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Abstract. The complexity and flexibility of autonomous robotic sys-
tems necessitates a range of distinct verification tools. This presents
new challenges not only for design verification but also for assurance
approaches. Combining the distinct formal verification tools, while main-
taining sufficient formal coherence to provide compelling assurance evi-
dence is difficult, often being abandoned for less formal approaches. In
this paper we demonstrate, through a case study, how a variety of dis-
tinct formal techniques can be brought together in order to develop a
justifiable assurance case. We use the AdvoCATE assurance case tool to
guide our analyses and to integrate the artifacts from the formal meth-
ods that we use, namely: fret, cocosim and Event-B. While we present
our methodology as applied to a specific Inspection Rover case study, we
believe that this combination provides benefits in maintaining coherent
formal links across development and assurance processes for a wide range
of autonomous robotic systems.

1 Introduction

The adoption of formal methods in industry has been slower than their devel-
opment and adoption in research. One of the main pitfalls is the difficulty in
integrating the results from formal methods with non-formal parts of the sys-
tem development process. A central stumbling block is the formalisation of the
(informal) natural language descriptions needed to perform the formal analysis,
as well as the analysis and interpretation of the formal verification results.

The integrated formal methods approach relies on various tools cooperating
to ease the burden of formal methods at various phases of system development.
This often involves facilitating the use of one tool/formalism from within another
(e.g. Event-B‖CSP [40]), the development of a tool/formalism that incorporates
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multiple others (e.g. Why3 [20]), or the construction of systematic translations
between tools/formalizms (e.g. EventB2JML [39]). Recent work argues that, for
autonomous robotic systems, the use of multiple formal and non-formal verifi-
cation techniques is both beneficial and necessary to ensure that such systems
behave correctly [19, 29]. Notably, the usually modular nature of robotic systems
makes them more amenable to an integrated verification approach than mono-
lithic systems [8]. The inherent modularity in robotic systems usually stems from
the use of a node-based middleware such as the Robot Operating System (ROS)
[38]. However, other middlewares such as NASA’s core Flight System (cFS) [35]
also support the development of similarly complex, modular systems.

In this paper, we study the support for integrating formal verification re-
sults at both system- and component-level in the design, implementation and
assurance of a critical system, namely, an autonomous rover undertaking an in-
spection mission. In contrast to usual approaches to integrating formal methods,
such as those described above, we use an assurance case as the point of integra-
tion rather than building bespoke tools or defining mathematical translations
between specific formal methods. In this way, we harness the benefits of an in-
tegrated approach to verification without the usual overheads. Specifically, we
use AdvoCATE [16] to perform safety engineering and assurance, fret [23] to
elicit and formalize requirements, and cocosim [6] with Kind2 to perform com-
positional verification of the system-level requirements. Further, we use Event-B
[2] and Kind2 for the component-level formal verification. AdvoCATE facilitates
the integration of the artifacts/evidence produced from these tools.

In summary, we contribute an inspection rover case study that demonstrates:
– how these tools can be linked via an argument in an assurance case.
– the benefit of using distinct tools due to their limitations (e.g. Kind2 would

time out on certain properties that were verified in Event-B).
– how developing with formal methods in mind from the outset can influence

the design of the system, making it more amenable to formal verification.

2 Tool Support

Assurance Case Automation Toolset (AdvoCATE) [16]: supports the de-
velopment and management of assurance cases, which are composed of all of
the assurance-related artifacts that are created during system development. To
enable automation, AdvoCATE is built with a formal basis where all of the assur-
ance artifacts can be defined and formally related. Some artifacts can be created
directly in AdvoCATE (e.g., hazard log, bow tie diagrams), while others, such as
formal verification results, can be imported. AdvoCATE uses Goal Structuring
Notation (GSN) [1] to document assurance cases in the form of arguments.

Formal Requirements Elicitation Tool (FRET) [23]: is an open source
framework [22] for the elicitation, formalization and understanding of require-
ments. fret helps understanding and review of semantics by utilizing a variety
of forms for each requirement: natural language description, formal logics, and
informal diagrams. System requirements are defined in a hierarchical fashion us-
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ing a structured natural language with precise meaning, and can be exported in
a variety of forms to be used by formal analysis tools such as cocosim [33, 34].

Contract-based Compositional Verification of Simulink Models (CO-
COSIM) [6]: is an open source framework [12] for Simulink/Stateflow formal
verification. cocosim translates a Simulink model into Lustre code [25], which
can then be verified using the Kind2 model-checker [9]. cocosim annotates the
model with assume-guarantee contracts. Verification can then be performed in
a compositional way or by checking the contracts against component behavior.

Event-B [2]: is a formal method that is used in the verification of cyber-physical
systems [30, 4, 36]. Event-B uses a set-theoretic modelling notation and supports
formal refinement. Event-B models are composed of machines, which model the
dynamic components of a systems’ specification, and contexts, which model the
static components. Event-B has tool support via the Rodin Platform, an Eclipse-
based IDE, which generates proof obligations for a given specification and pro-
vides support for automatic and interactive proof with the Atelier-B prover [3].

3 Assurance-based Formal Methods Integration

The objective of this work is to study the integration of formal verification re-
sults via the development of an assurance case, as applied to a robotic system,
using a tool palette that includes the three NASA Ames tools fret, cocosim,
and AdvoCATE, as well as Event-B. To this end, we provide a step-by-step
methodology that builds on top of existing NASA guidelines [18, 26] that can
be used in the design and development of mission-critical systems. In particular,
existing guidelines [26] suggest the following phases: 1) characterization; 2) mod-
eling; 3) specification; 4) analysis; and 5) documentation. Each phase consists of
constituent processes and the overall process is iterative rather than sequential.

In our methodology we focus on the application of formal methods and con-
nect it to the parts of a greater system safety assurance methodology [13] needed
to perform and assure application of formal methods. Our methodology is guided
by the need to devise a detailed assurance case that integrates verification results
from a number of distinct tools. The steps that we followed are the following:
Step 0: Characterize initial system.
Step 1: Create initial system model in Simulink.
Step 2: Perform preliminary hazard analysis.
Step 3: Define mitigations and safety requirements.
Step 4: Refine Simulink model according to mitigations.
Step 5: Formalize requirements and create formal specification(s).
Step 6: Perform verification and simulation at system- and component-levels.
Step 7: Document verification results and build safety case.

Fig. 1 presents a detailed view of our methodology. The upper part of Fig. 1
shows the system-level concept, design, and assurance steps that are mainly per-
formed by the AdvoCATE tool, while the lower part shows the formal methods
application steps performed by the fret, cocosim, and Event-B tools. In the
analysis phase (step 6) we perform two types of analysis. We use cocosim to



4 H. Bourbouh et al.

Fig. 1. Our methodology for integrating formal verification results via AdvoCATE. The
incoming arrows without a source represent all relevant artifacts from previous phases.
For system-level analysis these comprise the Lustre requirements and the Simulink
system model, while for component-level analysis these comprise the Lustre and Event-
B system models and requirements. In the documentation phase we input all artifacts.

perform compositional system-level analysis with Kind2. We also perform ver-
ification at component-level against the system model using the Atelier-B and
Kind-2 tools. Finally, in the documentation phase, we use AdvoCATE to inte-
grate the evidence produced by the tools within the assurance case.

Over the years, we have worked with a variety of formal approaches for the
assurance of safety-critical systems. The goal of this study is to explore how such
approaches can work together and be integrated within the development process
of an autonomous system. To this aim, we developed a case study of a rover
system. Our case study is not extracted from an actual mission. Rather, it is de-
veloped by iteratively using our expertise on various assurance approaches. The
resulting Inspection Rover case study has a reasonable complexity, and demon-
strates a variety of generic challenges in formal methods techniques and their
integration. Most importantly, we make the details of our case study publicly
available [5], since we believe that it can serve as a good basis for discussion and
comparison of approaches and tools across the research community.

We target rovers for a variety of reasons. First, rovers are used in many
autonomous systems, and present challenges that are typical of autonomous ap-
plications. Second, some of the authors have prior experience with autonomous
robotic systems that are deployed in hazardous environments, such as the nu-
clear, offshore, and space domains through their involvement in projects5. Third,
our research group at NASA Ames is in the process of building rover applications
to experiment with AI technologies and their assurance techniques.

Four formal methods experts were involved: 1) a safety expert; 2) a require-
ments expert; 3) a Simulink and Lustre verification expert; and 4) a verification
expert of robotic systems that also served as the domain expert. Step 0 was per-
formed by the domain expert, step 1 was performed together by the Simulink

5 UKRI and EPSRC Hubs for “Robotics and AI in Hazardous Environments”.
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Fig. 2. Preliminary inspection rover system architecture.

and domain experts. Steps 2 and 3 were performed by the safety expert. Steps
4 and 6 were performed by the safety, domain and Simulink experts. Step 5
was performed by the requirements and domain experts, and finally step 7 was
performed mainly by the safety expert with contributions from all other experts.

4 The Case Study Step-by-Step

4.1 Step 0: Characterize Initial System

We performed our case study in the context of the navigation system for an au-
tonomous rover undertaking an inspection mission. The objective of this rover is
to explore a square grid of known size and to autonomously navigate to points of
interest whilst avoiding obstacles and recharging as necessary. We assumed that
this system would be operated indoors to minimize environmental uncertainty.

4.2 Step 1: Create Initial Simulink Model

Simulink is usually used by engineers for developing an executable system spec-
ification, which the user may use to simulate and validate before producing the
source code. However, in this case study, we used Simulink in two different ways:
1) as an architecture description language, which allowed us to specify the archi-
tecture of the rover without providing implementations of low-level components
(for compositionally verifying properties using assume-guarantee reasoning); 2)
as a behavioral specification language for the implementation of some of the
low-level components (for checking properties against component behavior).

In step 1, we created the initial Simulink model, which comprises a prelim-
inary architecture of our rover (Fig. 2). The rover must navigate to all heat
positions on a 2D grid map of known size. The Vision system detects obstacles
to be avoided. The Infrared component identifies grid locations that are hot-
ter than expected. From these heat locations, the autonomous Goal Reasoning
Agent selects the hottest location as the goal, unless the Battery Monitor (via
the Interface) indicates that it must recharge. The Planner computes obstacle-
free plans for navigating from the current position to the goal. The autonomous
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Fig. 3. Bow Tie Diagram presenting the running out of battery hazard (orange circle),
its causes (blue rectangles to the left) and consequence (red rectangle to the right).

Plan Reasoning Agent selects the shortest plan. Finally, the Interface translates
the navigation actions of the plan into the instructions for the hardware compo-
nents and alerts the Goal Reasoning Agent when it reaches the goal or that it
does not have enough battery to execute the chosen plan so it must recharge.

4.3 Step 2: Perform Preliminary Hazard Analysis

To perform the preliminary hazard analysis in AdvoCATE as part of the safety
assurance methodology [13], we first defined a functional decomposition of the
Inspection Rover based on Fig. 2. Then, we performed the traditional hazard
analysis (FMEA [42]) in the AdvoCATE hazard log. We identified two top-
level hazards: 1) loss of rover, and 2) inspection finished before visiting all of
the heatpoints. In total, we identified 25 hazards including these two. E.g., we
identified the running out of battery and collision with an obstacle hazards as
causes of loss of rover. AdvoCATE uses the information from the hazard log to
automatically create a safety architecture documented via interconnected Bow
Tie Diagrams (BTD) for each hazard [15]. A single BTD shown in Fig. 3 details
the causes and consequences of the running out of battery hazard.

4.4 Step 3: Define Mitigations and Safety Requirements

After preliminary hazard analysis, we conducted a risk analysis that qualita-
tively analysed the severity and likelihood of the identified hazards to estimate
the risk level. From this, we defined mitigations to minimize the risk of those haz-
ards and their consequences. E.g., the loss of rover hazard is characterized with
catastrophic severity, but its likelihood is calculated based on the events causing
it. The combination of the two defines the risk associated with the hazard.
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Next, we performed mitigation planning using BTDs. For example, in order
to minimize the risk of running out of battery shown in Fig. 3: (1) we formally
analysed the navigation system and battery controller, (2) we ensured that the
charging station position is predefined so that we can estimate at every point
whether we have enough battery to go to recharge, and (3) if the basic assump-
tions about battery consumption are violated, then we abort and return to the
charging station. Besides mitigating the causes to prevent the hazard from hap-
pening, we add the recovery barrier between the hazard and the consequence to
reduce the severity of the consequence in case the hazard still occurs.

For each of the two top-level hazards, loss of rover and inspection finished
before visiting all of the heatpoints, we define system-level requirements:
[R1:] The rover shall not run out of battery.
[R2:] The rover shall not collide with an obstacle.
[R3:] The rover shall visit all reachable heat points.
The requirements [R1] and [R2] correspond to the causes of loss of rover, while
[R3] relates to the inspection finished before visiting all of the heatpoints haz-
ard. We have decomposed these system-level requirements further into child
(component-level) requirements detailing the specific mitigation mechanisms
captured in the BTDs. For example, the mitigations from Fig. 3 are related
to the child requirements of [R1], while [R3] scopes which heat points should
be visited to those that are reachable and not visited before. The full list of child
requirements for these system-level requirements is presented in [5].

4.5 Step 4: Refine Simulink Model According to Mitigations

Some of the identified mitigations required design modifications resulting in a
refined system architecture (Fig. 4), which was reassessed in terms of hazards and
mitigations. For brevity, we present this as a single step but there are iterations
between these steps in practice. We consider the initial rover position and the
charging position as user input. Note that the charging station position is static
and the rover always starts its missions from a pre-defined initial position.

We modified the original architecture by adding MapValidator to check that
the initial position, charging position, obstacles and heat points are mutually
exclusive. Furthermore, MapValidator checks that the initial position, as recog-
nized by Vision, is equal to the pre-defined initialPosition.

Next, we defined the NavigationSystem which contains the ReasoningAgent
and the Battery Interface components. We emphasise these two components as
we focus on formally verifying them. We further decompose these components.

The ReasoningAgent takes as input the identified and validated obstacle lo-
cations, current rover position, heat points and the charger position. It outputs:
(1) a plan from the current position to the goal (plan2D), (2) a plan from the
goal to the charger location (plan2C ), and (3) the list of visited locations. Within
the ReasoningAgent, the goal reasoning agent (GRA) chooses the next goal as
either the hottest heat point not visited before or as the charger if the recharge
flag is set to true by Battery Interface. The GRA updates the visited locations.

The ReasoningAgent contains ComputePlan2Charging and ComputePlan2Des-
tination which both have a Planner and plan reasoning agent (PRA). These re-
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Fig. 4. Upgraded inspection rover architecture with additional components and data.

turn the shortest plan from the goal to the charger (ComputePlan2Charging) and
the shortest plan from the current position to the goal (ComputePlan2Destination).

Battery Interface contains a BatteryMonitor and a hardware Interface. The
Interface takes the plans from NavigationSystem and the battery status from the
BatteryMonitor as input, and returns two flags indicating whether the rover has
reached the goal (atGoal) and the status of the battery charge (recharge). The
recharge flag becomes true if the current battery charge is insufficient to follow
the plan to the goal (plan2D) and return to the charging station (plan2C ).

If the recharge flag is false, then the Interface executes the plan and returns
atGoal as true once it reaches the goal. However, if recharge is true, then atGoal
is set to false. We note that we do not need both of these outputs since we have
always recharge = not atGoal. However, we include both for simplicity. These
outputs are fed back to the ReasoningAgent that generates the next plan, and
this loop executes until all of the heat points have been visited. Note that we
assume that NavigationSystem and Interface have a similar execution frequency.

4.6 Step 5: Formalize Requirements and Create Formal
Specifications

We manually wrote the requirements in the restricted natural language of fret,
i.e., fretish, which has a precise, unambiguous meaning. fretish requirements
contain up to six fields: scope, condition, component*, shall*, timing, and re-
sponse*, with mandatory fields indicated by ‘*’. ‘component’ specifies the com-
ponent that the requirement refers to and ‘shall’ expresses that the component’s
behavior must conform to the requirement. ‘response’ is a Boolean condition
that the component’s behavior must satisfy. ‘scope’ specifies intervals where the
requirement is enforced. For example, ‘scope’ can specify system behavior after
a mode ends, or when the system is in a mode. ‘condition’ defines a Boolean
expression that triggers a ‘response’. When triggered, the response must occur
as specified by the timing, e.g., immediately, always, for/within N time units.

For each fretish requirement, fret produces natural language and dia-
grammatic explanations of its exact meaning, and formalizes the requirement in
temporal logics. The majority of the requirements that we formalized did not
have scope or condition but they did have always timing, e.g.:
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[R1]: Navigation shall always satisfy battery > 0.
Other requirements use the condition field and immediately timing, e.g.:

[R1.2]: if recharge GRA shall immediately satisfy goal = chargePosition.
Notice that if recharge is a ‘trigger’: the requirement is only enforced when
the condition becomes true from false. The use of ‘immediately’ states that the
response must hold simultaneously with each trigger point. The natural language
version of [R1] was previously presented in §4.4, while the natural language
version of [R1.2] is “Charging station shall be selected as the next destination
whenever the recharge flag is set to true”.

Some requirements needed first-order temporal logic, which is not currently
supported in fret. For these, we used auxiliary variables that we instantiated
with quantifiers at the Lustre level. For instance, the natural language version of
requirement [R3.3] is “The hottest heatpoint that was not visited before shall be
the current goal when recharge flag is false.” was written in fretish as follows:

[R3.3]: GRA shall always satisfy if ! recharge then if forAll i & i inGrid then
(if ! visited[i] then heatpoints[goal] >= heatpoints[i]))
where forAll i represents the universal quantification over heatpoints. In total,
our case study contains 28 requirements, 7 of these required first-order tempo-
ral logic formulas. We were able to write all 28 requirements in fretish and
formalize them (we used auxiliary variables for first order logic quantifiers).

FRETISH to Verification Code: fret automatically formalizes require-
ments in pure future-time (fmLTL) and pure past-time (pmLTL) Linear Tempo-
ral Logic. pmLTL formulas use exclusively past-time temporal operators, i.e., Y,
O, H, S, (meaning Yesterday, Once, Historically, Since, respectively). We used
the pmLTL variant since Lustre-based analysis tools only accept pmLTL specifi-
cations. The automatically generated pmLTL formulas for [R1] and [R1.2] are:
[R1]: H(battery>0);
[R1.2]: H((recharge & (Y(!recharge) | FTP))⇒(goal=chargePosition));
where FTP means First Time Point of execution (equivalent to ¬ Y TRUE). From
the pmLTL formulas we automatically generated Lustre-based verification con-
tracts that can be directly fed into cocosim for verification with the Kind2
model checker using the cocogen tool, which is integrated in fret. cocogen
is described in [32]. For example, below is the generated Lustre code for [R1]:

1 guarantee "R1.2" (battery > 0);

If requirements were based only on model inputs, e.g., [R1.2], then CoCoGen
generates assumptions (instead of guarantees):

1 assume "R1.2" (( recharge and ((pre (not recharge)) or FTP)) => (goal =
chargePosition));

where FTP = true → false. As mentioned earlier, some requirements used
first-order operators such as [R3.3] which was generated as follows:

1 guarantee "R3.3" not recharge => (forall (i:int) (0 <= i and i < width) => (
not visited[i] => heatpoints[goal] >= heatpoints[i] )));

Notice that the forAll i placeholder was replaced by forall (i:int), and
i inGrid was replaced by (0 <= i and i < width) during generation.

Additionally, we specified the requirements in Event-B. Event-B does not sup-
port temporal logic but we used the fretish requirements to guide our Event-B
modelling since they were simple enough and more useful as a starting point for
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formalization than the natural language requirements. E.g., the natural language
requirement [R3.4] is “The shortest path to the current goal shall be selected”.
The fretish version is: [R3.4]: Planner shall always satisfy if (planningCom-
pleted & returnPlan) then (if (forAll x & x inPlanSet) then (card(chosenPlan)
<= card(x))), where the card() function computes the length of a path. The
corresponding Event-B invariant was based on the fretish version:

(planningCompleted = TRUE) ∧ (returnplan = TRUE) ⇒ (∀x · x ∈
PlanSet⇒ card(chosenplan) ≤ card(x))

Similarly, [R2.5:] The calculated path to destination shall not include a lo-
cation with an obstacle was defined in Event-B as follows:
∀p, x · p ∈ PlanSet ∧ x ∈ p⇒ x /∈ Obs

where every element of PlanSet is a set of grid locations.

4.7 Step 6: Perform Verification and Simulation at System- and
Component-Levels

Compositional Verification in CoCoSim: Our objective was to attach the
component-level child requirements to the relevant component(s) and then, using
cocosim, compositionally verify the system-level parent requirements. We were
not able to model/verify all requirements, e.g., The current position as recognized
by the rover is its current physical position should be physically tested.

Compositional verification in cocosim involves defining a top system node
with associated system-level contract. During verification, the model checker
attempts to show that these system-level properties can be successfully derived
from the component-level contracts. Using compositional reasoning in cocosim,
we were able to verify system-level requirements [R1] and [R3], defined in §4.4.
However, we could not verify [R2] which involves the Vision and the Planner
components, because there is no cocosim model for the Vision component.

Compositional verification of [R1] was achieved quite quickly (< 20 secs),
as the model checker only had to analyse two components: the Interface and
BatteryMonitor to verify [R1]. [R3] was more complex since it involved a loop
between the Interface and ReasoningAgent. Kind2 had to carry out a lot of un-
rolling to adequately assess this property and deal with more complex contracts
including quantifiers and arrays. Thus, we were only able to prove [R3] for spe-
cific grid widths (minutes for 3× 3, hours for 4× 4, and larger grids timed out).

Component-Level Verification Using Kind2 and Event-B: Previously,
we used compositional verification to verify that the system-level parent require-
ments hold based on the component-level requirements. Here, our objective was
to verify that the more detailed specification/implementation of individual com-
ponents obey the associated component-level requirements. Recognising that, for
autonomous robotic systems, it is often necessary to use a range of verification
techniques for individual components, we used two distinct formal methods here
[19, 29]. Specifically, we used Kind2 to verify a simple implementation of the
GRA and, Event-B to model and verify the ComputePlan component.



Integrating Formal Verification and Assurance 11

Specification and Verification of the GRA: We constructed a simple Lustre im-
plementation of the GRA that we verified using Kind2. Full details can be found
in [5]. The GRA computes the start, goal and the visited cells. The start

is initialized as the currentPosition, if the goal was reached during the last
execution (atGoal is true) then the start is the previous goal (pre_goal), if
the recharge flag is true then the start is the previous start position since
the rover did not move. The goal is set to chargingPosition if the recharge

flag is active. Otherwise we choose the hottest heat point, computed using the
hottestPoint local array that keeps track of the hottest heat point. We used
Kind2 to verify all of the properties specified in the specification. We were able
to verify most properties in less than 1 second. Due to state space explosion,
there were some properties, e.g., requirement [R3.3] that were only provable for
specific grid sizes. E.g., we verified [R3.3] for a grid size up to 4x4.

Specification and Verification of ComputePlan using Event-B: Our Event-B model
contains three contexts (modelling static aspects) and two machines (modelling
dynamic aspects). Event-B supports formal refinement, so our contexts extend
one another and our machines indicate refinement steps. Our most primitive
context, ctx0, specifies basic details such as the size of the grid, valid grid loca-
tions, obstacles and heat points. We do not explicitly list the elements of these
sets since this specification is for a generic planner. This is extended via ctx1

which specifies functions that capture the behavior of the planning component.
The abstract machine, mac0, models a simple search-based planning algo-

rithm that produces a set of plans containing the start and goal. Event-B uses
sets as primitive so we ensure that these plans, encoded as sets, can be linearized
using the adjacent function specified in ctx1. The refinement, mac1, incorpo-
rates a plan reasoning agent and chooses the shortest plan from PlanSet. An-
other context, ctx2, defines a constant to limit the number of generated plans.

We encoded [R2.1], [R2.4.1], [R2.4.3], [R2.4.4], [R2.5] and [R3.4] in our
Event-B model. We could not verify [R2] compositionally but its child require-
ments feature in our Event-B model (e.g. [R.2.5]). This ensures that the plan-
ning components do not accidentally cause the rover to collide with an obstacle.
Most of the Event-B proof obligations were proven automatically by Atelier-B
in Rodin. Those requiring interactive proof were relatively straightforward.

Event-B was not limited by the state space explosion that was causing Kind2
to time out. We specified more complex component-level properties that would
have been difficult to verify for a model-checker. [5] contains the Event-B model.

4.8 Step 7: Document Verification Results and Build Safety Case

All of the verification results produced by the tools are a part of the safety case
that was constructed in AdvoCATE. Some artifacts were imported automatically
into AdvoCATE, while others were added manually. Since this case study did
not include a full system implementation, the safety case that we report here is
an interim version and contains the current safety assurance status.

The skeleton of the overall argument is generated automatically from the
information defined and imported into AdvoCATE such as hazards, mitigation
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Fig. 5. The argument-fragment for the running out of battery hazard (rectangles repre-
sent goals, parallelograms represent strategies, ovals with a ‘J’ represent justifications,
rounded rectangles represent context statements, green rectangles indicate arguments
continues elsewhere, green diamonds represent currently undeveloped elements).

requirements, formalized requirements and evidence artifacts. We have further
extended the skeleton argument based on the specific application and the tools
that we used. Fig. 5 presents an argument fragment about mitigating the running
out of battery hazard that causes loss of rover. Similar arguments exist for other
causes of loss of rover and the other hazards. For brevity, Fig. 5 only contains a
fragment of the existing argument. For example, this argument focuses on two
aspects: the requirements directly related to this hazard (right branch), and the
causes that lead to the hazard (left branch). Full details can be found in [5].

The goal G14 focuses on [R1] that was verified using cocosim. We have
created a similar argument for each of the system-level requirements verified
compositionally with cocosim. For each, we extended the automatically gener-
ated arguments based on a combination of existing argumentation patterns [14,
41] to argue application-specific goals (base of Fig. 5): (G3-A1) the formalisa-
tion of the natural language requirement is correct; (G4-A1) the results from
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cocosim are trustworthy; (G5-A1) the different design representations are con-
sistent; (G6-A1) the cocosim verification result for [R1] is valid.

To ensure that the different design representations were consistent across the
tools, we performed manual reviews where automated consistency validation was
not available. E.g., we used manual reviews to verify that the design as specified
in AdvoCATE was consistent with the Simulink, Kind2 and Event-B models.

The goal G3-A1 relates to the correct specification of [R1] in fretish and
the correct functioning of fret. While we have to verify through a manual review
that the natural language requirement is correctly represented in fretish, the
correct fret functioning and generation of the corresponding cocosim contracts
is supported by the automated verification framework of fret.

The goal G6-A1 presents the rationale behind the cocosim results that [R1]
is valid in the design. This part of the argument points out the dependencies to
the properties of the other components, but also implicit assumptions on which
these results rely. Finally, to have confidence in the results from cocosim, we
argued the trustworthiness of cocosim in the goal G4-A1. Since cocosim relies
on some model transformations and external tools for verification, the correctness
of these has to be established. For example, we argued the correctness of the
translation from Simulink to Lustre code that is used by Kind2.

5 Discussion

Using the given formal verification tools we were able to verify that the Nav-
igation System will not cause the rover to run out of battery. We could not
verify that a collision will never occur at system-level with cocosim due to the
specification complexity. However, we were able to verify with Event-B that the
Navigation System will not generate plans that contain obstacles at component-
level. Finally, we were able to verify that the rover will visit all of the heat points
with cocosim, but only for a small grid size of 4x4. Verifying the property for
greater grid sizes did not finish even after several days of analysis.

This case study showed us that by following our methodology we were able to
leverage multiple formal tools and use them in a complementary fashion. In this
way, we applied formal methods to small, manageable chunks of the system to
ease the verification burden and to avoid becoming trapped by the limitations of
any single tool. Using fret to bridge the gap between the informal and formal
steps by formalizing our requirements was particularly useful because it helped
us to clarify any details that were implicit in the natural language requirements.

Although in most cases, the initial natural language requirements looked rel-
atively straightforward, a closer study revealed many questions regarding their
precise meaning. Translating the natural language requirements into fretish
was not always straightforward. To this end, the semantic explanations and
simulation capabilities offered by fret were instrumental in ensuring that the
fretish requirements captured our intended semantics. Notice that we could not
directly encode first-order logic requirements in fretish. We tackled this prob-
lem using auxiliary variables as placeholders for the quantifiers at requirement-
level, but a fretish-level solution is desirable. Finally, we noticed that most of
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the Inspection Rover requirements follow a small number of patterns, a charac-
teristic that we have observed in other studies within our organization.

The choice of cocosim and in particular Kind2 greatly influenced our design
decisions. For example, in our original design, we represented cells in the grid as
(x, y)-coordinates. However, we subsequently simplified this by using indices so
that they were easier to represent and reason about in formal tools. Our choice
of a compositional verification approach caused us to output specific variables
such as the remaining battery power to verify [R1] compositionally. Further-
more, we had to adapt the hierarchical structure of the system to accommodate
compositional verification. If the choice of formal verification tools is made early
on in the system development process, the design of the system can be created
so that it is more suitable to formal verification using the chosen method(s).

Not all of the formalized requirements were formally verifiable, some de-
scribed hardware constraints and/or required physical testing. This supports the
claim that the robotics domain requires both formal and informal verification
processes [19]. E.g., everything depends on the accuracy of the rover’s current
position - a property that we could not formally verify in this case. However, by
formalizing the requirements to be verified via testing, we can potentially incor-
porate run-time analysis. Specifically, the formalized properties can be used to
generate formal run-time monitors to help with fault management during oper-
ation. These might help to create recovery barriers in the bow-tie diagrams. In
this way, we could include the development of fault management at design time.

Integrating the verification results from the different formal methods in an
assurance case required intensive cooperation between the assurance and formal
methods experts. The effort required identifying dependencies between differ-
ent tools, understanding the techniques and the tool implementations, implicit
assumptions on which analyses were ran and results interpreted. The activity
was greatly performed ad hoc. A more systematic approach to gathering the
assurance information from formal methods applications would be beneficial.

Approaches to integrating formal methods often rely on bespoke transla-
tions between languages/tools. However, these translations can be difficult and
sometimes impossible to correctly formalize/implement. Further, if used in an
assurance case then the translations themselves must be assured, as for our trans-
lation from fret to cocosim [5]. Although the use of tightly integrated formal
methods is desirable, our approach, using an assurance case as the point of inte-
gration, incorporates tools for which such systematic translations do not exist by
providing arguments demonstrating how to link models in distinct formalizms.

The case study helped us to identify limitations in the used tools (Ad-
voCATE, fret, cocosim and Event-B) for robotics applications. In fact, it
prompted an update to cocosim to incorporate abstract unimplemented com-
ponents. Specifically, cocosim now generates Lustre code for these components
using the imported keyword when no implementation is available. Other limita-
tions include the lack of fret support for abstract data types which caused us
to manually edit the fret-generated cocosim contracts. There were some dif-
ficulties when attempting to automatically import verification artifacts directly
from the tools into AdvoCATE which caused us to insert some details manually.
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Although our methodology (Fig. 1) uses specific tools, we believe that this
approach can be followed irrespective of the choice of specific tools. In particular,
the phases at the base of Fig. 1 relate to existing development guidelines [26].

6 Related Work

Heterogeneous verification techniques were used to verify an autonomous Mars
Curiosity rover simulation [8]. This work uses distinct verification methods for
specific components but does explicitly link the verification artifacts produced.
Recent work proposes first-order logic to unify heterogeneous formal methods
via a compositional approach but this work currently lacks tool support [7].

Other approaches to compositional verification include AGREE [37] and
OCRA [11]. We explored these as potential alternatives to cocosim in this work
but neither offered the level of expressivity that we sought. They also did not
accommodate for the use of distinct verification techniques at component-level.

Developers should choose the most appropriate formal method on a per-
component basis based on the suitability of the formal method and the user’s
level of expertise. As such, there are many alternatives to Event-B and Kind2,
including Gwendolen [17], TLA+ [43] and Dafny [28].

Isabelle/SACM [21, 24] extends the Isabelle proof assistant to support assur-
ance case development. In Isabelle/SACM, a UTP semantics must be defined
for each formal verification artifact that is to be included in the assurance case.

In this paper, we have illustrated the benefits of using various formal verifi-
cation techniques. Related to this, [10, 27, 31] demonstrate that a collaborative
approach to verification, encompassing static verification and testing, is advanta-
geous as it finds more errors and proves more properties than a single technique.

7 Conclusions and Future Work

This paper presented our methodology for integrating results from distinct for-
mal methods via the development of an assurance case. We applied this method-
ology in the design of an Inspection Rover system and used the AdvoCATE,
fret cocosim and Event-B tools. This is the first effort to integrate the four
aforementioned tools. We illustrated how the choice of verification methods can
impact system design and discussed how a heterogeneous set of verification re-
sults can be linked during assurance with AdvoCATE. Further, we made our case
study artifacts publicly available to fuel discussion in the research community.

This work has opened up a number of avenues for future research. In par-
ticular, we would like to support the definition of probabilistic requirements in
fret, since such requirements are increasingly used in complex robotic systems.
Additionally, we intend to develop a DSL to facilitate the integration of Advo-
CATE with different verification tools. Furthermore, we intend to explore the
definition of a ‘Taxonomy of Requirements’ and classify those in this case study.
This will help developers to design their system with verification in mind by
demonstrating how to classify requirements based on the ways that they will be
verified and argued in an assurance case early at design phase.
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