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Abstract. In this paper we present an extension of Belief-Desire-Intention
agents which can adapt their performance in response to changes in
their environment. We consider situations in which the agent’s actions
no longer perform as anticipated. Our agents maintain explicit descrip-
tions of the expected behaviour of their actions, are able to track action
performance, learn new action descriptions and patch affected plans at
runtime. Our main contributions are the underlying theoretical mecha-
nisms for data collection about action performance, the synthesis of new
action descriptions from this data and the integration with plan recon-
figuration. The mechanisms are supported by a practical implementation
to validate the approach.
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1 Introduction

Long-term autonomy requires autonomous systems to adapt once their capa-
bilities no longer perform as expected. To achieve this, a system must first be
capable of detecting such changes and then adapting its internal reasoning pro-
cesses to accommodate these. For example, deploying an autonomous robot into
a dynamic environment can result in actions becoming unreliable over time, as
the environment changes, producing unexpected outcomes that were unforesee-
able before runtime. The autonomous agent must be capable of observing these
changes and adapting accordingly.

Cognitive agents [6, 29, 35] have explicit reasons for the choices they make.
These are often described in terms of the agent’s beliefs and goals, which in turn
determine the agent’s intentions. This view of cognitive agents is encapsulated
within the Belief-Desire-Intention (BDI) model [28, 29]. Here, beliefs represent
the agent’s (possibly incomplete, possibly incorrect) information about itself,
other agents, and its environment, desires represent the agent’s long-term goals,
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while intentions represent the goals that the agent is actively pursuing (the
representation of intentions often includes partially instantiated and/or executed
plans and so combines the goal with its intended means).

Our work focuses on cognitive agents programmed in a Belief-Desire-Intention
(BDI) [30] programming language providing high-level decision making in an au-
tonomous system, as outlined in [15]. Programs written in these languages use
plans created in advance by a programmer to select actions to execute in the
environment. These plans make implicit assumptions about the behaviour of the
actions they execute. Therefore, in this context, the challenge becomes to make
these assumptions explicit, detect when they no longer hold, and then modify
the plans accordingly. Most agent programming languages commonly used for
high-level control of autonomous robots, do not support the adaptation of agent
programs at runtime to deal with changes in their environment.

Some of these languages use action descriptions (sometimes referred to as
capabilities in the literature), which consist of explicit pre- and post-conditions
for all known actions. An action’s pre-conditions are the environment conditions
which should hold if an action is to execute correctly, whilst post-conditions are
the expected changes in the environment made as a direct result of the completed
action. We assume the existence of these action descriptions. We also assume that
the cognitive agent is able to determine: when an action has finished executing;
and whether it has met its post-conditions when it does so. These assumptions
allow the system to maintain logs of action performance which can then be
mined to detect patterns of failure. Although not all BDI systems can represent
action descriptions, some do, and so mechanisms and semantics used for such
functionality are discussed in [23, 12, 33].

Once a failure pattern is detected, we use synthesis methods to update its
action description to reflect its actual behaviour. We can then repair or replace
actions in any existing plans by using an automated planner to construct patches.

Running Example Consider an agent navigating around a space to visit some set
of waypoints (where, for instance, it needs to perform some kind of inspection
tasks). Examples of this kind are common (see [27, 19]). We assume the agent
has a predetermined route to traverse the waypoints — for instance that the
robot should visit waypoint 0, then 1, then 2, then 3 before returning to 0. It
also has actions that encode movement between waypoints (e.g., move(0, 1)
moves the robot from point 0 to point 1). As well as the specific actions needed
for the predetermined route, the agent is also aware that it can move between
the other waypoints (for instance that it can move from point 0, directly to point
3, move(0, 3) and from point 3 to point 1, move(3, 1)). If, over time, the route
between points 0 and 1 becomes obstructed, we would like the robot to reason
that it can replace the instruction to move from 0 to 1 directly, in its plan, with
an instruction to move from 0 to 3, and then from 3 to 1.

Our contribution, in this work, is a methodology to detect faulty actions,
modify their descriptions and reconfigure BDI plans based on these new de-
scriptions, enabling long term autonomy. Our work applies in general to BDI
programming languages which allow action descriptions. We have implemented
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the methodology in the Gwendolen programming language as a prototype to
exemplify the approach.

2 Background and Related Work

Gwendolen is a BDI programming language that contains a number of features
for integrating with autonomous and robotic systems. One of its main distinctive
features is that Gwendolen agents can be verified using a program model-
checker, Agent Java Pathfinder (AJPF) [16]. A full operational semantics for
Gwendolen is presented in [13]. Its key components are, for each agent, a
set of beliefs that are ground first-order formulae and a set of intentions that
are stacks of deeds associated with some event. Deeds can be the addition or
deletion of beliefs, the adoption of new goals, and the execution of primitive
actions. A Gwendolen agent may have several concurrent intentions and will,
by default, execute the first deed on each intention stack in turn. Gwendolen
is event-driven and events include the acquisition of new beliefs (typically via
perception), messages and goals. A programmer supplies plans that describe
how an agent should react to events by extending the deed stack of the relevant
intention. These plans contain actions for execution.

Plans are of the form event : guard <- deeds, where the event is the ad-
dition or deletion of a belief or goal, the guard is a term that is evaluated against
the agent’s belief set and the deeds are transformed into an intention stack if
the event occurs and the guard evaluates to true.

If implemented in Gwendolen, our example of a robot travelling between
waypoints can be represented with the four plans shown in Figure 1. We use

+!at(1): {B at(0)} <- move(0, 1), +!at(2);
+!at(2): {B at(1)} <- move(1, 2), +!at(3);
+!at(3): {B at(2)} <- move(2, 3), +!at(0);
+!at(0): {B at(3)} <- move(3, 0), +!at(1);

Fig. 1. Four Gwendolen plans for a patrolling robot.

standard BDI syntax in which ! represents a goal and + denotes the addition of
this goal. The first of these plans states that if a new goal to be at waypoint 1
has been added (+!at(1)) and the agent currently believes it is at waypoint 0 (B
at(0)) then the agent should move to waypoint 1 (move(0, 1)) and adopt the
goal to be at waypoint 2 (+!at(2)) to continue its patrol route. For example, if
the robot starts at waypoint 0 and is sent a goal to reach waypoint 1, then these
four plans will keep the robot patrolling around all four waypoints autonomously.

While all BDI languages have individual features, they have many similari-
ties. In particular the use of plans (sometimes called rules) which have guards
controlling when they apply and then execute some sequence of actions, belief
updates and goal updates is common to many such languages (e.g., Jason [3]
and GOAL [23]).
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Some BDI languages also employ action descriptions (sometimes referred to
as capabilities) which have their roots in AI planning and STRIPS operators [18].

Definition 1 (Action Description). We assume a language L of first-order
terms. Action descriptions are a triple {Pre}A{Post} where A is a term in L
representing an action, {Pre} is a set of terms representing the action’s pre-
conditions and {Post} is a set of expressions of the form +t or −t (where t is a
term in L). Note: +t means that the term t should be added to the agent’s belief
base following execution of the action and −t means that the term t should be
removed from the agent’s belief base.

Returning to our example, the action description
{at(0)}move(0, 1){−at(0),+at(1)} can be associated with the agent ac-
tion move(0, 1). This has the pre-condition, {at(0)} (the agent is at waypoint
0), and post-conditions {−at(0),+at(1)} (the belief that the agent is at
waypoint 0 should be removed and the belief that the agent is at waypoint 1
should be added).

In many languages, actions descriptions are used both to control whether an
action is executed if it appears in a plan (by checking the action’s pre-conditions)
and to directly manipulate the agent’s belief base using the post-conditions with-
out using perception to check whether the action has completed successfully and
established these post-conditions. In some cases it is implicitly assumed that the
low-level action execution process checks post-conditions and so a success signal
is not sent to the agent unless the post-conditions have been achieved.

Action descriptions/capabilities exist in, among others, the GOAL [24] lan-
guage and 2APL [11]. A version of Gwendolen also exists that contains an
implementation of action descriptions [33].

Gwendolen does not use its action descriptions to control action execution
or to update its belief base. Instead it uses the descriptions to make inferences
about action success or failure by comparing the state of the world after an action
execution completes with the state of the world described in the post-conditions.
This allows the agent to react to action failure as well as, more generally, to plan
failure. Gwendolen also tracks the performance of actions over time in an
action log. An example of an action log using the move(0, 1) action is shown
in Figure 2. This shows a log with two entries. Each entry contains the action
name, a list of the difference in beliefs before and after the action executed, and
finally the outcome for that action once it terminated. The action in Figure 2
is a move action from waypoint 0 to waypoint 1. In the first entry, the action is
believed to have succeeded and the change in beliefs is shown as the addition of
the belief at(1) (at waypoint 1) and removal of the belief at(0) which matches
the expected post-conditions for that action. In the second entry, the change in
beliefs results in the agent believing that it is at waypoint 3, not at waypoint 1
as per the action description, producing a failure as the action outcome.

The action log has a fixed, application specific size, and the oldest entry
is removed before adding a new one, once the log reaches its size limit. The
presence of this action log opens up the possibility of implementing an action
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Action Change in Beliefs Action Outcome

move(0, 1) +at(1), -at(0) Success

move(0, 1) +at(3),-at(0) Failure

Fig. 2. Example of an action log with the move(0, 1) action for a Gwendolen agent.

lifecycle [34] inspired by the concept of goal life-cycles for BDI languages [22].
An action lifecycle allows actions which fail or are aborted to be moved into a
suspect state and finally become deprecated following repeated failures.

We’re not aware of any other BDI language that maintains an action log in
this way, but in principle, it should not be difficult to add this functionality to
any language that already supports action descriptions.

The automated planning research community has invested considerable ef-
fort in the modelling of actions with stochastic outcomes, both theoretically as
variants on Markov Decision Procedures [26, 36], and practically by capturing
such concepts in planners (e.g. [9]) and domain description languages such as
in the Planning Domain Definition Language (PDDL) 2.1 [20]. This community
deploys action descriptions to flexibly plan on-the-fly for each new goal which
avoids the problem faced in BDI languages that an action whose behaviour has
changed may result in failing, and therefore useless, plans. The use of a BDI lan-
guage, with its programmer supplied plans, presumes that bespoke planning for
every new goal is undesirable (usually for reasons of efficiency, but also for veri-
fiability). Our approach exploits AI planning techniques to patch the plans that
fail as a result of action failure, but seeks to minimize the amount of planning
that actually takes place.

Plan failure has been extensively researched in BDI programming languages
(e.g., [4, 31, 17]), however, it has not been linked with action descriptions perhaps
because most languages do not use action descriptions as a mechanism to detect
action failure. The closest work to our own is in [22] with a proposal for BDI
goal life-cycles.

A key component of our approach is synthesising or learning a new action
description when an action ceases to perform as expected. We presume this
arises because of the dynamic environment in which the agent is operating.
Using algorithms to discover the effects of actions has been explored in the AI
Planning domain [2]. Most of the resulting techniques operate in environments
where it is assumed multiple action descriptions need to be learned at the same
time and that the action descriptions themselves have not been changing during
the learning period. We have based our approach on ideas from [10] and [21] in
which new action descriptions are learned from traces of action behaviour with
a weighting mechanism used to guide choice of additions and deletions to the
constructed action post-condition.

After learning/synthesising a new (or updated) action description, it is nec-
essary to refactor the plans from the plan library. The process of updating plans
of execution based on a set of conditions (failure or new information) is often
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referred to as reconfigurability, and it has been frequently applied in the robotics
and manufacturing industry [8, 32, 5, 1]. A mechanism for plan library reconfig-
urability combining BDI agents and automated planning was presented in [7],
but it has no account for how failure is detected, and simply ignores the action
that caused the failure in subsequent reconfigurations. We leverage this work in
ours, if an action is deprecated by the action lifecycle, then any plans involving
that action are patched using the mechanism from [7].

To the best of our knowledge, there is no end-to-end framework in cognitive
agents for updating action descriptions and patching the associated plans such
as is presented here.

3 Framework

Our starting point is the system architecture outlined in [15] in which a cognitive
agent performs high-level mission reasoning, such as deciding in which order some
set of waypoints are to be visited. In order to do this, it takes input from sub-
systems for processing sensor data into high-level concepts such as the location
of obstacles, and outputs instructions (actions) to control systems such as those
for navigation and path planning. This is shown in Figure 3 together with the
action log component that tracks action performance.

Sensors and Sensor
Processing Systems

Cognitive Agent

Control Processes
such as Navigation
and Path Planning

Action Log

Fig. 3. System architecture overview.

Cognitive agents generally employ a reasoning cycle which governs a sense-
reason-act process. The action log integrates with the act phase and compares
the outcomes of executed actions to the post-conditions described in the action’s
description. If the post-conditions are successful, then a success is logged, and if
they are not a failure is logged. In all situations the action log also records the
changes in beliefs from the moment when the action was executed, to the moment
when it succeeded or failed. These changes are stored as a list of expressions of
the form +t or −t where t is a term — that is, in the same format as post-
conditions in action descriptions.

Figure 4 shows five entries in an action log. When a new entry is made by
an agent following an action execution, the size of the log is checked against the
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predefined size limit. If the size limit has been reached, then the oldest entry
is removed (from the top of the list in this example) before the new entry is
added to the bottom. In this case a single action success has been experienced
for the move(0, 1) action, followed by four failures. These failures might be
caused by, for instance, some obstacle appearing in the path between waypoints
0 and 1. Attempts by the agent to move around the obstacle, using low-level
obstacle avoidance techniques have led consistently to the agent finding itself at
waypoint 3, each time this action is executed in the route goal.

The agent is able to navigate the rest of the route in this example but finds
that the move(0, 1) action leads the agent to believe they have reached way-
point 3, and when executing this action during the next four iterations of the
route, the same outcome is recorded.

Our framework extends action descriptions to include a failure threshold (Def-
inition 2).

Definition 2 (Action Description (modified)). Action descriptions are a
tuple {Pre}A{Post}[n] where A, {Pre} and {Post} are as described in Defini-
tion 1 and n is a positive integer representing a failure threshold.

If the number of failures for the action in the action log exceeds the failure
threshold, then the action becomes deprecated. Note that the action log should
be of fixed length, so that an action can not become deprecated as the result
of a slow build up of occasional failure over time. It only becomes deprecated if
its recent failures have exceeded the threshold. The definition of recent should
be application specific to account for speed with which change/degradation is
anticipated in the environment. The threshold should be specific to the action
itself, since some actions are naturally more failure prone than others for reasons
that may be external to the action itself. Our tolerance of failure therefore varies
depending upon the action.

We extend the act phase of the reasoning so that after the execution of an
action, the action log is consulted. If the most recent action has not become
deprecated the cycle continues as before. If it has become deprecated, then a
new action description is synthesised from the information in the log and relevant

Action Change in Beliefs Action Outcome

move(0, 1) +at(1),-at(0) Success

move(0, 1) +at(3),-at(0) Failure

move(0, 1) +at(3),-at(0) Failure

move(0, 1) +at(3),-at(0) Failure

move(0, 1) +at(3),-at(0) Failure

Fig. 4. Example of detecting failures in an action log with size limit equal to 5. The
next new entry will be added to the bottom row and the first row would be removed.
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plans are patched before the agent continues to the sense phase. This reasoning
cycle is shown in Figure 5.

Sense Reason

Act

Log outcome
of action

Patch

Plans

Synthesise

New Action
Description

Has an action
become deprecated?

No

Yes

Fig. 5. Extended Sense-Reason-Act cycle to account for action deprecation, synthesis
of new action descriptions, and the patching of plans.

We synthesise a new action description by extracting, from the action log,
all the failed instances of the deprecated action. We then have a list (proba-
bly containing duplicates, as can be observed from Figure 4) of new candidate
post-conditions for the action in the form of the change in beliefs as the action
executed. Each item in this list is assigned a weight score based on how recent
the item is. The weights for identical items are then summed and that with the
highest score selected as the new post-condition for the action. Pseudo-code for
this process is shown in Algorithm 1. Line 2 instantiates the initial weight score
(n) to 1, and in Line 3 it sets post_scores to an empty map. Lines 4–7 will loop
through every entry in the action log to find entries that match with the dep-
recated action (same action) and where the outcome of the entry was reported
as a failure. When this happens, the post-conditions of the action are added to
the post_scores map along with the weight score, which is then incremented by
one for the future iterations of the action log. In line 8 we initialise best with 0.
Lines 9–11 iterate over the keys in the post_scores map to select the candidate
post-condition with the highest weight score.

If we consider the action log in Figure 4 and suppose our failure threshold is
four, then the agent’s ‘act’ phase should now attempt to synthesise a new action
description from the log. It extracts the list of failures which contains four items
all of which have identical new post-conditions — namely {+at(3),−at(0)}. This
therefore becomes the new post-condition for the action move(0, 1).

However, suppose the action log is more variable. Initially, attempts to avoid
the obstacle between 0 and 1 resulted in the agent arriving at waypoint 3, but
suppose the obstacle has become more serious — perhaps sand and debris is
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Algorithm 1: Algorithm for synthesising post-conditions when an ac-
tion is detected to be deprecated.
1 if action is deprecated then
2 n← 1;
3 post_scores← {} // map of post-conditions to scores
4 for entry ∈ action log do

// NB. the action log consists of tuples (action, change in
beliefs, outcome)

5 if entry[0] = action& entry[2] = Failure then
6 post_scores[entry[1]]← post_scores[entry[1]] + n;
7 n← n+ 1

8 best← 0;
9 for post ∈ keys(post_scores) do

10 if post_scores[post] > best then
11 best← post

piling up as the result of storms — and now the low-level movement behaviour
causes an abort that returns the agent to waypoint 0. This results in the action
log in Figure 6.

Action Change in Beliefs Action Outcome

move(0, 1) +at(1),-at(0) Success

move(0, 1) +at(3),-at(0) Failure

move(0, 1) +at(3),-at(0) Failure

move(0, 1) Failure

move(0, 1) Failure

Fig. 6. Example of an action log with variable post-conditions for the same action
(move(0, 1)).

Figure 7 shows this action log extracted into a list of candidate post-conditions,
weighted by how recent they are.

Of the two candidate post-conditions {+at(3),−at(0)} has a total weight of 3,
while {} (no change) has a total weight of 7. Therefore the empty post-condition
is selected for the new action description.

Once a new action description is stored, we are able to use a plan reconfig-
uration mechanism to patch any plans containing the action. The work in [7]
describes how an AI planning problem can be extracted from a failed action by
a process of:
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Candidate Post-Condition Weight
{+at(3),−at(0)} 1
{+at(3),−at(0)} 2
{} 3
{} 4

Fig. 7. Post-conditions extracted from Figure 6, added with their respective weights
which are calculated based on how recent they are.

Stage A

Select a Current
Intention or

Sleep the Agent

Any unsuspended
non-empty
intentions?

Stage B

Find all Plans
Applicable to the
Current Intention

Stage C

Pick a Plan
and Apply it

Stage D

Execute the Top
Deed on the

Current Intention

Stage F

Process New
Messages

Stage E

Get new Perception
and Messages

Is the Current
Intention empty?

Has an action
become

deprecated?

Stage D1

Update Action
Description

Stage D2

Reconfigure Plans

Yes

No

Yes No

No

Yes

Fig. 8. Gwendolen reasoning cycle. Our additions are shown with dashed lines and
stages we have modified are shown with dotted lines.

1. using the failed action’s pre- and post-conditions as initial and goal states
respectively for the planning problem; and

2. using the set of all other action descriptions as an action model for the
planner.

This planning problem can then be solved to create a “patch” for any BDI plan
containing the failed action. Our framework uses this mechanism with a slight
modification. We only seek to replace an action once it has become deprecated
(i.e., after some pre-defined number of failures). The set of action descriptions
sent to the planner is then created from the agent’s current set of action descrip-
tions, including the newly learned description of the deprecated action.

In our example, let us assume that our move(0,1) action has become depre-
cated. Attempts to move from waypoint 0 to waypoint 1 now result in the agent
arriving at waypoint 3 (based on the action log from Figure 4. A STRIPS-type
planner [18] is called with the updated action descriptions and an initial plan-
ning state — at(0) (the agent is at waypoint 0) — and goal state — at(1) & ¬
at(0) (the agent should end up at waypoint 1) — created from the pre- and post-
conditions of move(0, 1). Among other action descriptions the planner has the
new description for move(0,1) available ({at(0)}move(0, 1){−at(0),+at(3)}[4]
with [4] representing the failure threshold of the action) as well as an action de-
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scribing a move from waypoint 3 to 1 ( {at(3)}move(3, 1){−at(3),+at(1)}[4]).
It is straightforward for the planner to create the plan move(0,1),move(3,1)
to solve this problem (note that move(0,1) now takes us to waypoint 3, not
waypoint 1). If we were using plans similar to the Gwendolen plans3 shown in
Figure 1, this means that the plan +!at(1):{at(0)} <- move(0, 1), +!at(2)
contains our deprecated action and will not succeed in moving the agent to way-
point 1. This patch produced by the planner, replaces the appearance of move(0,
1) in the original plan producing the new plan: +!at(1):{at(0)} <- move(0,
1), move(3, 1), +!at(2) which is stored for reuse.

4 Implementation

We implemented our framework in the version of the Gwendolen programming
language that creates an action log of action success and failure using action
descriptions [33].4

We extended the Gwendolen reasoning cycle with a synthesise stage (Stage
D1) and a reconfigure stage (Stage D2) which are executed after Gwendolen’s
equivalent of the act phase which is called Stage D. This reconfigure stage uses
the action log to synthesise new action descriptions and then uses these to patch
the agent’s plans. Our extended Gwendolen reasoning cycle is shown in Fig-
ure 8 with our additions shown using dashes.

After Stage D (when actions are executed), the last entry of the action log
is checked. If it is an entry for anything other than an action failure nothing
further happens, no action becomes deprecated, and the cycle continues to Stage
E. However, if it is an entry for an action that has failed, the number of entries
containing a failure for this specific action is checked against its failure threshold.
Note that the threshold value of an action is domain specific. If the threshold
has been reached, the reasoning cycle moves to the new Stage D1 in which a
new action description will be learned and then to Stage D2 where plans will be
patched.

A fixed length action log may not capture rare, but still consistent, failures, as
the oldest entry is removed when new entries are recorded. A more sophisticated
failure threshold could be developed to measure the significance of each failure
regardless of frequency and act accordingly, although this case was not considered
in the current implementation.

There is also scope for further development to allow greater refinement of fail-
ure thresholds, which is not limited to just failure frequency. In the current state,
the punishment for assigning an inappropriate threshold is not considerable, as
agents would quickly reach the threshold again to correct the action description
back to the original description. This is the current state of managing incorrect
failure detections. However, this method is wholly reliant upon accurate agent
perception of the environment and actions could produce further failures if the
3 As noted, many BDI formalisms represent plans in a very similar fashion, so although

we use a Gwendolen plan as an example here, the technique is general.
4 Code available at https://github.com/mcapl/mcapl/tree/reconfig_eumas
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agent wrongly believes pre-conditions for actions. This system works under the
assumption that the agent’s perception of the environment remains accurate.
Further testing and deployment into a realistic scenario would be required to
improve on the current implementation.

Once a new action description is stored we are able to use plan reconfiguration
mechanism from [7]. This extracts all the action descriptions from the agent
and translates them into STRIPS operators [18]. Let, {Pre}a{Post}[n] be the
old action description for the failed action a. The reconfiguration mechanism
computes initial and goal states for a planning problem from {Pre} and {Post}.
This planning problem is then given to a STRIPS planner together with the
STRIPS operators of the agent’s plan descriptions. If the planner computes a
new plan this is translated into a sequence of Gwendolen actions, al, this
sequence replaces a everywhere it appears in the agent’s plans.

5 Evaluation

We evaluated our approach on a variation of the “waypoint patrol” example
we have been using throughout the paper. Our environment consisted of five
waypoints and our agent had a plan for a patrol mission to visit each waypoint
in turn. The Gwendolen plan was:

+!at(4):{at(0)} <- move(0, 1),
move(1, 2),
move(2, 3),
move(3, 4);

Each move action had a description of the form:

{at(X)}move(X, Y){−at(X),+at(Y )}
(e.g., {at(1)}move(1, 2){−at(1),+at(2)}. We varied the number of action de-
scriptions for ‘move’ actions available to the agent. The agent always had descrip-
tions for the four actions in the plan (i.e., move(0, 1), move(1, 2), move(2,
3), move(3, 4) — we refer to these as the fixed actions), but also had a random
selection of other ‘move’ actions between the five waypoints — we refer to these
as the variable actions. Figure 9 illustrates this, with the fixed move actions
shown by solid lines and the variable move actions shown by dashed lines.

We generated random instances of this scenario varying the probability that
each of the variable ‘move’ actions was available. The table presented in Figure 10
shows how many times (out of ten runs) our framework successfully managed
to patch the plan in the event that the move(0, 1) action resulted in the agent
finding itself at waypoint 2 rather than waypoint 1.

As is to be expected, we can see that as the number of potential alternative
actions increases, so does the chance of successfully patching the failing plan.
In particular, once more than 50% of the edges in the graph are available as
actions, there is a high chance that the agent will be able to synthesise a patch
for its plans.
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Waypoint 0 Waypoint 1 Waypoint 2

Waypoint 3Waypoint 4

Fig. 9. Waypoint environment. Dashed arrows indicate variable actions only available
in some instantiations of the problem.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
3 7 7 8 9 10 9 10 10 10

Fig. 10. First row represents the probability for each extra move route to be available
in the execution. Second row contains the results for how many times our implemen-
tation managed to successfully patch a plan when the action move(0, 1) action was
deprecated resulting in a move to waypoint 2, rather than waypoint 1

When there was only a 10% probability of each variable action being avail-
able, the reconfigured plan, when it could be generated, tended to be quite long.
For instance, in one instance, the only variable action available at runtime was
the move(3, 1) action. This resulted in a patch were move(0, 1) was replaced
by the sequence move(0, 1), move(2, 3), move(3, 1) (recall that move(0,
1) is now resulting in a move to waypoint 2). This resulted in the patched plan:

+!at(4):{at(0)} <- move(0, 1),
move(2, 3),
move(3, 1),
move(1, 2),
move(2, 3),
move(3, 4);

The shortest possible plan patch, can be achieved for when the move(2, 1)
action is available to the planner. When possible, the planner always opts for
the plan with the lowest “cost” that can achieve the provided goal state. We
modelled the plan cost simply as the total number of actions in the plan. In our
scenario this provides a good estimation for the lowest cost (in terms of resources
consumed by the agent in order to execute the plan) since all of the actions are
similar, though this would not necessarily hold true for other action models.
This costing approach explains why we tended to generate shorter patches when
more actions were available.
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6 Discussion and Future Work

One major aspect of future work is to adapt the framework to manage action
descriptions containing variables. Many BDI languages use variables and unifica-
tion in plans, to enable one plan to apply in many situations depending upon the
instantiation of its parameters. There are two aspects to this challenge. Firstly
when an action is executed in a BDI language, it is almost always the case that
its variable parameters are instantiated — so although we might have an action
description of the form {at(X)}move(X, Y){−at(X),+at(Y )} where X and Y
are variables, it is only ever called as, say move(0, 1) or move(1, 2). Therefore
the process of synthesising new descriptions from the action log will need to
utilize generalisation techniques to abstract from concrete log entries to abstract
descriptions. It may also be necessary to split action descriptions by synthesising
new pre-conditions indicating that, in some situations the action still behaves as
originally assumed, but in others it does not. Secondly, STRIPS-type planners,
while they frequently use action descriptions that contain variable parameters,
do not generally plan using initial and goal states that contain variables. This in-
cludes the planner embedded in the implementation we used from [7] — therefore
this planner would need to be replaced with one capable of handling variables
in initial states and goals. The work in [25] contains simple examples that might
be adapted for this use.

We would also like to introduce more sophistication into the algorithm for
learning new action descriptions. At present all changes in beliefs after an action
execution are treated as one group. Consider a situation where two robots are
both working in an area. Sometimes, after moving between waypoints the agent
also perceives the presence of the second robot. In this case the current action log
would sometimes record {+at(1),−at(0),+second_robot} as the belief change
and sometimes record {+at(1),−at(0)}. Algorithm 1 treats these entirely sep-
arately and is unable to recognise that +at(1) and −at(0) occur in both. We
anticipate that weighting each term appearing in the set of belief changes indi-
vidually, rather than as a group, would enable the construction of post-conditions
that better reflected the actual action behaviour.

At present the planning problem sent to the STRIPS planner is formulated
from the description of the failed action alone and does not account for the
context in which the action appears. Many BDI plans are expressed in terms
of some guard, which can be considered a pre-condition for the whole plan, and
a goal which can be considered a goal state for the plan. We would like to use
techniques such as regression planning to infer from the plan’s guard and goal,
and the pre-conditions and post-conditions of any other actions in the plan, what
the actual state of the agent is likely to be at the point the failed action was
executed and which of the failed action’s post-conditions were actually necessary
in order to achieve the goal of the plan. This introduces more flexibility into the
patching mechanism, allowing plans to be patched even if an exact replacement
for the failing action could not be found. It also reduces the risk that the com-
puted patch might contain additional post-conditions that will break the plan
— for instance, suppose our failed action is {pr1}a1{+po2} and the computed
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patch is a2, a3 where a3’s post-condition is {+po1,+po3}. Now consider a plan
e:guard <- a1,a4 where the description of a4 is {¬po3}a4{+po4}. If we replace
a1 in this plan with our patch then a4 will no longer be applicable and the plan
will break. More context-sensitive construction of the planning problem should
be able to account for this and avoid creating a patch that will break the plan.

The use of the Gwendolen language which is linked to the AJPF model-
checking tool and the Model-Checking Agent Programming Languages (MCAPL)
framework [14], opens the possibility of verifying the patched plans produced by
our framework. While we are interested in exploring this idea, the AJPF model-
checker typically performs verification very slowly. If the agent existed in an
environment where there were periods of inactivity, then it would be possible
for re-verification to take place to ensure that the agent’s plans continued to
adhere to any specified properties, but in an environment where patching needs
to occur quickly then this may not be feasible. If the reconfiguration mechanism
was adapted, as suggested above, to be sensitive to the context in which an ac-
tion was invoked then it should be possible to establish idealised results about
the safety of patches, at least in environments where the only things changing
the environment are the agent’s own actions. It might also be possible to treat
actions appearing in plans as sequences of abstract actions of length up to l,
with the abstract actions having no specified behaviour during verification. This
forces the verification to consider all possible action outcomes, allowing plans to
be patched with any sequence of actions of length less than l, but the resulting
state space for verification is likely to be unwieldy and include consideration of
many action outcomes that are either unlikely or impossible, forcing, in turn,
the inclusion of fail-safe plans within the agent to handle behaviour that can
never occur resulting in “crufty” code.

The extent to which long-term autonomy can be achieved through the gen-
eration of amended action descriptions and the patching of plans is an open
question. Scenarios such as we have presented involving navigation around way-
points linked in a graph structure are relatively common, and it is reasonable to
suppose that over time paths between waypoints might alter. What is unknown
is how common it is that changes in the environment or robot capabilities can
be compensated for by combinations of (adapted) actions and how common it is
that action degradation simply results in a robot that can not usefully perform
its mission. It is likely that the proposed framework would need to be combined
with mechanisms for weakening mission specifications, for instance, by dropping
some goals that were no longer obtainable, while continuing to pursue others.

We have presented here the over-arching template of a framework for adapt-
ing BDI agent plans in the face of changed action behaviour. With the additions
from the future work described, the framework in this paper should be capable
of handling larger scenarios with greater complexity. Also, introducing multiple
agents to the scenario undoubtedly increases the complexity of the situation,
although this also opens the opportunity for agents to collaborate and share
action descriptions.
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