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1. Introduction

There is an increasing need to automate theorem proving in higher-
order (HO) logics. Theories for hardware and software synthesis and
verification are typically expressed in HO logics. The encoding of propo-
sitional and first-order (FO) logics in logic frameworks means that
proof-search is lifted away from the object logic into a HO setting. In
this paper we address the problem of controlling proof search in such
a setting; in particular our approach is a development of techniques
currently used to control first-order term rewriting.

Here the heuristic of difference reduction is central: find the differ-
ences in term structure between the goal G and the assumptions Hy;
then rewrite GG in an effort to remove those differences in term structure,
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2 Dennis et. al

in order that an appeal to one or more of the assumptions can be made.
Differences are called wave-fronts and shared term structure is called
the skeleton.

Rippling is difference reduction by the application of certain, well-
constrained rewrite rules. The key idea of rippling is that terms are
decorated with annotations that describe explicitly wave-fronts and
skeletons; these annotations can be used to place heuristic restrictions
on rewriting. Thus the way in which the differences are manipulated
by the rewrite rules can be controlled. By insisting that applicable
rewrite rules are skeleton-preserving rippling is further restricted. Skele-
ton preservation ensures that if all the differences are removed, the
assumption(s) can be used.

Basin and Walsh (Basin and Walsh, 1996) and Hutter (Hutter,
1991) have developed first-order rippling calculi: formal systems for
manipulating annotated terms. However, there are some difficulties
in extending such calculi to the A-calculus, as is required when, for
example:

— rippling first-order terms containing meta-variables that stand for
functions, and, more generally,

— rippling in logics containing the A-calculus.

The crux of the problem is that annotations depend on consistent nam-
ing of bound variables between terms which causes obvious problems
with A-abstractions. Annotations (first-order as well as higher-order)
also require non-standard notions of substitution and unification. Our
solution is a new formalisation of rippling in which annotated terms are
captured via term embeddings which allow the standard definitions of
substitution and unification to be used. We show how term embeddings
can be defined uniformly for both first- and higher-order syntax, then
how term embeddings capture rippling. We believe this presentation
provides a clear account of rippling that generalises to the higher-order
case.

1.1. OVERVIEW.

We discuss embeddings in an informal fashion in a first order setting
in §2 and then in a higher-order setting in §3. We then provide some
formal definitions in section §4 and discuss the rippling heuristic in
§5. We close by looking at some examples of the rippling heuristic
using embeddings in §6 and then discuss related work (§7) and our
conclusions.
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Higher-Order Annotated Terms 3

2. Term Embeddings: the first-order case

The notion of an embedding (or homeomorphic embedding) between
trees is known from its use within rewriting (see (Klop, 1992, p. 31)).
For our purposes, following (Boudet and Comon, 1993), we use a slightly
different notion, where the order of the subtrees at a node is taken to
be significant, and where the labels of a node and its image under an
embedding are required to coincide.

More precisely, an embedding between terms %1, o is defined as fol-
lows. Consider terms %1, ¢y in a standard first-order syntax as labelled
trees in the usual way. Then an embedding is an injective map e from
the nodes of #; to the nodes of ¢ which maps labels to identical labels,
which preserves the tree order, and which also preserves “horizontal
order”. Such an embedding, when it exists, can be represented by a
tree of the shape of ¢; labelled with the addresses of the corresponding
image nodes in t9; where e is a tree representing an embedding, we
write e : t; S t9, or simply t; S t if the identity of e is not important.
In what follows the term on the left of an embedding, ¢; above, will be
referred to as the skeleton of the embedding and the term on the right,
to above, as the erasure.

This notion can be captured inductively.

DEFINITION 1. For terms t; = f(u1,...,uy) and ta = g(v1,...,0m),

tlgtg Zﬁ di. tlgvi
or f =g and Vi. u; S v;.

This definition forms the basis for the computation of embeddings,
by returning an appropriately labelled tree; this tree has the same shape
as the term %1, and the labels give the address of the image of the
node under the embedding map. For an example, consider the terms
plus(z,y) and plus(s(z),y) shown in figure 1. In this figure solid lines
indicate the term trees, the dashed line the embedding tree and the
dotted lines show how the embedding relates the nodes of the two term
trees.

The pair of terms together with the embedding describe an anno-
tated term, namely to9 decorated so as to indicate which parts of the
term tree are in the image of the embedding, and which are not; in this
way we are able to capture the “differences” between terms (more on
this in §5).

In earlier descriptions of rippling (e.g., (Bundy et al., 1993)), anno-
tated terms are depicted by placing boxes with holes in them around
differences. The holes are underlined. The boxes are referred to as wave
fronts and the holes as wave holes. In this presentation the skeleton
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o

Figure 1. An embedding

is formed by those parts of the term in wave holes or outside of the
wave fronts. For example, the embedding shown in figure 1 would be

plus(|s(z) | ,y). We shall adopt this notation for readability where is it

convenient to do so.

In this earlier work, operations on annotated terms were defined
on an enlarged term algebra, with extra functors wrapped around
subterms to indicate which parts of a term belong to a skeleton. For
example, the term above corresponds to plus(wf(s(wh(z))),y). This
notation necessitates the use of non-standard matching and substitu-
tion, for cases where the annotational syntax has to be distinguished
from the underlying term structure.

2.1. SUBSTITUTION AND UNIFICATION

When reasoning with annotated terms, we will use the annotations for
search guidance; the annotations should not however interfere with the
standard logical operations on the underlying unannotated term. Thus
we want to define substitution on embeddings so that it is sound with
respect to the substitution on standard terms.

DEFINITION 2. We define two functions erase and skel (for the
erasure and skeleton) from annotated terms to plain terms by

erase(e : t1 S to) =gef to,
and
skel(e : t1 S to) =ger th.
Now suppose that o is a substitution on terms.

DEFINITION 3. We say that an embedding e' extends e if the tree €'
is obtained from e by replacing some of the leaves of e with new trees,
while preserving all the labels within the original tree e.
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It is easy to show the following

PROPOSITION 1. Ife:ty Sty is an annotated term, and o a substi-
tution, then there is a unique €' : ti0 S too such that €' extends e.

Proof sketch follows in §4.
We therefore define

DEFINITION 4.

(6 : tl Stg)a =def 6’ : tlagtga,

where €' is this unique extension of e. In general, there can be other
embeddings of tio in tyo.

From this definition, it is easy to see that skel and erase respect
substitution. That is,

PROPOSITION 2. For all embeddings e : t1 Sty and substitutions o,

erase((e:t; Sta)o) = (erase(e:t; Sts))o,
skel((e:ty Sto)o) = (skel(e:ty Sto))o.

DEFINITION 5. A unifier for two annotated terms, e : t; S tg,
f 1 u1 S uo, is thus in the usual way a substitution o such that

(6 : tl StQ)U = (f LU SUQ)O',

where the equality entails equality of domain terms, and of range terms.

From our previous remark, a unifier in this sense is clearly also a unifier
for the erasures of the embeddings, i.e. for t9,us and for the skeletons
tla Uy .

DEFINITION 6. A most general unifier for e : t1 Sta, f : u1 Suo,
when it exists, is simply a most general unifier for the unification
problem

(t1 = u1,t2 = ug),

provided that the corresponding embeddings coincide.

Thus annotated unification is a restriction of standard unification,
which can be captured for example by a generate-and-test procedure.
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6 Dennis et. al

3. Embeddings: a higher-order version

When reasoning about languages with variable-binding constructs, it
has become normal to deal with binding and substitution once and for
all in such a way that the operations can be applied uniformly over a
range of situations; see for example (Harper et al., 1992; Felty, 1993).

One challenge is to handle variable bindings in a consistent fash-
ion. Earlier attempts at annotations of differences tended to rely on a
consistent naming of bound variables in the skeleton and the erasure
in order to achieve annotation, i.e. they could not apply difference
matching (Basin and Walsh, 1992) — the process by which a term is
annotated — to Vz. f(z) and Yy. f(g(y)). It was also unclear how terms
such as Az. f(z)a and Az. f(g(z))a should be difference matched: The
standard algorithms would not find a match since the function terms
Az. f(z) and \z. f(g(x)) were not identical. The use of embeddings as
presented here can be extended to handle bound variables in a natural
fashion and it easily extends to a notion by which for an application
term t1(¢2) it is acceptable to have an embedding into t; as well as o
instead of insisting that the embedding is only into ts.

Informally we allow ¢St for atomic t, t SAz.u iff V2. tS(Az. u)z or
t = M\y. t; and Vz. (A\y. t1)2S(Az. u)z. Lastly tSuq(ug) iff tSuy or
tSusg or t = t1(t2) and t; Su;.

This approach apparently raises some new problems. For instance
we would not expect an operation such as S-reduction to affect the
existence of an embedding, as we do not want to distinguish between
inter-convertible terms. Since there is no logical significance to the
difference between such terms, it would seem unnatural for a proof
guidance technique to distinguish between them. In particular this
means that the skeleton of the embedding expression is not preserved
by substitution and skeleton preservation is a critical component of
many applications of annotations.

For example, taking ¢ and b to be constant terms, a embeds in
(Az. b) a according to our initial definition, yet a is not embedded in
the reduct b.

This problem also afflicts the other major alternative higher-order
annotation calculus for Rippling: the coloured A-calculus of Hutter and
Kohlhase (Hutter and Kohlhase, 2000) which we discuss in §7.

Intuitively we would expect annotation systems to be insensitive
to S-reduction. However both embeddings and the coloured A-calculus
annotate the syntactic structure of the term and since S-reduction is
a structure effecting process it seems almost inevitable that in some
cases it will not preserve the embedding. As a result of this we also
discover that skeletons are not preserved by substitution. Ideally if
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t1. Sty then for all substitutions o we want (t1)05(#2)o. The follow-
ing example shows that we lose this property if S-reduction does not
preserve embeddings:

EXAMPLE 1. There are terms ty,ts, and substitution o such that
there is an embedding e : t| S to, yet we do mot have t10 S tyo.

If we take t1 = p(q), to = (C(p))(q), where p,q are constants, and
C a variable, then there is an embedding e : t; S to. However, if we
substitute Axz. \y. (D(y))(z) for C, we find after normalisation that
there is no embedding of t10 in too. A consistent typing can be provided
for the terms used in this example, e.g. q : nat, p : nat — nat, C :
(nat — nat) — (nat — nat), D : nat — (nat — nat) — nat

There are a number of possible solutions to this problem. For in-
stance, Hutter and Kohlhase consider including all function terms in
the skeleton and restricting admissible solutions. In the end they settle
for a test of skeleton preservation after a substitution has been made
in circumstances where this is important. We chose to separate the
processes of substitution and S-reduction. If no normalisation can oc-
cur during substitution then the proof that the process of substitution
preserves embeddings follows straightforwardly from the first order case
(see §4).

Much like Hutter and Kohlhase we then check for the preservation
of embeddings whenever we apply [-reduction. All the applications
of the embeddings calculus so far have applied to rewriting processes.
For pragmatic reasons we found we wanted to treat [-reduction as
a rewrite rule and we already had an embedding preservation check
whenever a rewrite rule was applied. So separating the processes worked
best within our implementation. Hutter and Kohlhase annotate their
rewrite rules as well as the terms on which they operate and rely on
this annotation to preserve the skeleton in their situation therefore a
check for preservation at the substitution stage makes more sense.

4. Formalising Embeddings

In first-order presentations of annotations (e.g. (Basin and Walsh, 1996))
a term tree representation is used in which nodes in the tree are labelled
with function symbols and the leaves are all labelled with constants or
variables of first-order type. We do not do this since we potentially wish
to be able to manipulate function symbols in the same way the first
order variations can manipulate first-order symbols.

We treat the syntax of terms as a variant of Higher-Order Abstract
Syntax or A-tree syntax (Miller, 2000) in which we explicitly repre-
sent abstraction and application as nodes in the term tree. We use

jar_embed.tex; 30/09/2004; 19:51; p.7
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this for a variety of reasons, principle among these is the fact that
function-argument and term-subterm relationships are made explicit.
In particular our term trees needed to be able to represent structure
within both constituents of an application, not just the argument to
the function. This becomes important when, for instance, calculating
the ripple measure on embeddings since wave annotations may appear
within function terms. This differs from our original presentation of
higher order embeddings in (Smaill and Green, 1996) where we used
a concrete syntax however an abstract syntax is more natural in the
context of embedding trees since it directly represents the structure
used by the embeddings. Our description and results can be relatively
easily transferred between concrete and abstract syntax. In general we
will use concrete syntax in this presentation since it is easier for a
human to read and understand.

There is an example of this approach in (Felty, 1992) although we
allow tuples in application terms. The terms of interest are thus the
typable terms of this calculus, formed from the constants via typed
A-abstraction, composition, and tupling.

Our approach in this paper differs from Felty’s in one important
respect. Felty represents the A-abstraction constructor as of type
((term -> term) -> term) this causes well documented problems with
exotic terms (see (Despeyroux and Leleu, 1999) for an example of
the problem and (Felty, 2002) for Felty’s approach to a solution). For
this reason we treat it here as it is used in the PROSPER PII (Dennis
et al., 2003) where the constructor takes a pair consisting of the bound
variable and a term’.

We use an explicit tree representation for our terms which we’ve
defined as follows:

DEFINITION 7. A term tree, tt, is:

tt = c| X | A\ott | app(tt, [tt, ... tt]).?

The use of tuples within application terms here is for efficiency rea-
sons. It is normal to use curried syntax in a higher-order system, and
our definition allows this; however this means that a given term has
typically many more subterms than in a standard first-order represen-
tation, and it is often convenient to ignore such terms by representing
tuples via products.

! Our actual implementation follows Felty closely and relies on the execution
model of AProlog to prevent the use of unevaluated functions within the term
structure.

2 We use the Prolog convention where lower case letters indicate constants and
upper case letters variables.
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The position of a node in a term tree is determined by a list of
integers indicating the path from the root of the tree to that node (for
implementation reasons this list is usually read from right to left). We
label the operator of an application term as the 1st branch and then
each member of the ensuing tuple from 2 to n in order and ignore A-
abstraction nodes. So the position of g in the term g(A\z.f(a,z,b)) is
[1], the position of z is [3,2] and the position of f is [1,2].

4.1. MOTIVATION FOR THE EMBEDDING STRUCTURE

Embeddings are described by a tree data structure in an extension of
the first order case. Embedding trees describe how the skeleton term
tree embeds in the erasure term tree. The nodes in an embedding tree
can be viewed as labels on the nodes in the term tree of the skeleton
(excluding A-abstraction nodes). These labels contain addresses. The
addresses are the addresses of nodes in the term tree of the erasure into
which the skeleton is to be embedded. A node in an embedding tree
will appear at a function application node in the skeleton term tree and
indicates that this node is matched to the function application term in
the erasure term tree at the indicated address. Similarly the leaves of
an embedding tree are attached to the leaves of the skeleton term tree.

EXAMPLE 2. Consider embedding the term Azx. f(x) into the term
Ay. Ax. (f(y)+x). We do this as in figure 2. The two terms are shown as
trees with branches represented by solid lines. The address of each node
is given (A-abstraction nodes do not carry addresses). The embedding
appears between them as an embedding tree with dashed lines — the
address label of the nodes is also shown. The dotted arrows illustrate
how the embedding tree links the two terms.

4.2. DEFINITION OF EMBEDDINGS

DEFINITION 8. An embedding tree, e, is
e ::= leaf(pos) | fn(pos,e,le,--- ,€]). (1)

Note that each node in the embedding is annotated with the position
of the node in the erasure to which that node in the embedding relates.
It is not necessary to include the position information for the skeleton
since the embedding tree has the same structure as the term tree of the
skeleton. These positions are lists of integers read from right to left as
described above.
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lambda x (1.2] lambday

aplicaion [|, " lambdax

:‘:_b_.:applicali on[]

fiaj X[2]

+ x[2,2]

f[1,1,2] y[2,1,2]

Figure 2. An Embedding

We define a function epos for extracting the address information
from embeddings in the obvious way (i.e. epos(leaf(pos)) = pos,

epos(fn(pos,e,€)) = pos). )
NOTATION: We use the notation " to represent the expression

[tZa U atn]

DEFINITION 9. e : sS(t,pos) where e is an embedding, s and t
are term trees and pos is a term tree mode position is an embedding
expression.

An embedding expression is a well-embedding (we) iff the statement
we(e) can be derived in the following inference system:

we(1leaf (pos) : ¢S (c, pos))’

we(leaf (pos) : X S5 (X, pos))’
Vy. we(e : f(y)S(9(y),epos(e)))
we(e : Ax.f(x) S(\z. g(x), epos(e)))’
(

pos # epos(e)  Vy. wele : 5 (f(y).pos)) 5
we(e : sS(Az. f(x),pos)

)
Vi. we(ej : ;.5 (¢, i = POS))

epos(e) # pos Ji. we(e : sS(t;,1 :: pos)) 7)
we(e : s5(t1 ("), pos)) ’
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Obvious rules are used to handle quantification over well-embeddings.

It follows from this definition that in a well-embedding every -
abstraction in the skeleton is matched by a corresponding A-abstraction
in the erasure. These definitions correspond to the informal outline
given in §3. Note that we have extended our embedding notation, S,
to include the position information. This assumes that the erasure is a
subterm of some larger term and this indicates its position within that
larger term. In most cases we will be considering embeddings at the
root node (i.e. e : s.5(¢,[])) but during proofs and implementations we
frequently need to recurse through the structure of terms and this addi-
tional information becomes important. Where the position information
is omitted it can be assumed to be the root node.

The abstraction case here reduces the problem at functional types
to that of finding embeddings for atomic types, at the cost of requiring
that they exist uniformly. This is the method that is used to deal with
the case of standard variable binding constructs such as quantifiers.

The embedding tree for example 2 is thus
fn([1,2],1eaf([1,1,2]), [Lleaf([2,1,2])]). This states that the function
application at the top of f(x) matches with the node at address [1, 2]
of f(y) + = (i.e. the application involving + has been bypassed), that
the function symbol f matches the sub term at [1,1,2] (i.e. f) and =
matches y (i.e. the bound variables can be consistently renamed in
either (or both) terms so that they are identical).

EXAMPLE 3.
In §6.1 we will see an example of rippling involving an introduced
constant lim, and some additional symbols:

lim : (nat — nat) — nat — nat — nat,

f : nat — nat,

g : nat — nat,

+ : (nat X nat) = nat,
a : nat,

[ : nat,

m : nat.

An  embedding exists  between  the terms lim(f,a,l) and
lim(Au. f(u) + g(w),a,l +m). In our higher order abstract syntaz this
appears as:

app(lim, [f, a, 1]) S
app(lim, [(Ay(app(+, [app(f, [u]), app(g [u])]), a, app(+,[l, m])]),
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The embedding exists by virtue of the fact that for all terms z,
(Ay- f(y) 2 S Q. f(u) +g(w)) 2.

The embedding in question is

fn([], 1eaf([1]), [1eaf([1,2,2]), leaf([3]), Leaf([2,4])])

4.3. SUBTITUTION

Recall that from §2 we need to show how substition acts on embedding
expressions.

DEFINITION 10. We say that an embedding €' extends e if the tree €'
is obtained from e by replacing some of the leaves of e with new trees,
while preserving all the labels within the original tree e.

Recall that we are not allowing normalisation to take place in the
course of substitution so in #; and #; we are simply extending leaf nodes
representing variables with further term trees. No other alteration of
the structure of the term trees can take place. In fact we are using the
definition of substitution from (Barendregt, 1985, §2.1.15) directly. It
has simply become customary to implement a S-reduction as a part
of substitution from a desire to work with terms in § normal form as
much as possible.

Armed with our formal definitions of embedding our Proposition 1
becomes:

PROPOSITION 3. If e : t; S(t2,pos) is a well-embedding, and o a
substitution, then there is a unique well-embedding €' : t10 S (ta0, pos)
such that €' extends e.

Proof Sketch. Tt is easy to define a unique identity embedding, e} for
a term t such that e} : t5(¢,]]) is a well-embedding. Let c,(e, pos) be
a function which appends the integer list pos to the start of all the
position information in e it follows that c,(ef,pos) : t5(t, pos) is also
a well-embedding.

Recall that we are not allowing normalisation to take place in the
course of substitution so in #; and £, we are simply extending leaf nodes
representing variables with further term trees. No other alteration of
the structure of the term trees can take place.

It is simple to show that if a leaf node of the embedding is a well-
embedding leaf(pos) : XS5 (X,pos) where o replaces X with some
term ¢ then c,(ef,pos) : to S(to, pos) is the unique well-embedding
that extends leaf(pos).
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The rest of the proof is then a very straightforward inductive argu-
ment on the structure of well-embeddings. O

Definitions for unification follow in the obvious way from those given
for the first-order case.

5. Rippling: a proof search technique

We now illustrate the use of terms annotated by means of embeddings
to guide proof search. This approach to the search for proofs involving
induction was proposed in (Bundy, 1988) and has since been developed
and also applied to non-inductive proofs, where a logical connection
is sought between two syntactically similar formulas (Bundy et al.,
1993; Yoshida et al., 1994; Hutter, 1996).

Rippling is a terminating heuristic. It is based on the idea of dif-
ference reduction and its termination depends upon a measure on an-
notated terms. Rippling may either be static using specially annotated
wave rules as rewrite rules and requiring that the annotations in the
wave rules unify with those in the term or it may be dynamic where
rewrites are not annotated in advance. In static rippling measure re-
duction is calculated in advance for each wave rule while in dynamic
rippling the measure is explicitly used as part of the rippling process.
The measure expresses the heuristics used to control rippling — namely
to move differences outward in the term structure (i.e. closer to the root
node of the term tree) in the hopes of exploiting cancellation in some
fashion or, failing that to move them inward in the hope of exploiting
universally quantified variables. Rippling in a first order setting has
been formalised by (Basin and Walsh, 1996) and the termination of the
measure proved. It is therefore important to show how any measure we
provide for embeddings corresponds in the first order to case to that of
Basin & Walsh in order to demonstrate the relationship between the
existing rippling heuristic and that created by embeddings.

5.1. THE EMBEDDING MEASURE

We introduce a well-founded measure on embeddings. We will start by
defining the outward measure (where outward is a direction that can
appear in embeddings corresponding to a difference moving outward in
the term structure) on a node in an embedding — the inward measure
is defined analogously.

Informally the measure of a node in an embedding is the difference
between it’s expected depth (which is the depth of the point in the
erasure where the node’s parent embeds plus one) — where we would
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expect the node to embed were there no difference between the skeleton
and the erasure at this point — and the depth of the point where the
node actually embeds. The depth of the point in the erasure where a
node embeds is the length of the position list epos(e). It is generally
easier to compute the node measures for a whole embedding tree at
once, storing the positions at which the parent nodes embed and passing
these as arguments to child nodes.

Our measure function therefore has three arguments, the embedding,
the expected depth and the address of the node for which we wish to
calculate the measure.

DEFINITION 11. The weight function, We(e, ed,p), of a node at po-
sition p in an embedding e where its expected depth is ed is defined

by:
Welered, ) = length(epos(e)) —ed,  (8)
We(fn(pos,er,€"), ed,i :: poss) = Wel(ei, length(pos) + 1,pos;).(9)

This gives us the difference between the expected address of the era-
sure node of a sub-embedding (assuming there are no differences at that
node) and the actual address of the erasure node.

NB. This is not the same weight function as that published in (Smaill
and Green, 1996) which did not, in the first order case, correspond to
the weights used by (Basin and Walsh, 1996).

To calculate the weight of a whole embedding rather than a single
node we sum the weights of the nodes at each depth in the term tree
and present these as a list. The weight lists for two embeddings can then
be compared in reverse lexicographic order — so terms are considered
measure reducing if more differences appear closer to the root node.

To accommodate the rippling heuristic we incorporate an indication
of inward or outward direction of a difference. We use the notation

1A it
, respectively. It is easy to extend embedding nodes with

additional direction information and to adapt the weight function to an
outward and an inward weight function WO, and WZ,. These return
0 if the direction of the embedding node is inward (in the case of WO,)
or outward (in the case of WZ.). Otherwise they are identical to the
simple function shown above.

In harmony with this, we define an extended well-founded measure,
which is a lexicographic combination of a reverse lexicographic ordering
on measure lists (for outbound differences) and a lexicographic ordering
on measure lists (for inbound differences).

DEFINITION 12. The embedding out-measure, MO, (e : s5t) of an
embedding term is a list of length |t| + 1 whose i-th element is the sum
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Higher-Order Annotated Terms 15

of out-weights (WQO,(e,0,p)) for all skeleton positions, p in e : sSt at
depth i (i.e. the position lists p of length i). The embedding in-measure,
MI(t) is a list whose i-th element is the sum of in-weights for all
term positions in e : sSt at depth i. The measure of an annotated
term, Mc(e : sSt) is the pair of out and in-measures, < MO,(e :
sSt),MZ.(e: sS5t) >.

NOTATION: For two embeddings, e; and e if e is less according
to the measure than ey we write e; < es.

It is a relatively simple exercise to provide functions to convert first-
order terms in our syntax into the concrete syntax employed by Basin &
Walsh (Basin and Walsh, 1996). This can be seen in appendix A. We can
show that, for first order terms ¢; and ¢, represented as uncurried term
trees (i.e. with full use of tuples within application nodes), if £; St5 then
it is possible to create an annotated term, in the terminology of Basin
& Walsh, whose skeleton is ¢; and whose erasure is 9. Moreover given
two well-embeddings e; : t; Suy and es @ to Sus (such that t1,to, uq, us
are first order and uncurried) then if e <4 e; then Basin & Walsh’s
measure on the annotated terms also reduces. In fact the measure is
the same. This gives us confidence that our embeddings capture the
essence of rippling.

Proof sketch. Basin & Walsh’s measure represents the skeleton of
an annotated term as a tree with the much the same structure as our
skeleton term trees assuming that our representation is uncurried and
contains no A-abstractions. Their nodes are labelled with the functions
applying at that node while we use explicit application nodes — however
this is irrelevant in a first order setting since there are no wave fronts in
the structure of the functions and these might as well annotate the ap-
plication nodes. Basin & Walsh also annotate the nodes where relevant
to indicate the wave fronts at that node in the annotated term. The
weight of each node in this tree is then the width of the wave fronts at
that node (the number of function symbols contained within the wave
front). This width corresponds directly to the difference between the
actual depth and expected depth of the embedding of that node in our
representation since each function symbol is represented by a function
application node in our representation of the erasure and so increases
the depth by one. The resulting inward and outward measures are then
built up from the weight of the individual nodes in exactly the same
way. O

It is interesting to note that the same does not hold the other
way around. It is possible to have an annotated term of the form

f(g(z)| )| which we cannot express as an embedding with direc-
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16 Dennis et. al

tions. The embedding is leaf([2,2]) and this can not be extended to
show that there is both an inward and an outward moving wave front.

This means that the following rewrite rules allow a measure reducing
series of rewrites from [(h(s(x))) to I(k(f(h(z)))) in Basin & Walsh’s
calculus but not in the embeddings calculus:

h(s(X)) = g(f(h(X))) (10)
Hg(F (X)) = U(f(g(X))) (11)
Flg(h(X))) = E(f(h(X)) (12)

These rules allow the following sequence of ripples:

[A([s(X) ] ) = 1| (g(f(RX))] ) (13)

Wo(F (X)) | ) = 1(f(g(R(X))| )] ) (14)

g,
p=.

1| f (| g(h(X))

N
N
~
N
o
—~~
-
~—~
>
—~
-
SN—
=
N
—~
—
ot
=

Our calculus would be forced to annotate (| f(| g(h(X)) \ )| ) as ei-

>

ther I(| f(g(

orasl(| f(g(h(X))) y ) which is not measure greater than [(| k(f(h(X)))

In practice we have not yet come across a situation where a sequence
of rewrites such as this is required?.

(X)))| ) which is not measure less than I(| g(f(h(X)))| )

5.2. RIPPLING AND INDUCTION

In proofs by induction, using a constructor formulation, the measure is
used as follows. Given an induction hypothesis ®(z) and goal ®(s(x)),
there is an embedding e : ®(z) S ®(s(x)). Recursion equations and
lemmas are available as rewrite rules to be used on the goal — rewrit-
ing here is extended to take account of quantification. Typically, these

3 NB. There are simpler examples which exhibit similar properties but many
of them could be fixed by conjecturing simple additional lemmas from the rewrite
rule set alone or forbidding the use of rewrites which were not measure reducing
themselves between their LHS and RHS once the annotations on the target term
were taken into account even if the term itself could be measure reduced by moving
annotations not affected by the rewrite rule. This was the simplest counter-example
we could find which did not have an obvious fix.
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Higher-Order Annotated Terms 17

rewrite rules are not confluent, and include potentially looping rules,
such as associativity. The following heuristic can be used: use rewrites
which give a new goal G’ such that there is an embedding e’ : ®(z) S G’,
and such that ¢’ <, e, i.e. the embedding is smaller in the measure
defined above.

This gives at each step the picture shown in figure 3 (where e, €’ are
embeddings and the vertical arrow indicates rewriting). We call such
a rewriting step a wave rewrite, following the terminology of (Bundy,
1988); the successive application of such wave rewrites is known as

rippling.
G
|
I
I
|

rewrite
¥y

Figure 3. An Embedding for Induction

There are three conditions on wave rewriting:

1. soundness — the rewriting should correspond to logically valid in-
ference;

2. skeleton invariance — the appropriate skeleton embeds in the goal,
before and after rewriting;

3. measure decreasing — the embedding in the rewritten formula is
smaller in the order.

Traditionally wave rewriting has been accomplished using special
annotated wave rules in which one rewrite becomes several wave rules
each indicating how a different skeleton is preserved by the rule and
how the annotations are affected by its application, however since an
unannotated erasure is easily extracted from our embedding expressions
we choose to use standard rewrite rules and subsequently check after
application that there is still an embedding between the skeleton and
the new erasure and that the measure of this embedding has decreased.
We generate rewrite rules both from equalities and (less usually) from
implications.

Since we are reasoning backwards, there is a polarity inversion to
the direction in which rules based on implication may be used. A logical
implication A — B may be used as a rewrite rule A = B (at positions
of negative polarity) and B = A (positive polarity). Equalities are used

jar_embed.tex; 30/09/2004; 19:51; p.17



18 Dennis et. al

in either direction. In all cases the direction of the wave-rule is given
by the double arrow =*. Our implementation of polarity is based on
work by Negrete and Smaill (Negrete and Smaill, 1995).

This approach has considerably simplified the theory of rippling —
for instance there is no need to show that if a wave rule is skeleton pre-
serving (i.e. the LHS and RHS of the equation share the same skeleton)
then the skeleton of any term rewritten with the rule is also preserved.
It also potentially allows us to exploit standard rewriting technology
alongside the use of rippling as an extra guidance procedure and may
allow the rapid transfer of results about rewriting to rippling. It also
helps to make clear the relationship between rippling and rewriting.

We can depict the possible ways a wave rewrite may be made on
the goal by considering the rewrite rules available, and annotating
them with embeddings: these annotated rules are called wave-rules.
In general there is more than one way in which this annotation can
be added, and it may be added so that the rule can be used in either
direction.

EXAMPLE 4. We will see in §6 some example proofs using rippling.
There use is made of the associativity of disjunction:

AV (Bv(C)=(AVB)VC,

which can be used as a rewrite in either direction, depending upon the
skeleton to be preserved, and the direction in which the wave-front is to
be moved. For example, the two wave-rules below are derived from the
associativity property:

Aavivo

In the first rule the skeleton is AV B (which embeds into the LHS and
RHS of the wave-rule), and in the second it is BV C (also embedded in
both sides). Thus one is able to use rewrites in both directions during
rippling so long as they are in contexts where the skeletons differ.

= |[(AVvB)v(C]|,

Rewriting in a higher order setting can be done using the ideas
of (Felty, 1992). After applying a rewrite rule to an erasure, we re-
calculate the embedding with respect to the skeleton and check for
measure reduction, in experiments we have found that this recalcula-
tion of embeddings and the measure after a rewrite is not a significant

* Note that we are using — to indicate logical implication and = to express a
rewrite rule.
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Higher-Order Annotated Terms 19

problem for efficiency although clearly providing annotated, skeleton-
preserving and measure reducing wave rules “up-front” would save time
during proof®.

5.3. SINKS

We mention above that the intention when rippling inwards is to exploit
a universally quantified variable in the skeleton. We call such variables
sinks and annotate them as Vz. f(|z]). In rippling it is an additional
condition on inwards moving wave fronts that there is a potential sink
they can use. This extends the set of terms into which a potential
skeleton can embed. It does not effect the formalism in terms of the
measure but acts as an additional heuristic restriction on rippling. We
choose to ignore it in this presentation since it is an addition to the basic
theory. Our implementation adds an additional leaf type to embedding
trees to represent leaves which are sinks but during rippling treats these
just like leaf nodes in all cases except when checking for the sinkability
of a wave front.

5.4. MIDDLE OUT REASONING

The use of meta-variables in implemented systems to delay commitment
to certain choices in proof search is commonplace (this is used in Lego
and Isabelle, for example (Luo and Pollack, 1992; Paulson, 1994)).
This is a form of middle out reasoning. We use such meta-variables
in dealing with existentially quantified goals®; the interaction between
the instantiation of meta-variables and the wave annotations has been
a stumbling block in earlier attempts to extend the scope of rippling.

The use of embeddings enables us to deal with this situation. Here we
allow the terms and formulas we manipulate to contain meta-variables.
An annotated term is simply an embedding as before, in which either
the erasure, or both the skeleton and erasure, contain meta-variables.
Now instantiation of such meta-variables is defined for formulas in the
standard way for the simply-typed A-calculus; our results about substi-
tutions and unification assure us that embeddings will be instantiated
in a sensible way.

The treatment of termination has to be different in the case where
we deal with meta-variables. The proofs of the termination of rippling
given for earlier versions (Bundy et al., 1993; Basin and Walsh, 1996)

5 It is also possible to improve the efficiency of embedding calculation during
rewriting by preserving those parts of the embedding tree not affected by the
rewriting and only recalculating the embedding on the rewritten subterm.

6 NB. Unification of such variables is naturally higher-order.
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20 Dennis et. al

are necessarily restricted to the ground case: some additional mech-
anism is needed to deal with the middle-out case. The problem is
that if one of the rewriting steps causes the instantiation of a meta-
variable, as we want, then the resultant embedding will not be smaller
in our given measure since new structure will have been introduced
into the term trees. The heuristic in this case must provide some way
of controlling the instantiation by skeleton preservation; recomputation
of the embedding can be used as part of this process.’

We note here that we want annotations to guide the instantiation
through the application of rewrites; we do not allow the computation
of embeddings to cause any instantiation on its own. This means that
we use the weaker notion of embeddability rather than embedding.

5.5. COLOURED RIPPLING

In (Hutter, 1990; Yoshida et al., 1994) notions of “colouring” annotated
terms are used for situations in which a number of different skeletons
are in play and so differences are manipulated with respect to more
than one term. Colouring can be used to indicate to which skeleton a
wave hole relates, or whether it relates to both. We also wish to be
able to manipulate differences with respect to more than one skeleton
at once. This can be done by simply extending our terminology so that
one erasure is related to several skeleton/embedding pairs. At present
we guide rippling in this situation by insisting that a rewrite be skeleton
preserving and measure reducing with respect to at least one of the pairs
and discard any which fail these conditions as rippling progresses.

It would be possible to strengthen this heuristic to insist that all
pairs be skeleton preserving and measure reducing but at present we
consider this to be too restrictive since the automatic generation of
embeddings can find unexpected pairs. For instance, if induction has
been invoked several times in the course of the attempt to find the
proof then a number of induction hypotheses have been created many
of which may embed into a given conclusion but only one of which
will actually be used during fertilisation (exploitation of the induction
hypothesis).

" The heuristic used in the implementation is very simple: an upper bound is
placed on the number of ripple steps which increase the measure. (See (Smaill and
Green, 1995) for a discussion of this heuristic.)
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6. Examples, Results

In this section we show some examples to illustrate higher-order embed-
dings. The examples were carried out using the AClam proof planning
system (Richardson et al., 1998). AClam is implemented in AProlog,
a higher order, strongly typed, modular logic programming language.
AProlog is used to provide a declarative language for method precondi-
tion descriptions®. We used AClam version 3.1 (Dennis, 2000) for our
experiments and the appropriate code files can be found in the current
distribution.

AClam is a proof planning system. Proof planning in A Clam works as
follows: A goal is presented to the system and proof methods are applied
to this goal to create subgoals. The goal is a sequent and several of
the methods embody standard sequent calculus inference rules. There
are two sorts of method; compound and atomic. A compound method
is a proof strategy built from methods and methodicals. Methodicals
are analogous to tacticals in an LCF setting. They specify that, for
instance, one method should be applied then another, or a method
should be repeated as many times as possible. Each compound method
thus imposes a structure on its submethods. In this way the step_case
method for induction attempts to ripple the induction conclusion at
least once and does not attempt any other proof method (thus reduc-
ing the search space at this point). It then tries to fertilise (exploit
the induction hypothesis) once it is no longer possible to rewrite the
conclusion. Atomic methods have a preconditions and effects (postcon-
ditions)? presentation. If all of an atomic method’s preconditions are
satisfied then it is applied and the effects are used to determine the
new goal(s) on which planning should be attempted.

AClam’s proof strategies can be illustrated diagrammatically to show
the sequence of steps, loops, repeats and or-choices. Depth-first search
is used to navigate the choices in a strategy to reach a solution.

6.1. LIM+ THEOREM

This theorem was proposed by Bledsoe as a benchmark theorem for
automated theorem provers (Bledsoe, 1990). LIM+ has two hypotheses,
and the difference reduction proof will exploit both of these.

The definition of lim is as follows:

& We use the Teyjus implementation of AProlog.

® In AClam method postconditions are entirely concerned with generating the
next subgoal(s) (the output) — hence they are frequently called effects to illustrate
their more restricted role.
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lim(f,a,l) =
Ve. (0 <e— 30 (0<IA
Vo, (z#alN|z—al <§—|f(z) =1 <e))),

and the LIM+ theorem is:
lim(f,a,l) Alim(g,a,m) = lim(Az. f(z) + g(x),a,l +m).

Here f and g are functions on the reals, a is a point at which we are
taking the limits, and [ and m are the limiting values of f and g at a.
We shall use the following HO rewrite rules in the proof:

U +U3) = (Vi + Vo) = (U =) + (Us — Vo),

U+V|<E = |Ul+|V|<E,

U+V <W = U< hdf(W)AV < half (W),
Ve.Prx ANPyx = Yz.P x AVz.P x,
0<E—-PAQ = 0<hdf(F)— PAO<hdf(F)— Q.

and the rather unusual rule:

0. (PO) AVz. (CxANQz <) = (Riz) A\ (Raz) =
0. (PO) AVz. (CxAQz <d) = RizA (16)
0. (PO) AVz. (CxANQz <J) = Ryx.

We have based our rewrite system on the axiomatisation given by Bled-
soe (Bledsoe, 1990) for first-order resolution theorem provers. There are
some differences: Bledsoe uses unary minus and commutativity and
associativity of 4, rather than the distributivity lemma that we use
here. Most deviant from his presentation however is rule 16 concerning
existential quantification. This rule expresses the fact that we can dis-
tribute 39 through A providing the context is appropriate (obviously
there is no such distributivity rule in general). The primary justification
of thistule is U < X AU <Y — U < min(X,Y) (which Bledsoe
admits as an axiom). The need to provide such a rewrite rule is clearly
a weakness in the automation of the proof and in our opinion it remains
a significant challenge problem.

6.2. THE PROOF STRATEGY

The proof strategy used to tackle the problem is shown in figure 4. The
strategy repeatedly applies one of symbolic evaluation (which is used
primarily to simplify away definitions), quantifier elimination, checking
whether the goal is a propositional tautology and the annotated rewrit-
ing method, which itself is a compound method which first annotates
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annotated rewriting

annotate

symbolic quantifier propositional ripple

evaluation elimination | | tautology
checking

fertilise

rily

remove
annotations

Figure 4. The Proof Strategy for LIM+

the goal with respect to its hypotheses, ripples as much as possible and
then fertilises (appeals to the hypotheses).

6.3. THE RIPPLE PROOF.

We start the proof by replacing each occurrence of lim with its defini-
tion (using symbolic evaluation), then embedding both conjuncts of the
antecedent into the consequent. This results in two embeddings (one
for each conjunct). The first of these embeddings annotates the goal as
follows:

Ve. (0 <e— 38 (0<IA
Ve (z#aN|z—a|l<d—| flz)+g(z)| — _+mT|<e))).

The second is analogous, placing g(z) and m in wave holes.
Exhaustive rippling with the rules above puts the goal into a nor-
mal form thus (still showing only the embedding created by the first
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hypothesis)

ve. (0 < [hall @] >

365.(0 < 0 AVa. (x £ anle—al <8 |(f2) ~ 1| < [half ()] ) A

) Ve. (0 < half () —

36 (0<5AVa. (@£ anlz—al <3 |(ge) —m]| < half ()]

at which point the hypothesis may be used. Notice that the presence

0
of the remaining difference (two occurrences of | half (¢) | ) does not

prevent this appeal to the hypothesis because the € in the assumption
is universally quantified and so we may use any instance of it. The
ability to use universal positions in this way the motivation behind the
inwards rippling introduced in §5.

The second conjunct can then be used to fertilise the other conjunct
appearing in the conclusion, simplifying the goal to (T AT) (where T
is the propositional constant for true) and we are done.

6.4. PROGRAM SYNTHESIS

This example illustrates the synthesis of functional programs in type
theory. Our work is based on a constructive type theory called Oys-
ter (Bundy et al., 1990) (which is a close relation to Nuprl (Constable
et al., 1986)) although AClam does not use Oyster directly. In this
setting the problem of (recursive) program synthesis from specifications
is the problem of (inductive) theorem proving: from a proof of

Vinput. Joutput. (spec input output), (17)

a program satisfying the specification spec can be extracted.

The strategy used for this is shown in figure 5. This is the standard
AClam strategy for approaching proof by induction. The only difference
is that the ripple method is adapted slightly to allow measure increasing
steps as discussed in §5. The step case method here is otherwise iden-
tical to the annotated rewriting method used in the LIM+ theorem. It
is our experience that the method “building blocks” of strategies can
often be reused in this way and part of the thrust of our research is to
find ever more generic strategies.

On a conjecture of the above form, our synthesis proof strategy is
based on that in (Smaill and Green, 1995). It chooses an appropri-
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Induction_top_meth

Ind_strat

Induction_meth

(Base Cases) (Step Cases)

Other Methods... Symbolic Evaluation step_case

- 3

y
remove annotations
f

Figure 5. The Induction Strategy

ate induction scheme and then searches for an existential witness us-
ing middle-out reasoning. A meta-variable N ranging over object-level
terms is introduced to stand for this witness.

Vinput. (specinput (N input)). (18)
As an example we will give a proof of

Vi : list(nat), m : list(nat). In : list(nat).
Vz :nat. (z €IV €m) = x €n,

where the following rewrites are available

X € nil = false, (19)
XeH:T = X=HVXEeT, (20)
PVOVR = PVQVR, (21)

PvQ@Q—PVR = @Q— R, (22)
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The proof-plan chooses an h :: ¢ induction on the input list /. This
results in the annotated step-case goal

m,t : list(nat), h : nat

Vm/. Ing.Vo.z €tVz e€m' — x € ng
v 23)

Vx.xe Vzem—z € (Nhtm).

This embedding captures the difference between the induction hypoth-
esis and the goal.
Rippling with (20) then (21) gives

m,t : list(nat), h : nat
Vm/. Ing. V. xz €tV em — z € ng
- (24)

V:zc.‘:I::hVQUEt\/:zcEm‘T —xz € (N htm).

At this point no more ripples are possible: for example, rippling pre-
vents the repeated use of the associativity of V. Rule (20) is applicable if
we allow the measure to increase, as we do according to §5.4. Applying
this measure-increasing rule instantiates N by higher-order unification
to Auvw.(Nyuvw) :: (Nouvw). These fresh variables Ny and Ny come
from the higher-order unification procedure of AProlog: they capture a
most general instantiation of N. It is the generality of the substitution
which allows subsequent proof to proceed middle-out. (The rule (19) is
also applicable at this point, instantiating N to be the constant function
returning nil. However, this instantiation is rejected since it does not
preserve the embedding.)

m,t : list(nat), h : nat
Vm!. Ing.Vz.z €tV em — z € ng
I_

Vm.‘wthmGthEm‘T

(25)

—|z=(N1htm)Vz e (Nahtm)| ,

N is instantiated to a projection onto its first argument by the appli-
cation of rule (22). The resulting goal is

m,t : list(nat), h : nat

Vm/. Ing. V. z €tV em — z € ng
l_

Ve.x €tVae e€m — x € (Nyhtm)

(26)
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and this can be finished by fertilisation, with the instantiation of Ny
to ng. Composing the instantiations gives (N htmmng) = h :: ng. From
this proof a functional program for list append can be automatically
extracted; different proofs yield different functions still satisfying the
specification.

6.5. OTHER EXAMPLES

AClam contains a benchmark set of over 100 theorems it can suc-
cessfully plan. The vast majority of these plans involve induction or
rippling (or both). This set includes many examples planned using the
first-order versions of the rippling heuristic previously proved in the
Clam system which implemented first-order rippling. Transferring the
full Clam corpus to AClam is an ongoing task but so far we have not
encountered any problems relating to the new embeddings version of
rippling.

A number of case studies have also been conducted exploiting the
higher order aspects of AClam including (Dennis and Smaill, 2001) and
(Dennis and Bundy, 2002).

7. Related work

The idea of rippling dates back to Aubin (Aubin, 1975); Alan Bundy is
responsible for rippling as we have presented it here, and for the concep-
tion of its termination measure and proof-planning in general (Bundy,
1988; Bundy et al., 1993).

An interest in higher-order rippling was initially brought about by
the need to treat binding operators correctly, and latterly by the need
to ripple essentially higher-order syntax (for example in Bledsoe’s LIM
family of theorems which were reported in (Yoshida et al., 1994)).

Chuck Liang was the first to integrate rippling into a higher-order
language, although the related term rewriting was essentially first-
order (Liang, 1992). His representation used A-abstraction to represent
context (the wave-front), the (position of the) wave-hole being marked
by the bound variable; the wave-hole term is carried separately. Thus
annotated terms have type (i — i) xi. (There is a wave-operator to map
terms of this type into i.) Left- and right-projection deliver the wave-
front and hole; applying the former to the latter gives the erasure. This
representation suffers from a certain lack of expressiveness and combi-
natorial complexity when one attempts to generalise it to the coloured
case (see (Gallagher, 1993) for details, extensions and generalisations).
Liang hints at the difficulty in making sensible HO annotations.
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In parallel with the development of rippling in Edinburgh, Dieter
Hutter has formulated a sound calculus of annotated FO terms in which
one can express rippling (Hutter, 1991). In each of these calculi the
underlying term algebra of the logic is extended in order to represent
annotated terms. It is our experience that such an approach makes
it very difficult to demonstrate the necessary properties of rippling.
Furthermore, one is obliged to devise and implement new “extended”
calculi on a logic-by-logic basis. Hutter and Kohlhase have extended
Hutter’s first-order calculus to the A-calculus (Hutter and Kohlhase,
2000). Hutter and Kohlhase’s calculus requires annotated rewrite rules
to be provided and so necessitates more complicated theory and in
particular non-standard definitions of substitution and unification.

Hutter and Kohlhase point out that the embeddings calculus pre-
sented here allows the term (fac) to be embedded into g(fab)c which
violates the intended subterm relation. They comment that they fore-
see that this will cause problems in providing a termination order for
rippling which we have not found to be the case and we do not, in
principle, feel that embeddings of this form should be forbidden in a
full higher-order setting. We know of no examples where an embedding
of this kind is either required or should be forbidden and so it is unclear
whether or not this should be regarded as a problem or a feature.

Higher-order embeddings treat annotated terms in a more abstract
way. Correctness of unification and rewriting are immediate from the
given logic. None of the basic logical machinery needs modification.

It would be interesting to see if embeddings and the associated
operations can be implemented without calling on full higher-order
unification, for example using the restriction to fy-unification possible
with higher-order patterns (Miller, 1991; Nipkow, 1991).

8. Conclusion

The use of embeddings to represent annotated terms allows concise and
implementable characterisation of wave annotations that is closer to
their “intended meaning”. It thus allows a systematic approach to the
use of annotations to guide proof search in higher-order proof systems
and provides a more elegant and extensible description of the process
than calculi which rely on an extended term language.
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Appendix
A. Formal definitions for Embeddings and Annotated Terms

We only consider the case where there is a single-hole under any wave
front (or in the embedding situation where there is only one embed-
ding). These are referred to as simply annotated terms by Basin &
Walsh (Basin and Walsh, 1996) and following them we shall refer to
situations where there is only one embedding as simply embedded. The
presentation for multi-hole wave fronts closely matches the higher-order
system of multiple embeddings and transferal of these results to that
case is straightforward.

In skeletons we also allow wild cards which are used to indicate
sinks. As Basin & Walsh point out, the use of sinks is merely to restrict
even further the possible ripples, so they may safely be ignored when
considering questions of measure.

B. Embeddings

We slightly extend our definition of embeddings to include directional
annotations.

DEFINITION 13. An embedding, e, is:

e ::= leaf(pos, dir)|fn(pos,dir,e, e, ... €])
where pos is a list of integers and dir is a flag inward outward.

We will define a functions epos and dir, on embeddings for extract-
ing the position and direction information of an embedding:

DEFINITION 14. The embedding position function epos : embedding —
list(nat) is defined by,

epos(leaf(pos,dir)) = pos (27)
epos(fn(pos,dir,e1,les, ..., en])) pos (28)

DEFINITION 15. The embedding direction function dir, : embedding —
direction is defined by,

dire(leaf(pos,dir)) = dir (29)
dire(fn(pos,dir,eq,[e2, ... ,ep])) = dir (30)
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We extend our definition of a well-embedding from §4 in the obvious
way to include direction information.

For convenience we define three projections for extracting the era-
sure, skeleton and embedding from an embedding expression.

DEFINITION 16. Let

eraseq(e : sS(t,pos)) = t (31)
skel.(e : s5(t,pos)) = s (32)
emb(e : s5(t,pos)) = e (33)

C. Wave Fronts and Wave Holes

The concepts of a wave fronts and holes are important. We define them
for embeddings as follows:

DEFINITION 17. An embedding in a well embedded embedding expres-
sion, e : s5(t,pos), is a wave front (written wfe(e : sS(t,pos))) iff
we(e : sS5(t,pos)) A pos # epos(e)

DEFINITION 18. An embedding in an well embedded embedding ex-
pression, e : sSt, is a wave hole (written (whe(e : sS(t,pos))) iff
we(e : s5t) A pos = epos(e)

It should be noted that our definition of a wave hole does not ex-
actly match the traditional one. For instance in the term f(| g(h(x))|)

our definition makes f,h and z all wave holes whereas the traditional
definition makes only h a wave hole.

D. Well Annotated Terms

We make some slight changes to Basin & Walsh’s definitions of anno-
tated terms. We've modified their two constructors wfout and wfin
into one wf which takes an additional argument outward or inward.

DEFINITION 19. Well-annotated terms (or wats) are the smallest set
such that,

1. t is a wat for all unannotated terms;

2. wf(dir, f(t1,...,tn) is a wat iff for at least some i, t; = wh(s;)
and for each i where t; = wh(s;), s; is a wat and for each i where
t; # wh(s;), t; is an unannotated term;

jar_embed.tex; 30/09/2004; 19:51; p.32



Higher-Order Annotated Terms 33
3. f(t1,...,ty) is a wat where f is not wf or wh iff each t; is a wat

Since we’re only considering the single-holed case we shall treat skel
as if it was of type wats — wunats. To make the recursion in later
proofs simpler and also provide a case for wh(t) separately so this is a
function from wats U wh (where wh are expression of the form wh(t)
where wats(t)) . Our definition is therefore:

DEFINITION 20. The skeleton function:wats U wh — P(unats) is
defined by

1. skel(x) = x for all variables x;
2. skel(wf(dir, f(t1,...,tn))) = s st. Ji.t; = wh(t)) A s = skel(t)}
3. skel(wh(t)) = skel(t)

4. skel(f(ti,...,ty)) = f(skel(tr),...,skel(ty)) where f # wf and
f # wh.

Similarly we extend the definition of the erasure with an extra case
for wh

DEFINITION 21. The erasure function:wats Uwh — unats is defined
by

1. erase(z) = x for all variables x;

2. erase(wf(dir, f(t1,...,tn))) = f(s1,...,8n) where if t; = wh(t;)

then s; = erase(t;) else s; = t;
3. erase(wh(t)) = erase(t)

4. erase(f(t1,...,tn)) = f(S1,...,8n) where f #wf and f # wh and

s; = erase(t;).

Since we are in a single hole situation we define a function to return
the number of the argument in which a wave hole appears.

DEFINITION 22. The wave hole index (whi(wf(dir, f(t2,...ts)))) is
that i for which t; = wh(s;).

E. Embeddings to Annotated Terms

We provide mappings between well-annotated terms and well-embedded
embeddings. These only apply to the first-order case by which we mean
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terms containing no A-abstractions and in which no wave fronts appear
in the 3rd argument of fn nodes so effectively for fn(pos,dir,e;,e™) :
51(8")S(t1(#")), pos) we can assume that s; = t;. All the proofs of
the following propositions follow by straightforward induction on the
structure of the term ¢.

DEFINITION 23. The annotated term to embedding function fyie :
(wats * list(nat) * direction) — embedding_expression is defined by,
fwte(c, pos, dir) = leaf(pos,dir) : cS(c, pos) (34)
fwte(X, pos, dir) = leaf(pos, dir) : X 5(X, pos) (35)
fwte(tl (t_n),pos, d’LT) = .

fn(pos, dir,emb( fute(t1,1 :: pos, dir)), emb( fute(ti,i :: pos, dir)) ) :

tl(skeh(jhwe(n,i::pos,dir)f)fi
(t1(erasee(fuwte(ti,i i pos,dir)) ), pos

3

)

’

Jwte(wf (dir,ty (t"))), pos, dir') =
emb( fute(twhigt (n)), whi(ti (")) :: pos, dir)) :
skele (fute(Lwnity () whi(t (I7)) = pos, dir)) S
t1(erasec(fuwte(ti i == pos,dir))’), pos)
Juwte(wh(t)), pos,dir) = fuie(t, pos, dir) (38)

PROPOSITION 4.

skele( fute(t, pos,dir)) = skel(t) (39)
PROPOSITION 5.
erasee(fute(t,pos,dir)) = erase(t) (40)
PROPOSITION 6. Ift is a well-annotated term then
we( fute(t, pos, dir)) (41)

We also define a mapping from well-embeddings to annotated terms
and again we can show that this preserves skeletons and erasure and
that the result is a wat.

DEFINITION 24. For two position lists p and p' such that 3p". p =
p' <> p (where <> indicates concatenation of lists), nb(p',p) = hd(p")
where hd(l) is the first element of the list . i.e. nb indicates the next
branch to be taken in navigating a term tree from position p' in order
to reach position p.
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DEFINITION 25. The embedding to wat function, fey, : (embedding_expressionx

(wats — wats Uwh)) — wats is defined by,
fetw(Leaf(pos, dir) : cS(c,pos), h) = h(c) (42)
fetw(Leaf(pos, dir) : X 5(X, pos), h) = h(X) (43)

epos(e) # pos =
ferw(e : sS(ti(te, ..., ty)),pos),h) =

h(wf(di're(e)a (tl (t_l) [tnb(epos(e),pos))/fetw(e : Sg(tnb(epos(e),pos)1p05)1 )\xwh(x))]))

(44)
fetw(fn(posa d’iT, €1, [627 s 7en]) : sl(gn)gtl(t% s 7tn)7p087 h) =

h(t1(ferw(e2 : $25(t2,2 : pos), A\x.x), . .., few(en : $nS(tn,n i pos), A\z.x))).

(45)

PROPOSITION 7. Ife: sSt is a well-embedding then fep, (e : sSt, A1)
is a well-annotated term and fep,(e : sSt, Ax.wh(z)) = wh(t) where t
15 a well annotated term.

Proof. by induction on t. O

PROPOSITION 8.

skel(ferw(e, f)) = skele(e) (46)

Proof. By induction on erase,(e) O
PROPOSITION 9.

erase( feww(tt, \x.x)) = eraseq(tt) (47)

Proof. By induction on tt. O

F. The Measure

The definition of Measure from Basin & Walsh is:

DEFINITION 26. For an annotated term, t, the out-weight of a po-
sition p (in the skeleton) is the sum of the weights of the (possibly
nested) outwards oriented wave-fronts at p. The in — weight is defined
analogously except for inward directed wave-fronts.

They define the weight of a wave front as it’s width (i.e the number of
function symbols between it and the wave hole). We assume all wave
fronts are maximally split and so redefine this as
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DEFINITION 27. The weight (M) of a wave front is defined as fol-

lows:

t1 #wfiM(diT,tl(tQ,...,tn)) =0 (48)
dir # dir' = M(dir,wf(dir',t)) = 0 (49)
M(dir,wf(dir,t)) = s(M(dir,t)) (50)

NB. This only corresponds to Basin & Walsh’s definition of weight
if we assume that the directions of the wave front can’t change be-
tween a wave front and a “proper” wave hole. i.e. expression such as

f(g(x) \ )| mnever occur. The embedding formulation can’t make this

sort of distinction as discussed in §4.

DEFINITION 28. The out-measure, MO(t) of an annotated term t
is a list of length |t| + 1 whose i-th element is the sum of out-weights
for all term positions in t at depth i. The in-measure, MZ(t) is a list
whose i-th element is the sum of in-weights for all term positions in t
at depth i. The measure of an annotated term, M(t) is the pair of out
and in-measures, < MO(t), MZ(t) >

Note that if for a ¢ at position p in the skeleton of an annotated

term, w, M(t) = We(fwte(w),0,p), then the definition of measure for
both formalisms is the same. A sketch proof of this was provided in §5.
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