at robot swarms [120], models the system’s potential behavior
and constrains it according to Supervisory Control Theory (SCT) specifications of safe behavior.

Several approaches use temporal logic to provide certification evidence or build public trust in
autonomous robotic systems. The work in [173, 176] captures air safety rules and assumptions
using LTL (extended to capture BDI agent beliefs), which are used to verify that an autonomous
pilotless aircraft follows the rules of the air in the same way as a pilot. Similarly, [60] and [76]
present an approach for automatically building PTL models of the safety rules and environment
of a robotic domestic assistant. These models are checked against a probabilistic description of the
robot’s environment (a sensor-equipped house in the United Kingdom) to ensure that the rules are
sufficient to keep a human safe. An extension [175] checks models of the rules against environment
models based on data collected from a person living in the house for several days. These verification
results improve the confidence in the safety of the robot’s high-level decision making.

Enabling robots to deal with ethical choices is a current open challenge. One approach presents
a BDI language, ETHAN [55], for reasoning about ethical principles. It can be verified, using AJPF,
that when an ETHAN agent chooses a plan, all other such plans are ethically worse.

Another popular approach is synthesizing behavioral models that satisfy temporal logic prop-
erties. For example, in [104], motion plans are built incrementally that guide the robot to its goal
position while satisfying properties that are specified in a deterministic subset of μ-calculus. There
is potential for using this approach at runtime; a plan can be built from a system of over 1,000 states
in ∼3.5 seconds. In [116], LTL specifications are used to synthesize robot motion automata. This
approach mediates state explosion by planning a short distance ahead, repeating after each plan
is complete. The work in [141] presents a tool that generates hybrid robot controllers from LTL
specifications, which can be used in simulation or with real robots.

Temporal logics have also been used to verify particular robotic software frameworks. The ex-
isting tool chain for GenoM has been extended to generate Fiacre models of a system, which can
then be model-checked against LTL properties [75]. Another approach models ROS nodes, and the
communication between them, as TA, which are checked against TCTL properties in Uppaal [86].
They verify the lack of message buffer overflows for a selection of queue sizes in the open-source
robotic application Kobuki.

Temporal logics have been used to help overcome some of the challenges in developing swarm
robotic systems. Winfield et al. describe a dependable swarm [184]: a distributed multirobot system,
based on the principles of swarm intelligence, that we can rely on the behavior of. They advocate
the use of temporal logic for specifying both safety and liveness properties of a simple wireless
connected swarm. As part of their approach, they discretize the robot’s environment to a grid to
simplify its specification. This is a common approach taken when using formal methods, since
modeling continuous elements of the system is difficult. In a companion paper [62], they apply
model-checking techniques to the alpha swarm navigation algorithm.

As mentioned in Section 4.2.1, swarm robotic systems exhibit both macroscopic and microscopic
properties. The authors of [128] propose a novel specification language to allow the explicit speci-
fication both of the behavior of the whole swarm and of individual robots. Their language captures
the swarm’s environment as a region graph, describes the swarm’s movement using region propo-

sitions, and specifies the swarm’s macroscopic and microscopic behavior (separately) using LTL.
These components are combined to produce decentralized controllers for the robot swarm.

In contrast, [70] presents a technique for dealing with decentralized control in multiagent sys-
tems that keeps the specifications local to each robotic agent. Each local specification is written
in LTL, with their mutual satisfiability not guaranteed beforehand. The local specifications are
exchanged by the robots at physical meeting points and model-checked for mutual satisfiability.
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However, this technique assumes that dependencies between robotic agents are sparse, so it may
not scale well in robot swarms or teams with a larger number of dependencies.

Probabilistic temporal logics have proved useful in modeling robot swarms [118]. The work
in [110] models the probabilistic state machine from [118], which is checked in PRISM for sat-
isfaction of PCTL properties. Since each robot in the swarm is characterized by the same state
machine, a counting abstraction is used to reduce the state space, but this abstraction only works
for homogeneous swarms.

The work in [35] presents a top-down swarm development methodology that begins with a
PCTL specification of the swarm’s macroscopic requirements. Successively, more concrete mod-
els of the swarm are developed, including simulation and field-test implementations. Each step is
checked against the previous steps to ensure that the swarm’s behavior matches the initial spec-
ification. However, this approach only focuses on the macroscopic level of the behavior of the
swarm; other approaches consider the microscopic level as well.

5.3.2 Dynamic Logic. Dynamic logic is an extension of modal logic that can be used to specify
and reason about properties of dynamic systems and thus are useful for specifying robotic systems.

Mitsch et al. use dL [135], which was designed for the specification and verification of hybrid
programs, to describe the discrete and continuous navigation behavior of a ground robot [125, 126].
Mitsch et al. use the hybrid theorem prover KeYmaera [125] (and its sucessor, KeYmaera X [126]) to
prove safety (and liveness) properties about a robot’s behavior, written in dL. They also describe an
automatic synthesis, from the verified dL model, to runtime monitors for safety properties [126].

Other work uses quantified differential dynamic logic QdL to analyze a control algorithm of a
surgical robot [113]. They also used a variation of KeYmaera, called KeYmaeraD, for proof support.

5.3.3 Other Logics. We identified a number of other logics that were not numerous enough for
their own category.

Dylla et al. [64] formalize the basic concepts of football theory (from a leading football theory
manual) using Readylog, which is a variant of the logic programming language Golog. They use
this formalization to formally describe football tactics, which they implement on football-playing
robots for the RoboCup competition.

Gjondrekaj et al. [80] use a formal language that has been designed to capture properties about
distributed systems, Klaim; its stochastic extension, StoKlaim; and their related tool set. Their
application domain is distributed robotic systems and they describe the modeling of three homo-
geneous robots, under distributed control, cooperating to transport objects.

Talamadupula et al. [164] use FOL to capture an agent’s beliefs and intentions. They use this to
enable the prediction of other agents’ plans.

5.4 Process Algebras

Process algebraic approaches define the behaviors of a system in terms of events and the inter-
actions of processes. They are well suited to specifying concurrent systems. Process algebras can
capture (discrete) time, but they seldom capture probabilistic behavior.

Multiagent systems can be described by a combination of the process algebra Finite State Pro-
cesses (FSPs) and π calculus combined with ADL (πADL) [7]. FSP specifies the required safety and
liveness properties, which are transformed into Labeled-Transition Systems (LTSs); then the agent
program and architecture (writted in πADL) are checked to see if they satisfy these properties.

The Bio-PEPA process algebra has been used to model the microscopic behavior of a robot
swarm [123]. It enables several different analysis methods using the same specification. They de-
scribe a specification of a robot swarm performing a foraging task where a team of three robots is
required to collect each object, and the teams vote on taking either a long or short path between
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the start and pick-up points. They present results about the model using stochastic simulation,
statistical model checking, and ordinary differential equations. This collection of results is com-
pared with an existing analysis of the same case study; the comparison shows that the approach of
Massink et al. provides similar results but enables a wider range of analysis methods from a single
specification.

RoboChart provides a formal semantics, based on CSP [91], for a timed state-machine nota-
tion [144]. This is a similar approach to the (nonformal) state chart notations ArmarX [171] and
rFSM [124], described in Section 2. RoboChart is supported by an Eclipse-based environment,
RoboTool [127], which allows the graphical construction of RoboChart diagrams so that it can
be automatically translated into CSP, in the form described above. In CSP, events are instanta-
neous. RoboChart allows the specification of explicit time budgets and deadlines, which RoboTool
translates into Timed CSP [143].

The CSP model checker, the Failures-Divergences Refinement checker (FDR) [79], can be opened
from within RoboTool to enable quick checking of the timed and untimed properties of the
RoboChart model. RoboTool automatically generates basic assertions (to check for deadlock, live-
lock, timelock, and nondeterminism) for FDR. These can be edited, but this requires some skill
with CSP and knowledge of the model, which many software engineers do not have. The ability
to graphically edit and visualize the state machines is a key aspect of being able to integrate this
notation into an existing engineering process.

The timed process algebra, CSP+T (which extends CSP with a notion of time), has also been used
to capture the real-time aspects of robotic systems. The work in [6] derives correct and complete
CSP+T specifications from a description of a system in the Unified Modeling Language (UML)
profile UML-RT—designed for developing real-time systems. This work maps each subsystem in
the UML-RT description of the system to a CSP+T process and composes them in parallel. They
demonstrate this approach on a two-armed industrial robot. However, this mapping appears to be
a manual, informal process.

As previously mentioned in Section 5.2, the graphical robot mission design tool MissionLab
contains a process algebra, PARS. The work in [121] describes a robot’s behavior using FSA and
its environment using a Gaussian model, but MissionLab automatically translates these into PARS
for checking the robot’s behavior within the given environment.

5.5 Ontologies

Ontologies act as a body of knowledge and provide a vocabulary for a given domain [85]. They
formally specify the “key concepts, properties, relationships and axioms of a given domain” and
enable reasoning over this knowledge to infer new information [137].

For autonomous robotics, ontologies have been used to describe the robot environment, to de-
scribe and reason about actions, and for the reuse of domain knowledge [137]. Ontologies also
have the benefit of being able to capture elements of Human-Robot Interaction. Despite finding
ontologies for autonomous robotics systems, our literature search found little evidence of available
tool support.

The IEEE-RAS working group Ontologies for Robotics and Automation has published an ontol-
ogy4 to explicitly and formally specify the shared concepts within robotics and automation [85,
137].

KnowRob is a knowledge processing system for autonomous personal robotic assistants [166]
where knowledge is represented in description logic using Web Ontology Language (OWL). Their

4IEEE 1872–2015 - IEEE Standard Ontologies for Robotics and Automation, https://standards.ieee.org/standard/1872-2015.

html.
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system can be used with ROS and integrates encyclopedic knowledge, an environment model,
action-based reasoning, and human observations. In [11], they use ontological knowledge, repre-
sented using the OWL, of a manufacturing environment to enable reconfiguration without human
intervention. This work uses OWL reasoners to decide how best to reconfigure the system.

5.6 Other Formalisms

Besides those described in the previous sections, a number of other formalisms and approaches
feature in the literature. Some of these formalisms are used to specify the system and others are
used to specify the properties the system is being checked for. In the literature we found, each of
the studies that used “other” formalisms only specify either the system or the properties, not both.

As previously mentioned in Section 4.1, autonomous robotic systems are often programmed
using agents. Several works we found [55, 57, 71, 176] make use of the AJPF [56] program model
checker. The properties being checked by AJPF are described in temporal logic, but the system is a
BDI agent program written in GWENDOLEN. The AJPF translates agent programs into a formally
defined internal representation to enable model checking.

The work in [138] describes the verification of safety properties using the Averest framework.
Robotic systems are described using the Quartz language and the safety properties are specified in
μ-calculus. Quartz5 is a synchronous language that allows the developer to describe, for example,
parallel execution and nondeterministic choice.

Several papers use the Behaviour Interaction Priority (BIP) framework [19], which uses familiar
FSMs to specify a system but provides the D-Finder tool [26] to check for deadlocks and other safety
properties. Some work shows how BIP can be used to specify and verify robotic software [18, 20,
25]. In addition, RV-BIP [66] is a tool that produces a runtime monitor as an “additional component
in a BIP system” that can check an LTS-based specification at runtime. Finally, the work in [1]
provides a synthesis technique to generate robotic software from BIP models.

Another synthesis technique is presented in [40] and [41], which tackle robotic teams’ commu-
nication strategies. The properties that the robotic team must exhibit (i.e., the tasks) are specified
using a (formally defined) regular expression language. These specifications are used to synthesize
robot controllers, as FSA.

relax is a requirements language for dynamic self-adaptive systems that enables developers
to indicate requirements that may be relaxed at runtime [180]. The syntax of relax is structured
natural language and Boolean expressions (including standard temporal operators). Its semantics
is defined in terms of temporal fuzzy logic.

5.7 Summary of Formalisms for Robotic Systems

This section describes the formalisms currently used in the literature for specifying the behavior
of robotic systems. Table 2 summarizes the formalisms found, according to the methodology de-
scribed in Section 1.1, in use to specify the system and properties to be checked. There were more
studies found that specify the system (56) than specify the properties (41). Some systems’ specifi-
cations are checked for deadlock or reachability, for example, [49], whereas some are just used for
specification, such as [177]. Conversely, some of the studies only specify properties and monitor
a running system [95, 117] or describe a framework for dealing with property specification [180].
Also, the ontologies found in our literature search are all used to specify systems.

State-transition systems are the most numerous for specifying systems and temporal logics the
most numerous for specifying properties. This popularity may be explained by the popularity
and usability of model checkers for these formalisms; state-transition systems are often used to

5http://www.averest.org/#about_thesynchronouslanguagequartz.
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Table 4. Summary of the Approaches to Formal Verification Found Using the Methodology

Described in Section 1.1

Approach References Total

Model Checking

[110], [123], [111], [36], [61], [62], [97], [98] [51],
[89], [174], [175], [50], [70], [176], [138], [139],
[43], [24], [18], [25], [1], [40], [30], [104], [71],
[55], [57], [176], [114], [44], [129]

32

Theorem Proving [125], [89], [113] 3
Runtime Monitoring [95], [66], [117] 3
Integrated Formal Methods [51],[43], [6],[29], [89], [81], [97], [117] 8
Formal Software Frameworks/
Architectures

[66], [141], [24], [179], [20], [18], [25], [138],
[139], [178]

10

Note: Some of the surveyed papers use more than one approach.

describe a system’s behavior, each state of which is then checked to see if a temporal logic property
holds. This is shown in Table 3, where model checkers are the most used formal verification tool.

Despite state-transition systems and temporal logics dominating the literature found, Table 3
shows that there are still a wide variety of tools being used for these formalisms. This may be
because different model checkers capture different features, such as time or probability. But this
possibly presents a challenge to the sharing and extension of formal models.

6 FORMAL VERIFICATION APPROACHES FOR ROBOTICS

This section analyzes the surveyed literature in terms of the verification approaches that were
used. Here, “approach” refers to the framework(s), technique(s), or combination thereof that were
used to verify that the model or implementation of the system being developed preserves the
required properties; whereas Section 5 discussed the types of formalisms found in the literature,
this section discusses how these formalisms are used to verify robotic systems. If we imagine that
the formalisms described in Section 5 are different kinds of bricks, then the approaches that we
describe here are the types of buildings that can be constructed from those bricks.

We explore several distinct approaches to formal verification of robotic systems as illustrated
in Table 4. Specifically, Section 6.1 describes model-checking approaches, Section 6.2 describes
approaches using theorem proving, Section 6.3 discusses approaches using runtime verification
monitors, Section 6.4 discusses approaches that use a combination of different formalisms (e.g., CSP
and B) or approaches (e.g., model checking and theorem proving), Section 6.5 outlines frameworks
for building verifiable robotic software, and Section 6.6 summarizes and answers the remaining
research questions (RQ2 and RQ3).

6.1 Model Checking

Model checking is the most widely used approach to verifying robotic systems; it has been used
with temporal logics [60, 99], process algebras [127], and programs [68, 71]. Arguably, the popular-
ity of model checking owes something to the volume of publications that we found using temporal
logic (Table 2), which are often used in model-checking approaches. Further, we see two main rea-
sons for actively choosing model checking. First, model checkers are automatic, which makes them
relatively easy to use; second, the concept of checking every state in a model to see if a required
property holds is relatively easy to explain to stakeholders without formal methods experience.

Some model checkers can handle timed models (e.g., Uppaal) or probabilistic models (e.g.,
PRISM). This can be very useful for dealing with robotic systems; timing constraints are often
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required for safe behavior and probability can be helpful when encoding the physical environment
of the robot. Both of these features can improve confidence in the results. The input to a program
model checker (such as AJPF) is the program code itself, so checking it for properties involves
symbolically executing the code and assessing each execution against the required property [170].

Model checking exhaustively explores the state space, so one must be careful about the in-
put models and properties to be checked. State explosion can be crippling to verification efforts
using model checking. Webster et al. [174] report requiring 104MB of memory to verify each in-
dividual safety property of their domestic assistant robot model. Similar state explosion problems
are present in models of swarm robotic systems [110]. Various standard approaches can mitigate
state space explosion and keep models tractable [45, 46]. For example, for swarms, symmetry re-
duction [15] or abstracting the swarm to a single state machine with a counting abstraction can
help [173].

Model checking has been used to build behavior specifications (e.g., robot movement plans).
One approach uses model checking to build robot motion plans that satisfy properties specified
in a deterministic subset of μ-calculus [104]. A behavioral specification is built up incrementally,
and checked after each expansion, until it moves the robot to its goal and satisfies the required
properties. Similarly, in [83], a BA representing the robot’s environment is model-checked for an
accepting path satisfying an LTL specification. The accepting path is used to synthesize a motion
controller, which is then revised at runtime by repeated model checking and synthesis. Kloetzer
et al. [108] use model checking to find traces of a transition system describing the behavior of a
robot team that satisfy an LTL-X formula. This trace is used to generate the communication and
control strategy for each robot in the team.

Clearly, model checking is a flexible approach: it has been used for a variety of formalisms
that can describe concurrent, timed, and probabilistic systems, and has been used in verification
efforts for a variety of robotic systems. The increasing access to computational power and memory,
combined with clever ways to reduce the state space, maintain the popularity of model checking
in the literature. The need to carefully craft a model for a particular model checker adds to the
modeling time and reduces the portability of models between tools. However, the automation
and relative simplicity of the model-checking approach to verifying robotic systems mean that it
remains a focus for research.

6.2 Theorem Proving

Theorem proving offers the benefit of producing a formal proof of the correctness of a software
system. These formal proofs can be used to provide robust evidence for certification of autonomous
robotic systems. A notable example here is the use of Isabelle/HOL and temporal logic to formalize
a subset of traffic rules for vehicle overtaking in Germany [147]. More recently, the RoboChart
notation and its associated toolset also makes use of Isabelle/HOL to verify robotic systems [74].

Other work in this domain includes [125], which uses the hybrid systems logic dL [135] to
describe the discrete and continuous navigation behavior of a robot rover. They then use the hybrid
theorem prover, KeYmaera, to verify that the robot does not collide with stationary or moving
obstacles and maintains sufficient distance from obstacles. Mitsch et al. [126] update this work,
verifying a less safe property that allows for imperfect sensors; adding liveness proofs, to guarantee
progress; and automatically synthesizing runtime monitors from the verified models, to mitigate
the problems caused by the reality gap.

In [89], OZS (a combination of Object-Z and Statecharts [87]) is used to capture the dynamic
roles that an agent in a multirobot system can play, which define the robot’s interaction patterns.
OZS has an operational semantics, and the STeP theorem prover is used for verification of safety
and liveness properties of their model.
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Although effective, it is clear from our analysis that these kinds of approaches have not received
much attention in the literature. We believe that this is a usability issue with the tools generally
more difficult to master than those of other approaches.

6.3 Runtime Monitoring

Runtime monitors can be used to sidestep the problem of verifying a (needfully) complex model
of a robotic system. Instead of specifying and verifying the entire system, the properties that the
system has to exhibit are extracted and specified as a monitor of the system. Because the monitor
is simpler than the system, it is often easier to verify. Another advantage is that runtime monitors
can mitigate the problem of the reality gap (between a model and the real world) especially when
used to complement offline verification. Given that a robotic system is naturally cyber-physical,
and therefore malfunctions can have safety consequences, monitoring the system’s behavior at
runtime can be key to ensuring safe operation [158].

A monitor consumes events from a system and compares them to the expected behavior. If
the system’s events differ from the expectation, then it can invoke mitigating activities, including
logging, flagging this to the user, or triggering behavior to remedy the situation. Runtime monitor-
ing cannot guarantee all system behaviors beforehand. It has received attention in the literature
on runtime verification, which brings together model-checking and stream-processing technolo-
gies [148]. Examples include [66, 95, 97], and the International Conference on Runtime Verification
has been running since 2006.

Aniculaesei et al. [14] use runtime monitors to complement design-time formal methods. The
runtime monitors are built to check that design-time assumptions hold during the execution of
the program. For additional confidence at design time, they also specify the system and its phys-
ical environment using TA with safety properties in TCTL. Ferrando et al. [69] develop runtime
verification to recognize anomalous environmental interactions and so highlight when the pre-
vious formal verification that has been carried out on an autonomous robotic system (with some
environmental assumptions) becomes invalid.

Kane et al. [103] present runtime monitors for an autonomous research vehicle. These moni-
tors are written in the αVSL safety specification language, whose semantics is given over time-
stamped traces using future-bounded, propositional Metric Temporal Logic (MTL). Their algo-
rithm, EgMon, uses the MAUDE rewriting engine to reduce the input formulae. They extend EgMon
with a hybrid monitoring algorithm, HMon, which first performs conservative checks and then as
many eager checks as the remaining time permits.

Often, robotic systems are distributed, either because of the software architecture (such as Ro-
bot Operating System (ROS)) or because it is a multirobot system (such as a robot swarm). For
such systems, Bauer and Falcone [21] describe a method of distributing an LTL specification of a
system’s macro-level behavior to a collection of micro-level behavioral monitors. Their approach
does not assume any central information collection and ensures that the communication between
monitors is minimal, but sufficient to allow the monitors to work.

Robotic systems are intrinsically cyber-physical, combining discrete and continuous parts. The
implications of this on runtime monitoring are addressed in [158], which describes an approach
for modeling the hybrid nature of cyber-physical systems without discretizing them. They use
Probabilistic Hybrid Automata (PHA) to capture both the discrete and continuous elements of a
system. They illustrate their approach using an electronically controlled train braking system. A
similar hybrid-logic approach is taken by [126], who specify the safety properties of a robot rover
using dL and then automatically synthesize runtime monitors from these verified models.

ROSRV is a runtime verification framework for robotics systems deployed on ROS [95] that
uses a novel formal specification language for writing safety properties. Using a new configuration
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file, ROSRV then automatically generates C++ ROS nodes to monitor the system for the specified
properties. Because their approach uses normal ROS nodes and a custom configuration file, it
doesn’t require any changes to be made to either ROS or the application. They make the interesting
observation that their approach cannot currently be verified because that “would require a model
of ROS itself” to be able to prove that the monitors and other generated code respect the model.

Similarly, Falcone et al. [66] describe RV-BIP, a tool that produces runtime monitors for robots
in the BIP framework, which will be discussed in Section 6.5. They provide a formal description of
the BIP component-based framework and monitors. Each monitor consumes events from the BIP
system and assesses the sequence of events, producing a verdict of either true, false, or currently

true or false. RV-BIP takes an XML description of an LTS, describing the monitor, and produces a
BIP monitor for a given BIP system. Falcone et al. provide an example where they use this tool to
produce a BIP system with execution order and data freshness monitors.

Liang et al. [117] describe a runtime monitoring approach that does not require any alterations
or additions to the monitored system. They specify the system in Z and compare the traces from a
specification animator with information from a Java debugger to check if the running program is
correct with respect to the Z specification. This has the added advantage of decoupling the monitor
from the monitored program.

6.4 Integrated Formal Methods

Integrated Formal Methods (iFMs) refer to the integration of multiple formal methods, or a formal
method with a semi- or nonformal approach, that complement each other. While still difficult, iFMs
can capture several dimensions of a system at once (e.g., static and dynamic behavior) for easy
analysis. In our previous work, we argue that robotic systems provide the impetus for addressing
the challenges of integration; furthermore, because robotic systems are inherently hybrid, they
need iFMs [67]. An early example of this need is a study concluding that no single formalism was
suitable for applying to a robot swam and a combination of four formalisms would be the best
approach [90].

The challenges presented in Section 4 are often best tackled using iFMs. However, our literature
search found no generic approaches for applying iFMs to robotics. Here, we discuss some notable
bespoke examples. To enable both refinement-based development and probabilistic checking, [165]
uses both Event-B and a probabilistic language to check reconfigurable architectures for an on-
board satellite system. The work in [7] combines FSP and πADL to capture safety and liveness
properties of multiagent robotic systems. The FSP specifications of the relevant safety and liveness
properties are transformed into LTSs, and then the agent programs and architecture (described in
πADL) are checked to see if they satisfy the required properties.

The work in [159] combines MAZE (an extension of Object-Z for multiagent systems) and Back’s
action refinement to enable top-down development of robot swarms. In [101], an agent controlling
a car is verified using AJPF, and the timing properties are verified using Uppaal. This is extended
in [102] with a spatial reasoning calculus. The work verifies the cooperation between the vehicles
and the abstract behavior of the physical vehicle. Another platooning driverless car is modeled
using an integrated formalism combining CSP and B (CSP‖B) [47].

Similarly, OZS combines Object-Z [89] and Statecharts [87]; it has been used to describe the state
and behavior of systems to formalize part of the Satisfaction-Altruism Model [157]. This model
captures the dynamic set of roles that a robot in a multirobot team can perform. The roles define
the interaction pattern of the robot. OZS has an operational semantics, which enables theorem
proving. In [89], the authors describe verification of their model using the SAL model checker and
the STeP theorem prover. They also indicate an intent to provide a way to refine OZS models to
code for deployment on robots.

ACM Computing Surveys, Vol. 52, No. 5, Article 100. Publication date: September 2019.



Formal Specification and Verification of Autonomous Robotic Systems 100:29

These bespoke examples integrate two or more formal methods to obtain an approach to veri-
fication with their combined benefits. There are also examples that integrate a formalism with a
nonformal notation. For example, an approach for deriving formal specifications from the real-time
UML profile UML-RT [6] captures UML-RT subsystems as processes in the timed CSP derivative,
CSP+T. This also provides UML-RT with a semantics in CSP+T.

RoboChart is a robotic system design notation that integrates CSP with a graphical timed state-
machine notation [144]. The integration displayed by RoboChart provides a generic formal nota-
tion for robotic systems, which is an approach that yields a reusable and stable formal method. This
reusable, stable, and generic approach to iFMs is key to the success of iFMs, not just for robotic sys-
tems but more generally as well. Integrating diverse formalisms into a holistic framework remains
an open problem, waiting to be solved.

In the area of automated surgical robotics the combination of UML, LTL, and Alloy has been
used to model and reason about a number of surgical operations [29]. The work employs a goal-
oriented methodology where a UML model relates goal requirements to the “high-level structural
and behavioral decomposition of the intelligent robotic system.” A number of experts (medical
professionals) were interviewed and their responses were used to construct a goal model that was
converted into a set of formal properties using the Alloy language where each goal is formally
defined in LTL. This model is then checked by the KodKod SAT solver. The UML model can then
be translated into executable code using the Orocos framework.

The Restore Invariant Approach (RIA) uses invariants to specify productive states and to use
constraint solving techniques whenever the system is not operational to find new configurations to
make the system operational again [81]. This work targets self-adaptive and agent-based systems.
It was used in the specification and verification of an adaptive production cell that was made up of
three drill robots and two autonomous transportation units that connect them. Here, the authors
make use of class diagrams with Object Constraint Language (OCL) constraints, the Microsoft
Robotics Studio simulator, the JADEX multiagent framework, and the Alloy constraint solver.

6.5 Frameworks for Verifiable Robotic Software

Our literature search revealed a number of frameworks for developing verifiable robotic systems.
These frameworks often encompass a number of the techniques already described in Section 6,
but frequently, they incorporate bespoke tools and formalisms. Although some facilitate the use
of multiple verification techniques, we omit them from Section 6.4 since users are generally ex-
pected to apply only one of the available techniques in practice rather than integrating results
from several.

The BIP framework [19] is a toolset for modeling component-based real-time software, with a
notation based on FSMs. The basic component of a BIP model is a state transition system, labeled
with C/C++ functions. These components are combined to form larger components and models
can be verified using the D-Finder tool [26]. In [1], Abdellatif et al. combine the BIP framework
with the GenoM robot software architecture to provide a technique that can synthesize robotic
control software from BIP models of the required behavior. This enables the generation of robotic
software, in GenoM, that is correct by construction. Abdellatif et al. show the generation of software
for a wheeled rover robot using fault injection to test that the constraints in the BIP specification
are enforced by the generated software.

Other work along this vein includes a meta-model-based translation from the Architecture Anal-
ysis and Design Language (AADL) into BIP [43]. This facilitates simulation of AADL combined
with formal verification using the model-checking tools in the BIP framework; in particular, this
work uses the Aldebaran model checker. Furthermore, Falcone et al. [66] integrate runtime verifi-
cation into the BIP framework. They describe their approach and a tool, RV-BIP, which generates
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monitors for BIP to check specifications at runtime. Related to this are attempts to integrate BIP
and the LAAS architecture, which is based on GenoM [20, 25].

The Averest framework provides “tools for verifying temporal properties of synchronous pro-
grams” that are written in the Quartz language [139]. The Quartz programs are translated into
Averest Interchange Format (AIF) and then verified against LTL specifications using the Beryl
model checker or other third-party tools that have interfaces to them such as SMV. Furthermore,
the framework has a code generation tool called Topaz that can output Verilog, VHDL, and C code.

Chen et al. [40, 41] propose a computational framework for automatic synthesis of control and
communication strategies for robot teams using task specifications that are written as regular
expressions. Their objective is to “generate provably correct individual control and communica-
tion strategies” from regular expressions, which are used to create FSA. They demonstrate their
approach using a Robotic Urban-Like Environment (RULE), where autonomous cars must nav-
igate and avoid collisions. Their technique builds on LTL model checking and uses JFLAP and
MatLab [41].

The FOrmal Reference Model for Self-adaptation (FORMS) provides a reference model that can
guide developers as to how to formulate a Z specification of a self-adaptive system [179]. This is
built upon MAPE-K and supports agents and formal refinement of specifications in Z.

Kim et al. [106] use the Esterel framework to verify the stopping behavior of a home service
robot. This framework offers facilities for specifying and verifying robotic systems using model
checking. Esterel can also be translated into an associated C or C++ program, and the semantics of
an Esterel program is given in terms of the FSM that it describes. To enable systems to be checked
for temporal logic properties, the authors translate them into observers in Esterel.

6.6 Summary of Approaches

This section discussed the formal verification approaches in the literature as summarized in
Table 4. The most popular approach is model checking, which is reflected in the dominance of
temporal logics and state-transition systems for the specification of robotic systems (Section 5,
Table 2). We speculate that the prevalence of model checking in the literature may be because it is
easy for developers to understand and trust who do not have a formal methods background since
it is automatic and conceptually similar to exhaustive testing. Frameworks for verifiable robotic
systems were the next most popular approach, and most of these incorporated a bespoke model
checker. However, it is not clear, in practice, just how effective these in-built verification tools are.

As outlined earlier, iFMs are necessary in the verification of robotic systems due to their size and
complexity. This is an active area of research with tools still under development. We anticipate that,
in the future, this approach will feature more in the verification of autonomous robotic systems.
The least popular approaches were theorem proving and runtime monitoring. In general, theorem
provers require specialist knowledge to use and we believe that this is why it is currently not
as popular as other approaches. Although effective in the running system, runtime monitoring is
often seen as a separate step in the verification process after static verification has taken place and
provides little in the way of design-time benefits.

7 CONCLUSION

Section 1.2 discussed related surveys and differentiated them from our work. Our work incor-
porates the topics of formal methods for self-adaptive systems (surveyed in [177]) and swarms
(from [149, 150]). We also identify work from several categories that a survey on safety-critical
robotics [82] lists as areas to focus on. Specifically, these are modeling of a robot’s physical en-
vironment, formal verification of robotic systems, correct-by-construction controller synthesis,
and being able to provide certification evidence. This last point is particularly important and is
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a key focus in the current literature. Finally, the work that we have surveyed is squarely within
the category of verifying applications for internal correctness, one of three main challenges for
the automatic verification of autonomous systems [156]. Some of the current literature focuses
on the external correctness of the software, for example, how it will safely interact with a robotic
software framework like ROS or GenoM. However, the suggestions that special-purpose language
interpreters or compilers must verify has not been borne out, as many robotic applications are
written in general-purpose languages such as Python, Java, or C++. This, of course, leaves the
tools for these languages to be verified, a larger challenge due to the generality of the languages.

Section 1.1 outlined the research questions that this article investigates. In this section, we use
the results of our survey to derive potential answers to these research questions. The answers also
provide the structure for a discussion of our observations of the current state of the literature.

RQ1 asked what the challenges are when formally specifying and verifying (autonomous) robotic
systems. We identified two types of challenge: those external to the robotic system, discussed in
Section 3, and those internal to the robotic system, discussed in Section 4. The external challenges
that we identified are modeling the robotic system’s external environment and providing sufficient
evidence for public trust and certification. The internal challenges that we identified are the
use of agent-based, multirobot, and adaptive/reconfigurable systems. Reconfigurability is key to
safely deploying robots in hazardous environments and vastly more work needs to materialize to
ensure the safety of reconfigurable autonomous systems. Therefore, we see a clear link between
a robotic system reacting to the changes in its external environment and reconfigurable systems.

Similarly, rational agent-based systems that can explain their reasoning provide a good route
for providing evidence for public trust or certification bodies. This is because they enable the
crucial transparency that trust and certification need. An example of the transparency required is
the ethical black box proposed by [181], which records the sensor input and internal state of the
system. A rational agent can provide reasons for its choices based on the input and internal state
information.

RQ2 asked what are the current formal methods used for tackling the challenges identified by
answering RQ1. Our analysis, presented in Section 5 and Section 6, shows that temporal logics,
state-transition systems, and model checkers are the most prominent formalisms and approaches
in the literature over the past decade. We speculate that this is due to the fact that temporal logics
and state-transition systems allow abstract specification, which is useful earlier in the development
process, and because model checking as an approach is generally easy to explain to stakeholders
who do not have experience using formal methods.

RQ3 asked what the limitations are of the best-practice formalisms and approaches to verification
that were identified in the answer to RQ2. One limitation appears to be a resistance to adopt-
ing formal methods in robotic systems development [120]. The perception is that applying formal
methods is a complicated additional step in the engineering process, which prolongs the develop-
ment process while not adding to the value of the final product. A lack of appropriate tools also
often impedes the application of formal methods. These are long-standing opinions, for example,
the authors of [109], which was published 19 years prior to [120]. There are, however, notable
examples of industrial uses of formal methods, such as those examined in [185].

The wide variety of tools for the same formalism (indicated in Table 3) also points to a problem:
the lack of interoperability between formalisms. Often, models or specifications of similar com-
ponents are incompatible and locked into a particular tool. This suggests that a common frame-
work for translating between, relating, or integrating different formalisms would prove useful in
smoothing the conversion between formalisms or tools. Further, this would serve a growing need
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to capture the behavior of complex systems using a heterogeneous set of formalisms, each suited
to the component being modeled or the properties of interest. This is currently an open problem
in formal methods for robotic systems.

As mentioned in Section 3, there is a lack of clear guidance when it comes to choosing a suitable
formal method for a particular system. With respect to autonomous robotic systems, Table 1 lists
the formalisms/tools used and the corresponding case study that was presented in the surveyed
literature. This provides some guidance when choosing an appropriate formal method for a given
system, but we leave a more detailed analysis of this as future work.

Another limitation faced by formal methods for robotic systems (and more generally) is that
of formalizing the last link, the step between a formal model and program code. We found few
examples of formal methods for robotics that also produced runnable program code from a speci-
fication, and, in these examples, it was often unclear as to how the code relates back to the original
specification model. Such last link translation steps require a formal underpinning to ensure that
the model is represented by the code. The lack of clarity about this limitation points to another: a
lack of open sharing of models, code, and realistic case studies that are not tuned for a particular
formalism.

Field tests and experiments using simulations are both useful tools for robotic systems devel-
opment, but formal verification is crucial, especially at the early stages of development when field
tests of the control software are infeasible (or dangerous). A focused research effort on the combi-
nation or integration of formal methods should improve their use in robotic systems development,
because no one formalism is capable of adequately capturing that all aspects of a robotic system
behave as expected. Ensuring that these tools are usable by developers and providing similar fea-
tures in an IDE would also improve their uptake by simplifying their use. Work in this area could
lead to an Integrated Verification Environment, allowing the use of different formalisms using the
same developer front end, connecting them to their respective tools, and providing helpful IDE-like
support.

We have identified a number of threats to validity for this work, and we have taken measures
to mitigate them where possible. In particular, researcher bias was minimized by explicitly stating
the scope and research questions at the beginning of the review and having two researchers ana-
lyze the search results in tandem. Restricting our search to those papers published within the last
10 years may affect the completeness of our search results; however, by “snowballing” we have
explored and discussed papers that did not fall within this range throughout the narrative in this
report. Furthermore, our use of Google Scholar limits our search to those papers that were found
using Google’s algorithms. Again, our use of “snowballing” helps to mitigate this threat.

This article has analysed the current state-of-the-art literature particular to the formal specifi-
cation and verification of autonomous robotic systems. To this end, this survey identifies future
directions in this field.
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