®

Check for
updates

Verifying and Validating Autonomous
Systems: Towards an Integrated
Approach

Angelo Ferrando', Louise A. Dennis?, Davide Ancona', Michael Fisher?,
and Viviana Mascardi' (=)

! Universita di Genova, Genova, Italy
{angelo.ferrando,davide.ancona,viviana.mascardi}@dibris.unige.it
2 Liverpool University, Liverpool, UK
{L.A.Dennis,MFisher}@liverpool.ac.uk

Abstract. When applying formal verification to a system that interacts
with the real world we must use a model of the environment. This model
represents an abstraction of the actual environment, but is necessarily
incomplete and hence presents an issue for system verification. If the
actual environment matches the model, then the verification is correct;
however, if the environment falls outside the abstraction captured by the
model, then we cannot guarantee that the system is well-behaved. A solu-
tion to this problem consists in exploiting the model of the environment
for statically verifying the system’s behaviour and, if the verification
succeeds, using it also for validating the model against the real environ-
ment via runtime verification. The paper discusses this approach and
demonstrates its feasibility by presenting its implementation on top of a
framework integrating the Agent Java PathFinder model checker. Trace
expressions are used to model the environment for both static formal
verification and runtime verification.

Keywords: Runtime verification - Model checking
Autonomous systems - Trace expressions - MCAPL

1 Introduction

Static formal verification of autonomous systems that interact with the real
world requires a model of the world to successfully accomplish the verification
process. In [23] we recommended using the simplest environment model, in which
any combination of the environmental predicates that correspond to possible
perceptions of the autonomous system is possible. Consider an intelligent cruise
control in an autonomous vehicle that can perceive the environmental predicates

Work supported by EPSRC as part of the Verifiable Autonomy research project
[EP/L024845] and the FAIR-SPACE [EP/R026092], ORCA [EP/R026173], and RAIN
[EP/R026084] Robotics and AI Hubs.

© Springer Nature Switzerland AG 2018

C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 263-281, 2018.
https://doi.org/10.1007/978-3-030-03769-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03769-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-03769-7_15

264 A. Ferrando et al.

safe, meaning it is safe to accelerate, at.speed.limit, meaning that the vehicle
reached its speed limit, driver_brakes and driver_accelerates, meaning that the
driver is braking/accelerating. In order to formally verify the behaviour of the
cruise control agent, we might randomly supply subsets of {safe, at_speed._limit,
driver_brakes, driver_accelerates }: the generation of each subset causes branching
in the state space exploration during verification so that, ultimately, all possible
combinations are explored.

This model is an unstructured abstraction of the world, as it makes no spe-
cific assumptions about the world behaviour and deals only with the possible
incoming perceptions that the system may react to. Unstructured abstractions
obviously lead to significant state space explosion. The state space explosion
problem can be addressed by making assumptions about the environment. For
instance, we might assume that a car can not both brake and accelerate at the
same time: subsets of environmental predicates containing both driver_brakes and
driver_accelerates should not be supplied to the agent during the static verifica-
tion stage, as they do not correspond to situations that we believe likely in
the actual environment. This structured abstraction of the world is grounded
on assumptions that help prune the possible perceptions and hence control
state space explosion. Structured abstractions have advantages over unstructured
ones, provided that the assumptions they rely on are correct. Let us suppose
that the cruise control system crashes if the driver is accelerating and braking
at the same time. If the subsets of environmental predicates generated to verify
it never contain both driver_brakes and driver_accelerates, then the static formal
verification succeeds but if one real driver, for whatever reason, operates both
the acceleration and brake pedals at the same time, the real system crashes!

In this paper, which extends our AAMAS’18 extended abstract [31], we pro-
pose an approach for exploiting the advantages of structured abstractions, while
mitigating their risks. Our proposal consists in modelling the structured abstrac-
tion in a formalism that can be used both for statically verifying the autonomous
system’s behaviour via model checking and for validating the model against the
real environment by means of runtime verification (RV). If performed during a
testing stage, RV of the actual environment against its structured abstraction
allows the developer to identify situations not foreseen in the initial assump-
tions. He/she can revise them, generate a new structured abstraction, re-verify
it via model checking, re-validate it via RV once again, reaching in the end
a “safe” abstraction. If RV takes place after system deployment and assump-
tion violations are detected, mechanisms for handing control to a human, a
failsafe system, or for performing ad hoc reasoning about the current system
safety should be invoked. To demonstrate the feasibility of the proposed app-
roach, we implemented it on top of the MCAPL framework developed by Dennis,
Fisher, et al. [21,24] (which provides a model-checker for rational agents) using
trace expressions developed by Ancona, Ferrando, Mascardi, et al. [3,10,11] as
the single formalism to generate both the environment model and the runtime
monitor. We choose trace expressions instead of more widely used formalisms
for model checking like Linear Temporal Logic (LTL [39]) because of their

Verifying and Validating Autonomous Systems 265

expressive power. In our previous work [10], we demonstrated that trace expres-
sions are able to express and verify sets of traces that are context-free. When
working in a RV scenario, trace expressions are more expressive than LTL. In
this paper we keep the presentation as simple as possible and do not stress the
potential of such expressive power. However, this power opens up interesting
scenarios discussed in the conclusions.

2 Related Work

The growing popularity of model checking in industry is due to the possibility of
transforming domain-specific input models familiar to the developers into “under
the hood models” invisible to them and amenable to model checking using exist-
ing techniques [36]. The idea behind this work is similar: we use trace expressions
as the front-end formalism suitable for modeling behaviour patterns in systems
made up of autonomous entities [4,5,30] and we transform them into under the
hood models suitable for both model checking and runtime verification (RV). The
main difference is that trace expressions are not domain-specific, and although
initially devised for modeling protocols in multiagent system (MASs), they have
been successfully adopted for specifying different kinds of behavioural patterns,
including interactions among objects in Java-like programs [7] and Internet of
Things applications developed with Node.js [12]. This is both a strength and
a weakness: a customised formalism for different domains would make it more
usable by domain experts, at the cost of some loss in generality.

“Enabling sufficiently precise yet tractable verification” with models —
be they explicit or under the hood — of the real environment is a main
issue [46]. Developing “safe” structured abstractions of the environment (also
named “environment models”) for model checking that are sufficiently precise to
enable effective reasoning yet not so over-restrictive that they mask faulty sys-
tem behaviours has been understood as a significant challenge since the early
2000s [38]. The Bandera Environment Generator [46] is a toolset that automates
the generation of environments to provide a restricted form of modular model
checking of Java programs. Although the addressed problem is the same as ours,
the approach is different. We do not automatically generate “safe by construc-
tion” trace expressions starting from observations of the environment. Rather,
we manually design and implement a trace expression encoding our assumptions
and validate it against the real environment to empirically show that it is“safe”.
Although our approach requires a more accurate design stage and more manual
work, it can be applied to any system and environment; the automatic genera-
tion of the environment model is instead inherently domain-dependent, and the
Bandera Environment Generator is in fact customized for model checking Java
programs. The approach of Dhaussy et al. [27] is closer to ours; the state space
explosion is mitigated with requirements relative to scenarios which are veri-
fied instead of the full environment. In that work the context — corresponding
to our structured abstraction — is modelled with the domain-specific Context
Description Language, CDL. The main difference is that CDL is less expressive

266 A. Ferrando et al.

than trace expressions (recursion and concatenation are not supported), and no
methodology for checking the CDL specification against the real environment is
discussed. In a similar way, in [25] Desai et al. present a framework to combine
model checking and runtime verification for robotic applications. They represent
the discrete model of their system using the P language [26], check the model
and extract the assumptions deriving from such abstraction. Despite sharing
the same purpose, our work is not committed to any specific case study and
trace expressions are more expressive than STL specifications [35] used in [25].
Besides CDL, hybrid automata [2,32] are another widely adopted formalism for
precise modelling of the real world. They do not solve the question of whether the
model accurately captures the environment, and although RV of cyber-physical
systems modelled with hybrid automata is a lively and promising research field
[37,45], we are not aware of proposals where the same hybrid automaton model
undergoes both a model checking and a RV process.

Investigation of model checking for MASs dates back to 1998 [13] and has
continued to generate much follow up work, for instance the Model Check-
ing Agent Programming Languages project which involves two authors of this
paper (http://cgi.csc.liviac.uk/MCAPL/, [15,24]), and works by Lomuscio and
Raimondi [34,41]. Approaches to MAS RV complement these and include the
proposals spun off from the SOCS project where the SCIFF computational logic
framework [1] is used to provide the semantics of social integrity constraints. To
model MAS interaction, expectation-based semantics specifies the links between
observed and expected events, providing a means to test run-time conformance
of an actual conversation with respect to a given interaction protocol [47]. Sim-
ilar work has been performed using commitments [18]. A more recent strand
is related to the exploitation of trace expressions for MAS RV and monitoring,
along with their ancestor formalism [6]. None of the contributions above tackles
the problem of recognising assumption violations in structured abstractions via
RV, for model checking autonomous systems immersed in a real environment.
This makes our proposal original in the panorama of model checking both “in
general” and, more specifically, for autonomous systems and MASs.

3 Background and Running Example

MCAPL: Model Checking BDI Agents. The belief-desire-intention (BDI)
model, originally proposed by Bratman [16] as a philosophical theory of the
practical reasoning, inspired both architectures [43] and programming languages
[14,40,44)] for agents. BDI languages are based on rational agency [42]. Beliefs
represent the agent’s (possibly incorrect) information about its environment,
desires represent the agent’s long-term goals, and intentions represent the goals
that the agent is actively pursuing. The MCAPL framework [21,24] supports
model checking of programs in BDI-style languages via the implementation of
interpreters for those languages in Java. The framework implements program
model-checking in which the actual program to be verified, not a model of
it, is checked, and contains the Agent Java PathFinder (AJPF) model checker

http://cgi.csc.liv.ac.uk/MCAPL/

Verifying and Validating Autonomous Systems 267

which customises the Java PathFinder (JPF) model checker for Java bytecodes
(https://babelfish.arc.nasa.gov/trac/jpf). We use the “Engineering Autonomous
Space Software” (EASS) variant of GWENDOLEN [20], a language developed for
programming agent-based autonomous systems and verifying them in AJPF.
EASS assumes an architecture in which the rational agents are partnered with
an abstraction engine that discretises continuous information from sensors in
an explicit fashion [19,22]. We adopt the methodology from [23] setting out the
formal verification of rational agent components in autonomous systems. This
uses model checking to demonstrate that the rational agent always tries to act in
line with requirements and never deliberately chooses options that lead to states
the agent believes to be unsafe.

Running Example: Autonomous Cruise Control. The (slightly simplified)
EASS code in Example 1 is for an agent implementing intelligent cruise control
in an autonomous vehicle. It uses standard syntactic conventions from BDI agent
languages: +!g indicates the addition of a goal, g; +b indicates the addition of
a belief, b; and —b indicates the removal of a belief. Plans follow the pattern
trigger : guard <« body;. The trigger is the addition of a goal or a belief
(beliefs may be acquired thanks to the operation of perception or as a result of
internal deliberation); the guard states conditions about the agent’s beliefs which
must be true before the plan can become active; and the body is a stack of deeds
the agent performs in order to execute the plan. These deeds typically involve the
addition or deletion of goals and beliefs, as well as actions (e.g. perf(accelerate),
meaning “perform the action of accelerating”) which indicate code delegated to
non-rational parts of the system.

According to the operational semantics of GWENDOLEN [20], the agent moves
through a reasoning cycle polling an external environment for perceptions; con-
verting these into beliefs and creating intentions from new beliefs; selecting an
intention for consideration; if the intention has no associated plan body, then
the agent seeks a plan that matches the trigger event and places the body of this
plan on the deed stack; the agent then processes the first deed, and places the
intention at the end of the intention queue before again performing perception.
As an intention may be suspended while it waits for some belief to become true,
we use xb to indicate a deed that suspends processing of an intention until b is
believed. Plan guards are evaluated using Prolog-style reasoning with reasoning
rules of the form h :— body and literals drawn from agent’s belief base. Negation
is indicated with ~ and its semantics is negation by failure as in Prolog. All of
this is part of the standard Gwendolen semantics.

Example 1 (Cruise Control Agent). When the car has an initial goal to be
at the speed limit, +! at_.speed.limit, it can accelerate if it believes it to be safe,
that there are mo incoming instructions from the human driver, and it does not
already believe it is accelerating or is at the speed limit — it does this by removing
any belief that it is braking, adding a belief that it is accelerating, performing
acceleration, then waiting until it no longer believes it is accelerating. If it does
not believe it is safe, believes the driver is accelerating or braking, or believes it

https://babelfish.arc.nasa.gov/trac/jpf

268 A. Ferrando et al.

is already accelerating, then it waits for the situation to change. If it believes it
is at the speed limit, it maintains its speed having achieved its goal (which will
be dropped automatically, having been achieved).

If new beliefs arrive from the environment that the car is at the speed limit, no
longer at the speed limit, no longer safe, or the driver has accelerated or braked,
then it reacts appropriately. Note that even if the driver is trying to accelerate,
the agent only does so if it is safe.

:Reasoning Rules: 1
can_accelerate :— safe, ~ driver_accelerates, ~ driver_brakes; @
3

:Initial Goals: 4
at_speed_limit 5
6

:Plans: 7
+! at_speed_limit: {can_accelerate, "accelerating, “at_speed.lim} 8
«— —braking, +accelerating, perf(accelerate), = accelerating; 9

+! at_speed_limit: {"safe} — xsafe; 10
+! at_speed_limit: {driver_accelerates} «— x"driver_accelerates; 11
+! at_speed._limit: {driver_brakes} «— x"driver_brakes; 12
+! at_speed_limit: {accelerating} <« x"accelerating; 13
+at_speed._lim: {can_accelerate, at_speed._lim} 14
«— —accelerating, —braking, perf(maintain_speed); 15
—at_speed_lim: {"at_speed_lim} — +! at_speed_limit; 16
—safe: {"driver_brakes, “safe, “braking} < —accelerating, +braking, 17
perf(brake); 18
+driver_accelerates: {safe, “driver_brakes, driver_accelerates, “accelerating} 19
«— +accelerating, —braking, perf(accelerate); 20
+driver_brakes: {driver_brakes, ~“braking} < +braking, —accelerating, 21
perf(brake); 22

The cruise control agent has to be connected to either a physical vehicle or
a simulation. Similar EASS agents have been connected to both detailed sim-
ulations of ground vehicles and physical vehicles [22,33]. Here we will consider
embedding the agent within a multi-lane, multi-vehicle motorway (highway) sim-
ulation. The agent is connected to the simulator via a thin Java environment
that communicates using sockets. The environment reads simulated speeds of
the vehicles from the socket and publishes values for acceleration to the socket.
The information from sensors is then passed on to an abstraction engine that
converts it to discrete representations, shared with the rational agent as logical
predicates. The rational agent accesses these shared beliefs as perceptions. Previ-
ously, the model of the combined behaviour of simulator, thin Java environment,
and abstraction engine used for verification was unstructured: all the possible
combinations of the shared beliefs were explored. This is where our proposal for
modeling structured abstractions as trace expressions and validating them via
RV, as well as using them for model checking, comes into play.

Trace Expressions. Trace expressions are a specification formalism specifically
designed for RV and constrain the ways in which a stream of events may occur.
An event trace over a fixed universe of events € is a (possibly infinite) sequence
of events from &. The juztaposition, eu, denotes the trace where e is the first
event, and u is the rest of the trace. A trace expression (over £) denotes a set of
event traces over €. More generally, trace expressions are built on top of event

Verifying and Validating Autonomous Systems 269

types (chosen from a set £T), rather than single events; an event type denotes
a subset of €. A trace expression, T, represents a set of possibly infinite event
traces, and is defined on top of the following operators:

— &, the set containing only the empty event trace.

— W7 (prefiz), denoting the set of all traces whose first event e matches the
event type ¥ (e € ¥), and the remaining part is a trace of 7.

— 7172 (concatenation), denoting the set of all traces obtained by concatenating
the traces of 71 with those of 7.

— T1AT9 (intersection), the intersection of traces 71 and 7o.

— 11 V1e (union), denoting the union of traces of 71 and 7o.

— 71|72 (shuffle), denoting the union of the sets obtained by shuffling each trace
of 71 with each trace of 75 (see [17] for a more precise definition).

— ¥>>7 (filter), denoting the set of all traces contained in 7, when “deprived”
of all events that do not match 9.

Trace expressions can be easily represented as Prolog terms. To support recursion
without introducing an explicit construct, trace expressions are regular (a.k.a.
rational or cyclic) terms which can be represented by a finite set of syntactic
equations, as happens in most modern Prolog implementations where unification
supports cyclic terms. The semantics of trace expressions is specified by the
transition relation 6 C T x & x T, where T denotes the sets of trace expressions.
As customary, we write 71 — 75 to mean (11,€,72) € ¢. If the trace expression 7
specifies the current valid state of the system, then an event e is valid iff there
exists a transition 7, — T9; in such a case, T specifies the next valid state of the
system after event e. Otherwise, the event e is not valid in 7y. The rules for the
transition functions are presented in [10]. A Prolog implementation exists which
allows a system’s developer to use trace expressions for RV by automatically
building a trace expression-driven monitor able to both observe events taking
place in the environment, and execute the ¢ transition rules. If the observed event
is allowed in the current state — which is represented by a trace expression itself
— it is consumed and the ¢ transition function generates a new trace expression
representing the updated current state. If, on observing an event, no ¢ transition
can be performed, the event is not allowed in the current state. In this situation
an error is “thrown” by the monitor. When a system terminates, if the trace
expression representing the current state can halt (formally meaning that it
contains the empty trace), the RV process ends successfully; otherwise an error
is again “thrown” since the system should not stop here.

AJPF Static Formal Verification. The EASS implementation provides a
Java class supporting the creation of abstract models. Unstructured abstractions
can be created by overriding in a subclass its method add_random_beliefs which is
called when the agent requests an action execution or sleeps. This method should
generate a set of beliefs and add them to the environment’s percept base which
the agent then polls. It is assumed this implementation will randomly generate
all possible sub-sets of the shared beliefs relevant to the agent. For static veri-
fication, therefore, we want to generate this subclass from our trace expression.

270 A. Ferrando et al.

In normal operation, EASS abstraction engines communicate with the agent-
based reasoning engine (the ‘agent’) by performing assert_belief and remove _belief
actions. These actions are implemented by Java environments which also connect
to sensors and simulators. There are four such actions: assert_belief (b) asserts
a shared belief for all agents and remove_belief(b) removes shared belief b from
all agents. assert_belief (a, b) and remove_belief(a, b) alter the available beliefs for
a specific agent a. For reasons of space we do not describe these further. Our
runtime monitor needs to observe these events. We are also interested in any
action performed by an agent, so our runtime monitor must also observe calls
to the executeAction method that all EASS environments implement.

4 Recognising Assumption Violations

In this section we discuss how trace expressions can be suitably adopted for
specifying structured abstractions of the real world for use in AJPF. The idea is
to generate both a suitable Java model for AJPF model checking and a runtime
monitor from the same trace expression. The monitor can detect if the real (or
simulated) environment violates the assumptions used during the static verifica-
tion. Figure1 gives an overview of this system. A trace expression 7 is used to
generate an abstract model in Java used to verify an agent in AJPF (the dotted
box on the right of the Figure). Once this verification is successfully completed,
the verified agent is used with an abstraction engine, a thin Java environment,
and the real world or external simulator. This is shown in the dotted box on the
left of the Figure. If, at any point, the monitor observes an inconsistent event,
then the abstraction used during verification was incorrect. Depending on the
development stage reached so far different measures will be possible, ranging
from refining the trace expression and re-executing the verification-validation
steps, to involving a human or a failsafe system in the loop.

Event Types for AJPF Environments. We have identified the assertion
and removal of shared beliefs and the performance of actions as the “events of
interest” in our Java environments. Our runtime monitor receives notification of
all actions in the environment as events. It is possible to flexibly create a number
of different event types (we remind that an event type is a set of events) on top of
this structure: bel(b) and not_bel(b) are singleton sets and model events involving
shared beliefs. They are defined as bel(b) = {assert_belief (b)} and not_bel(b) =
{remove_belief (b)}. We coalesce these as event set €, and define event types
action(any-action) where e € action(any_action) iff e & Ep; not_action where
e € not_action iff e € &; action(A) where e € action(A) iff e € &, and e = A.
Clearly, e € &, and e = A are mutually exclusive.

Representing Abstract Models in AJPF. Abstract models in AJPF can be
represented as automata. The automaton states can be divided into two parts:
initial beliefs and actions. Initial Beliefs represent all the shared beliefs that may
be asserted before the system starts executing. After an action is performed,
more shared beliefs may be asserted. In the unstructured abstractions used by

Verifying and Validating Autonomous Systems 271

Real Java
Environment Environment

perceptions

monitor Trace expression

perceptions

Execution

1 1

H 1

i ! {

Abstraction 'Reasoning | Abstract Environment

Engine i _Engine | {

i ' .

N | beliefs y

o]

is valid? ! :
! 1

1 actions E

i 1

H 1
lzsssscsssssssssssssssssssccssadgsrsscsssssssssqesccsses I .
i

i

i

Model Checking
yes/no/ ______________________________

Fig. 1. General view.

the “standard” AJPF system the initial beliefs, and the beliefs after each action,
were generated at random. Any structured abstraction will be one that places
constraints upon the possible transitions in the automaton.

Representing Abstract Models as Trace Expressions. We represent an
abstract model of the real world as a set of possibly cyclic trace expressions
modelled in Prolog. The basic structure of the Prolog code is given in Fig. 2. We
abuse regular expression syntax: as parentheses are used for grouping in trace
expressions, we adopt [and | to represent groupings within a regular expression;
similarly, since | is a trace expression operator, we use || to indicate alterna-
tives within the regular expression. Here, e? indicates zero or one occurrences
of the element e. As we use Prolog, variables are represented by terms start-
ing with an upper case letter (e.g., Action;) and constants are represented by

n
terms starting with a lower case letter (e.g., b;, action;). ‘ indicates one or
i=1

more trace expressions composed via the trace expression shuffle operator, |.
Similarly, \/?:1 composes expressions using V and /\?:1 composes expressions
using A. Variables with the same name will be unified. Occurrences of Pre in (1)
and (2) are intended to unify, and the variable names used in these positions in
any instantiation of this template should be the same. Pre is needed to model
(optional) constraints on the beliefs that can be observed before the first action
takes place, and the trace expression cycle (Cyclic) starts.

272 A. Ferrando et al.

Protocol = Pre-(Cyclic [A Constrs]?) (1)
Pre = ‘n bel(b;):€] || [not_action : PreVe| (2)

i=1
Cyclic = SingleStep-Cyclic (3)
SingleStep = \/ Action;-AddBelFEv (4)

i=1

AddBelEv = not_action : AddBelEvVe (5)
Action; = action(action;): ProtocolBel (6)
ProtocolBel = | (bel(b):eVnot_bel(b;):eVe) (7)

Fig. 2. Trace expression template for generating abstract environments. Indexes k, n,
m are not bound: they will be replaced by actual numbers when the template will be
instantiated.

The template in Fig. 2 represents an unstructured abstraction in which any
subset of the beliefs, b; in (7) can occur after an action. Protocol (1) is the main
body of our trace expression. Pre (2) represents all events that can be generated
before the first action of an agent. C'yclic (3) is the trace expression that describes
the behaviour once the agent starts performing actions. SingleStep (4) repre-
sents a single action step. It is the union of the trace expressions that describe
the possible results of each action the agent may take followed by AddBelEv
which describes additional belief events after the immediate results of the action
— for instance if the agent sleeps and other agents are acting. Action (6) con-
sists of an action event followed by ProtocolBel (7) which describes the possible
belief events. Any given belief, b; may appear in the shared belief base (bel(b;)),
disappear (not_bel(b;)) or its status may be unchanged (e).

Figure 2 contains an optional variable C'onstrs. If present this provides con-
straints that structure the abstraction. The template for constraints is shown
in Fig.3. Constrs consists of an intersection of trace expressions of the form
Filter EventType;>>C7. It appears at the top level of the trace expression in an
intersection (A) with the repeating Cyclic step. This allows us to put constraints
on belief events without considering at which action step they occur. In this way,

Constrs = /0\ Filter BventType;>[C; || C7] (8)
Cj = ((Bj1:e) V (NBj2:€))-Cj) V (NBj1 : CF) ()
C7 = ((NBja:€) V (NBj2:€))-C) V

(Bj:Cj) V (Bj2:C5) (10)
= ((Bj2:¢) V (NBj1:¢))-C}) V (NBj2 : CF) (11)

Fig. 3. Trace expressions for Constrs: Bj,; must be the “opposite operation” of NB; ;.

Verifying and Validating Autonomous Systems 273

each time a constrained belief event is observed in a SingleStep, we can keep
track of the fact. B;; and NB;; are event types, and they must meet the con-
dition (not modeled in Fig. 3) that if B;; = bel(b; ;) then NB; ; = not_bel(b; ;)
and vice versa. Filter EventType; is an event type which denotes only the events
involved in C7. Its purpose is to filter out any events that are not constrained
by C¥, and matches bel(b;, 1), not bel(b; 1),bel(b; 2) and not_bel(b; 2). It ensures
that the trace expression can move to the next state without getting stuck.
Each constraint represents a pairwise relationship between two belief events.
These are captured by the three trace expressions in (9), (10) and (11) which
describe the evolving behaviour of the four belief events of interest where B; ;
is either the assertion or removal of b;; and NB;; is its converse. The three
equations capture the constraint that if Bj; has occurred then Bj, can not
occur until after NB; ; has been observed and vice versa. The constraint either
starts in the state described by C} or CJ2 depending upon whether only one of
the constrained belief events is possible in the initial state (C}) or both are (C7).

Abstract Model Generation. Once we have created a trace expression, we
translate it into Java by implementing add_random_beliefs. We omit the involved
low level details (e.g., constructing appropriate class and package names) but
just focus on the core aspects'. OQur trace expression is defined according to the
template in Figs. 2 and 3. Many parts of these trace expressions are not directly
translated into Java; the sub-expressions relevant to the generation of abstract
models are Pre (2), SingleStep (4) and Constrs (8). Note that the MCAPL
framework provides support for constructing logical predicates and adding them
to the belief base.

If Pre specifies particular initial beliefs then the subclass adds these to the
agent’s belief base at the start. SingleStep contains a union of trace expres-
sions of the form Action = action(action_name): ProtocolBel. ProtocolBel = |¥_;
(bel(b;) V not_bel(b;)Ve) defines the set of belief events that may occur. We define
the set B(ProtocolBel) as b; € B(ProtocolBel) iff (bel(b;)Vnot_bel(b;)Ve) is one
of the interleaved trace expressions in ProtocolBel. For each b; € B(ProtocolBel)
we define a predicate in the environment class and bind it to a Java field called
b;. Constrs constrains events by specifying mutual exclusion between some cou-
ples of them. For each Action trace expression we generate a corresponding if
statement inside the add_random_beliefs method.

if (act.getFunctor (). equals("action-name")) { translation(ProtocolBel, Constrs) } 1

We construct a set of mutually exclusive belief events, M, (Constrs), from
Constrs where (Bj 1, B 2) € My (Constrs) ift Filter EventType;>>Constraint;
is one of the conjuncts of Constrs and Cj = (((Bj,1:¢)V(NBj2:€))-C})V(NB;y 1 :
0]2) and Of = (((Bj7216) \Y (NBJ716))C?) V (NB]‘72 : CJQ)

! Full source code can be found in the MCAPL distribution: mcapl.sourceforge.net.
Code for the examples is also available from the University of Liverpool together with
experimental data — DOI: https://doi.org/10.17638/datacat.liverpool.ac.uk/438.

http://mcapl.sourceforge.net/
https://doi.org/10.17638/datacat.liverpool.ac.uk/438

274 A. Ferrando et al.
The set of possible sets of belief events for our structured environment is:

PB(ProtocolBel, Constrs) = {S | (Vb; € B(ProtocolBel). bel(b;) € SV not_bel(b;) € S)
A(Y(B1, B2) € My (Constrs). By € § < By ¢ S)} (12)

Say that PB(ProtocolBel, Constrs) contains k sets of belief events, S;, 0 <
J < k. We generate translation(ProtocolBel, Constrs), as follows:

int assert.random_.int = random_int_generator(k); 1

where random_int_generator is a special method that generates random integers in
a way that optimises the model checking in AJPF. For each S; we generate

if (assert.random_int == j) { add_percepts(S;) } 1

Here add_percepts(S;) adds b; to the percept base for each bel(b;) € S;. We do
not need to handle the belief removal events, not_bel(b;) € S;, because AJPF
automatically removes all percepts before calling add_random_beliefs.

5 Case Study and Experiments

Figures4 and 5 show the trace expression modeling the cruise control agent
from Example 1. Pre is reused for AddBel Env since, in this case, they are the
same trace expression. SingleStep contains only one branch which matches any
action. ProtocolBel specifies that the possible belief events are the assertion and
removal of safe, at_speed_lim, driver_accelerates and driver_brakes.

We have two constraints. Firstly we assume that the driver never brakes
and accelerates at the same time. This establishes a mutual exclusion

Protocol = Pre-(Cyclic A Constrs) (13)
Pre = ((not_action:Pre) V €) (14)
Cyclic = SingleStep-Cyclic (15)
SingleStep = action(any_action):(Protocol Bel-Pre) (16)
Safe = ((bel(safe):€) V (not_bel(safe):€) V e) (17)
AtSpeedLimit = ((bel(at_speed_lim):€) V

(not_bel(at_speed_lim):€) V €) (18)

Accel = ((bel(driver_accelerates):€) V
(not_bel(driver_accelerates):€) V €) (19)

Brakes = ((bel(driver_brakes):e) V

(not_bel(driver _brakes):€) V €) (20)
Protocol Bel = (Safe| AtSpeedLimit| Accel| Brakes) (21)

Fig. 4. Trace expression for a Cruise Control Agent.

Verifying and Validating Autonomous Systems 275

Constrs = (brake_or_accelerate>> BrakeOrAccelerate) N

(accelerates_or_safe>>CanBeUnsafe) (22)
CanBeUnsafe = (bel(safe): AccelOrUnsafe) V (((not_bel(safe):€) V
(not_bel(driver_accelerates):€))- CanBeUnsafe) (23)

AccelOrUnsafe = (bel(driver_accelerates):CanAccel) V
(((not_-bel(driver_acclerates):€) V (bel(safe):e))-
AccelOrUnsafe) V (not_bel(safe): CanBeUnsafe) (24)
CanAccel = (not_bel(driver_accelerates): AccelOrUnsafe) V
(((bel(safe):€) V(bel(driver_accelerates):€))-CanAccel) (25)
BrakeOrAccelerate = (bel(driver_accelerates): AccelOnly) V
(((not_bel(driver_accelerates):€) V
(not_bel(driver_brakes):c))- V
BrakeOr Accelerate)(bel(driver _brakes): BrakeOnly) (26)
AccelOnly = (not_bel(driver_accelerates): BrakeOr Accelerate) V
(((bel(driver_accelerates):€) V (not_bel(driver_brakes):e))-
AccelOnly) (27)
BrakeOnly = (not_bel(driver_brakes):BrakeOr Accelerate) V
(((bel(driver_brakes):€) V (not_bel(driver_accelerates):e))-
BrakeOnly) (28)

Fig. 5. Trace expression for the Constraints on a Car where the driver only accelerates
when it is safe to do so, and never uses both brake and acceleration pedal together.

between bel(driver_accelerates) and bel(driver_brakes). Initially either belief
may appear. Secondly, we assume the driver only accelerates if it is safe to
do so. This establishes a mutual exclusion between bel(driver_accelerates)
and not_bel(safe). Initially we are in the state were we cannot observe
bel(driver_accelerates). brake_or_accelerate and accelerates_or_safe are event
types that match the relevant events for each constraint.

MCAPL Runtime Verification. Since the MCAPL framework is imple-
mented in Java, its integration with the trace expressions runtime verification
engine or “monitor” (namely, the Prolog engine that “executes” the § transitions)
was easy using the JPL interface, http://jpl7.org, between Java and Prolog. In
order to verify a trace expression 7 modelled in Prolog, we supply the run-
time verification engine with Prolog representations of the events taking place
in the environment. These are easily obtained from the abstraction engine and
the Java environment that links to sensors and actuators. The Java environment
reports instances of assert_shared_belief, remove_shared_belief and executeAction to
the runtime verification engine which checks if the event is compliant with the
current state of the modelled environment and reports any violations that occur
during execution. AJPF’s property specification language uses LTL extended
with modalities for BDI concepts such as beliefs (B(a,b) is interpreted as

http://jpl7.org

276 A. Ferrando et al.

meaning agent a believes b). In this language [J means “it is always the case”
and { means*“it is eventually the case”.

We carried out experiments using the agent discussed in Example 1. When
model checked using a typical hand-constructed unstructured abstraction, veri-
fication takes 4,906 states and 32:17 min to verify that it is always the case that
eventually the car believes it is safe or that it is in the process of braking:

O(B(car, safe) — O(O(B(car, safe) V B(car, braking)))) (P1)

The condition B(car, safe) — at the start of the formula considers the pos-
sibility that the car never believes it is safe since braking is only triggered when
the safe belief is removed. Obviously we would prefer a system in which the car
is forced to start in a safe state but this would have complicated our example
and discussion. To test our approach, we first used the trace expression in Fig. 4
with the omission of Constrs: this trace expression is equivalent to an unstruc-
tured abstraction, i.e., one where the percepts safe, at_speed._lim, driver_brakes,
and driver_accelerates could all either be true or false at any moment. Verify-
ing (P1) in an abstract model generated from this trace expression took 4,906
states and 30:37 min: the behaviour was exactly the same as that for the unstruc-
tured model that had been created manually, and this helped validate that trace
expressions following the template in Fig. 2 without constraints create unstruc-
tured abstractions that behave the same way as hand crafted ones.

We then investigated the effect of structuring the model using the trace
expression in Fig. 5, which adds constraints to that in Fig. 4. With this abstrac-
tion (P1) takes 8:22min to prove using 1,677 states — this has more than halved
the time and the state space.

To illustrate how we cope with the risk that a structured abstraction may
not reflect reality, we consider a version of the cruise control agent with slight
variations. It is widely considered important that an autonomous vehicle should
not be able to override the actions of a driver. In our previous example the vehicle
violates this rule — it would only let the driver accelerate if it was safe to do so,
and it would brake whenever it detected unsafe conditions even if the driver
was currently trying to accelerate. We adapted the program, removing these
restrictions. This modified program could not be verified in the unstructured
model because our property is not actually true in that model — if the driver
continually accelerates in an unsafe situation then the car can never brake.
However, it is true in the structured model which assumes that the driver never
accelerates if the situation is unsafe. When we run this program in our simulator
it is indeed possible to cause a crash by accelerating in unsafe conditions. This
is where the runtime verification engine fits in. The engine logs an exception
at the moment when the unsafe acceleration takes place. It generates the error
message shown below and also shows the current state of the trace expression,
which is the equivalent of (23) in Fig. 5.

Verifying and Validating Autonomous Systems 277

#%% DYNAMIC TYPE-CHECKING ERROR s
Message event(abstraction_car0, assert.shared(driver_accelerates))
cannot be accepted in the current state

S_8=(bel(safe):S.6)\/((not_bel(safe):epsilon)\/
(not_bel(driver_accelerates): epsilon))*S_8])

This identifies the system as now being in an unverified state, as this acceleration
has violated the trace expression. The example shows how we have addressed
the development of a principled mechanism for creating structured abstractions
in a way that allows us to provide at least some guarantee of the validity of our
results.

6 Conclusions and Future Work

In this paper, we have shown how trace expressions can be used as a unifying
formalism to generate both a structured abstraction for model checking and a
runtime monitor, providing a route for guarantees of the behaviour of a sys-
tem that has been verified against an abstract model of the real world. Their
expressive power would pave the way to addressing challenging scenarios where:

1. the behaviour of the system is modeled with a trace expression 7 without
expressive power limitations (for example, an expression representing the set
of all a™b™ traces, for any n € N; this set of traces cannot be modeled in LTL)
to allow specifications of complex environments;

2. T is over-approximated by a Java model as shown in [28];

3. the model checking stage is performed using the generated over-
approximating Java model;

4. the runtime verification stage uses 7, with all its expressive power; empirical
results show that in most cases verifying whether a trace belongs to the
language defined by a trace expression is linear in the length of the trace: this
means that — even when the highest modeling expressiveness of the formalism
is exploited — performances of RV remain acceptable.

In the future, we aim to provide arguments (ideally proofs) that the behaviour
of the abstract environments generated by the system genuinely expresses the
behaviour specified by the trace expressions, also in case of noise and uncertain-
ties in the formation of beliefs. We recently started working on partial observabil-
ity of events [8], which is related to noise and uncertainty, and we plan to adapt
and integrate the achieved results in the Verification and Validation framework
presented in this paper. We also point out that discovering a violation does
not necessarily mean that the system is in danger: for example, braking and
accelerating at the same time — although tagged as a violation during the RV
stage — might not cause the system to crash. Although discriminating between
safety-critical violations and acceptable ones was out of the scope of this paper,
it is a significant issues and deserves further exploration. We will also explore
how to express a greater range of constraints in these models — for instance, the

278 A. Ferrando et al.

constraint that some belief can only occur after some action is taken (e.g., that
a car can only reach the speed limit after an acceleration has been performed).

From the practical side, we are currently designing a user friendly language
for specifying trace expressions, as the current formalism is not easy to read
and write for a human, and we will extend RIVERtools [9,29] to support the
simplified notation. We also plan to apply our approach to a real case study. The
scenario we have in mind is a cyberphysical system which must demonstrate its
dependability in order to be acceptable to society and be trusted by its users. As
an example, in a remote patient monitoring system where the program integrates
sensory input, formal guarantees should be provided that the system respects
given medical guidelines (model checking stage), and a RV stage looking at
sensors perceptions should monitor that those guidelines are continuously met.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF abductive
proof-procedure. In: Proceedings of the 9th Congress of the Italian Association for
Artificial Intelligence, AT*TA 2005, pp. 135-147 (2005)

2. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. IEEE 88(7), 971-984 (2000)

3. Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In: Proceedings of the
28th Annual ACM Symposium on Applied Computing, SAC 2013, pp. 1377-1379
(2013)

4. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as first class
entities for self-adaptive agents. In: Proceedings of the 2015 International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 1019-
1029 (2015)

5. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Runtime verification of fail-
uncontrolled and ambient intelligence systems: a uniform approach. Intelligenza
Artificiale 9(2), 131-148 (2015)

6. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol.
7784, pp. 76-95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37890-4.5

7. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Parametric trace expres-
sions for runtime verification of Java-like programs. In: Proceedings of the 19th
Workshop on Formal Techniques for Java-like Programs, FTFJP 2017 (2017)

8. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Coping with bad agent
interaction protocols when monitoring partially observable multiagent systems. In:
Demazeau, Y., An, B., Bajo, J., Ferndndez-Caballero, A. (eds.) PAAMS 2018.
LNCS (LNAI), vol. 10978, pp. 59-71. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94580-4_5

9. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Managing Bad AIPs with
RIVERtools. In: Demazeau, Y., An, B., Bajo, J., Ferndndez-Caballero, A. (eds.)
PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 296-300. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94580-4_24

https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-319-94580-4_5
https://doi.org/10.1007/978-3-319-94580-4_5
https://doi.org/10.1007/978-3-319-94580-4_24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Verifying and Validating Autonomous Systems 279

Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear
temporal logic for runtime verification. In: Theory and Practice of Formal Methods:
Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday (2016)
Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime verification of multia-
gent systems. In: Proceedings of the 2017 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2017, pp. 1457-1459. ACM (2017)
Ancona, D., Franceschini, L., Delzanno, G., Leotta, M., Ribaudo, M., Ricca, F.:
Towards runtime monitoring of Node.js and its application to the Internet of
Things. In: Proceedings of the 1st workshop on Architectures, Languages and
Paradigms for IoT, ALP4IoT@iFM. EPTCS, vol. 264, pp. 27-42 (2017)
Benerecetti, M., Giunchiglia, F., Serafini, L.: Model checking multiagent systems.
J. Log. Comput. 8(3), 401-423 (1998)

Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. Wiley (2007)

Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Auton. Agents Multi-Agent Syst. 12(2), 239-256 (2006)
Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions
with shuffle. Inf. Comput. 259(2), 162-173 (2018)

Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the
reactive event calculus. In: Proceedings of the 21st International Joint Conference
on Artifical Intelligence, IJCAI 2009, pp. 91-96 (2009)

Dennis, L.A., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.M.: Declarative abstrac-
tions for agent based hybrid control systems. In: Proceedings 8th International
Workshop on Declarative Agent Languages and Technologies (DALT), pp. 96-111
(2010)

Dennis, L.A.: Gwendolen semantics: 2017. Technical report ULCS-17-001, Univer-
sity of Liverpool, Department of Computer Science (2017)

Dennis, L.A.: The MCAPL framework including the agent infrastructure layer and
agent Java Pathfinder. J. Open Source Softw. 3(24) (2018). https://doi.org/10.
21105/j0ss.00617

Dennis, L.A., et al.: Agent-based autonomous systems and abstraction engines:
theory meets practice. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS
2016. LNCS (LNAI), vol. 9716, pp. 75-86. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40379-3_8

Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical verifica-
tion of decision-making in agent-based autonomous systems. Autom. Softw. Eng.,
1-55 (2014)

Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5-63 (2012)

Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime ver-
ification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 172-189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2_11

Desai, A., Gupta, V., Jackson, E.K., Qadeer, S., Rajamani, S.K., Zufferey, D.: P:
safe asynchronous event-driven programming. In: Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation 2013,
PLDI 2013, pp. 321-332. ACM (2013)

https://doi.org/10.21105/joss.00617
https://doi.org/10.21105/joss.00617
https://doi.org/10.1007/978-3-319-40379-3_8
https://doi.org/10.1007/978-3-319-40379-3_8
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11

280

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

A. Ferrando et al.

Dhaussy, P., Roger, J., Boniol, F.: Reducing state explosion with context modeling
for model-checking. In: Proceedings of the 13th IEEE International Symposium on
High-Assurance Systems Engineering, HASE 2011, pp. 130-137 (2011)

Ferrando, A.: The early bird catches the worm: first verify, then monitor! (2016).
presented at Vortex’16. Downloadable from http://trace2buchi.altervista.org/wp-
content/uploads/2017/10/paper.pdf

Ferrando, A.: RIVERtools: an IDE for RuntIme VERification of MASs, and
beyond. In: PRIMA Demo Track 2017. CEUR, Vol. 2056 (2017)

Ferrando, A., Ancona, D., Mascardi, V.: Monitoring patients with hypoglycemia
using self-adaptive protocol-driven agents: a case study. In: Proceedings of Engi-
neering Multi-Agent Systems - 4th International Workshop, EMAS, pp. 39-58
(2016)

Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Recognising
assumption violations in autonomous systems verification. In: Proceedings of the
2018 International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2018 (2018)

Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 278-292
(1996)

Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification
of autonomous vehicle platooning. Sci. Comput. Program. 148, 88-106 (2017).
Special issue on Automated Verification of Critical Systems (AVoCS 2015)
Lomuscio, A., Raimondi, F.: MCMAS: a model checker for multi-agent systems. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450—454.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691372_31

Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152-166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3-12

van der Merwe, H., van der Merwe, B., Visser, W.: Verifying android applications
using Java PathFinder. ACM SIGSOFT Softw. Eng. Notes 37(6), 1-5 (2012)
Nguyen, L.V., Schilling, C., Bogomolov, S., Johnson, T.T.: Runtime verification
for hybrid analysis tools. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 281-286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3_19

Penix, J., Visser, W., Engstrom, E., Larson, A., Weininger, N.: Verification of time
partitioning in the DEOS scheduler kernel. In: Proceedings of the 22nd Interna-
tional Conference on Software Engineering, pp. 488-497 (2000)

Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, pp. 46-57. IEEE
Computer Society, Washington, DC (1977)

Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent
Programming: Languages, Platforms and Applications, Multiagent Systems, Artifi-
cial Societies, and Simulated Organizations, vol. 15, pp. 149-174. Springer, Boston
(2005). https://doi.org/10.1007/0-387-26350-0_6

Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by
model checking via ordered binary decision diagrams. J. Appl. Logic 5(2), 235—
251 (2007)

http://trace2buchi.altervista.org/wp-content/uploads/2017/10/paper.pdf
http://trace2buchi.altervista.org/wp-content/uploads/2017/10/paper.pdf
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-23820-3_19
https://doi.org/10.1007/978-3-319-23820-3_19
https://doi.org/10.1007/0-387-26350-0_6

42.

43.

44.

45.

46.

47.

Verifying and Validating Autonomous Systems 281

Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. In: Proceedings of
the 1st International Conference Multi-Agent Systems (ICMAS), San Francisco,
USA, pp. 312-319, June 1995

Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Proceed-
ings of the 2nd International Conference on Principles of Knowledge Representation
and Reasoning (KR&R), pp. 473-484 (1991)

Rao, A.: Agentspeak(L): BDI agents speak out in a logical computable language. In:
Agents Breaking Away: Proceedings of the 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW), pp. 42-55 (1996)
Sistla, A.P., Zefran, M., Feng, Y.: Runtime monitoring of stochastic cyber-physical
systems with hybrid state. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 276-293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29860-8_21

Tkachuk, O., Dwyer, M.B., Pasareanu, C.S.: Automated environment generation
for software model checking. In: Proceedings of the 18th IEEE International Con-
ference on Automated Software Engineering (ASE 2003), pp. 116-129 (2003)
Torroni, P., et al.: Modelling interactions via commitments and expectations. In:
Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Orga-
nizational Models. IGI Global (2009)

https://doi.org/10.1007/978-3-642-29860-8_21
https://doi.org/10.1007/978-3-642-29860-8_21

	Verifying and Validating Autonomous Systems: Towards an Integrated Approach
	1 Introduction
	2 Related Work
	3 Background and Running Example
	4 Recognising Assumption Violations
	5 Case Study and Experiments
	6 Conclusions and Future Work
	References

