Suggested reading: 'Stewart' Chapters 5 and 7

Easy Questions

1. Provide formulae for the following indefinite integrals

(a)
$$\int \sin \theta \, d\theta$$

(b)
$$\int \cos x \, \mathrm{d}x$$

(c)
$$\int \sec^2 r \, dr$$

(d)
$$\int s^{13} \, \mathrm{d}s$$

(e)
$$\int \sqrt[7]{t} \, dt$$

(f)
$$\int \frac{1}{u} du$$

(g)
$$\int \frac{1}{|v|} \, \mathrm{d}v$$

(h)
$$\int \sinh w \, \mathrm{d}u$$

(i)
$$\int \cosh x \, \mathrm{d}x$$

(j)
$$\int \operatorname{sech}^2 y \, \mathrm{d}y$$

(k)
$$\int e^z dz$$

(g)
$$\int \frac{1}{|v|} dv$$
 (h)
$$\int \sinh w dw$$
 (i)
$$\int \cosh x dx$$
 (j)
$$\int \operatorname{sech}^{2} y dy$$
 (k)
$$\int e^{z} dz$$
 (l)
$$\int \frac{1}{\sqrt{r^{2} - 1}} dr$$

(m)
$$\int \frac{1}{\sqrt{s^2 + 1}} \, \mathrm{d}s$$

(n)
$$\int \frac{1}{\sqrt{1-t^2}} dt$$
 (0) $\int \frac{1}{1+x^2} dx$

$$(0) \quad \int \frac{1}{1+x^2} \, \mathrm{d}x$$

(p)
$$\int \frac{1}{1-u^2} du$$
 (q)
$$\int \frac{1}{1-v^2} dv$$
 (r)
$$\int \frac{1}{1-w^2} dw$$
 (for $|w| < 1$) (for $|w| \neq 1$)

(q)
$$\int \frac{1}{1 - v^2} dv$$
 (for $|v| > 1$)

(r)
$$\int \frac{1}{1 - w^2} \, \mathrm{d}w$$
(for $|w| \neq 1$)

Try to memorise all of these basic integrals.

2. Calculate the following definite integrals.

(a)
$$\int_{-\pi/2}^{\pi} \sin \theta \, d\theta$$

(b)
$$\int_{-\pi/2}^{\pi} \cos x \, \mathrm{d}x$$

(c)
$$\int_0^1 s^{13} ds$$

$$(d) \int_0^{128} \sqrt[7]{t} \, dt$$

(e)
$$\int_{1}^{e} \frac{1}{u} \, \mathrm{d}u$$

(e)
$$\int_{1}^{e} \frac{1}{u} du$$
 (f)
$$\int_{0}^{\ln 2} \sinh w dw$$
 (h)
$$\int_{0}^{\ln 5} \operatorname{sech}^{2} y dy$$
 (i)
$$\int_{-1}^{1} e^{z} dz$$

(g)
$$\int_0^{\ln 3} \cosh x \, \mathrm{d}x$$

(h)
$$\int_0^{\ln 5} \operatorname{sech}^2 y \, \mathrm{d}y$$

(i)
$$\int_{-1}^{1} e^z \, \mathrm{d}z$$

$$(j) \int_{1}^{\cosh 2} \frac{1}{\sqrt{r^2 - 1}} \, \mathrm{d}r$$

(k)
$$\int_0^{\sinh 3} \frac{1}{\sqrt{s^2 + 1}} ds$$

(1)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} \, \mathrm{d}t$$

$$(m) \quad \int_0^1 \frac{1}{1+x^2} \, \mathrm{d}x$$

Standard Questions

3. (a) By direct differentiation show that $\frac{d}{dx} \left(\frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| + C \right) = \frac{1}{x^2 - 1}$

- i. for any x > 1
- ii. for any |x| < 1
- iii. for any x < -1

(b) By direct differentiation show that $\frac{d}{dx} \left(\ln |x + \sqrt{x^2 + 1}| + C \right) = \frac{1}{\sqrt{x^2 + 1}}$ for any $x \in \mathbb{R}$

 \bigstar (c) By direct differentiation show that $\frac{d}{dx}(\ln|x+\sqrt{x^2-1}|+C) = \frac{1}{\sqrt{x^2-1}}$

- i. for any $x \ge 1$
- ii. for any $x \le -1$

This confirms that $\int \frac{\mathrm{d}x}{\sqrt{x^2+1}} = \ln\left|x+\sqrt{x^2\pm1}\right| + C$ and $\int \frac{\mathrm{d}x}{x^2-1} = \frac{1}{2}\ln\left|\frac{x-1}{x+1}\right| + C$.

4. Provide formulae for the following indefinite integrals

(a)
$$\int \frac{3}{2} \sin(4\theta - \pi) \, d\theta$$
 (b)
$$\int \left(\sinh \frac{3 - w}{2} + \cosh \frac{w - 2}{3} + \operatorname{sech}^{2} \frac{w - 1}{4} + e^{5w - 1/5} \right) \, dw$$

$$\star \text{(c)} \quad \int \left(3 + 7(4s - \frac{1}{3})^{4} \right) \, ds$$

$$\star \text{(d)} \quad \int \left(\frac{\pi}{\sqrt{(2 - r)^{2} - 1}} - \frac{2}{\sqrt{(r - 3)^{2} + 1}} + \frac{3}{\sqrt{1 - (1 - 2r)^{2}}} \right) \, dr$$

$$\text{(e)} \quad \int \left(\sqrt[5]{2t - 3} - \frac{4}{5 - t/2} \right) \, dt$$

$$\star \text{(f)} \quad \int \left(\frac{3}{1 - (2 + x/2)^{2}} - \frac{2}{1 + (3 - x/3)^{2}} \right) \, dx$$

5. Find the following integrals

(a)
$$\int \frac{3}{8 - 4x + x^2} dx$$
 (b) $\int \frac{3}{\sqrt{12x - 6 - 4x^2}} dx$ (c) $\int \frac{2}{9x^2 - 6x - 3} dx$
 \star (d) $\int \frac{7}{\sqrt{25x^2 - 40x + 16}} dx$ (e) $\int \frac{4}{\sqrt{x^2 - 6x + 7}} dx$ \star (f) $\int \frac{5}{\sqrt{4x^2 + 4x + 10}} dx$

6. Show that the following recursion relations hold for the integrals given

$$\bigstar$$
 (a) $K_n = nK_{n-1}$ for $n > 0$, where $K_n = \int_0^\infty x^n e^{-x} dx$.

i. by direct integration calculate K_0 and hence find the value of K_n for any $n \in \mathbb{N}$.

ii. given that $K_{1/2} = \frac{1}{2}\sqrt{\pi}$ what is the value of $K_{7/2}$?

(In fact, the Gamma function, defined by $\Gamma(r+1) = \int_0^\infty x^r e^{-x} dx$ extends the factorial r! to $r \notin \mathbb{N}$)

(b)
$$I_n = \frac{n-1}{n}I_{n-2} - \frac{1}{n}\cos x\sin^{n-1}x$$
 where $I_n = \int \sin^n x \, dx$. Why is this true only for $n \ge 2$?

 \star i. by direct integration calculate I_0 and use the formula to find $\int \sin^6 x \, dx$

ii. by direct integration calculate I_1 and use the formula to find $\int \sin^7 x \, dx$

(c)
$$J_n = \frac{n-1}{n}J_{n-2} + \frac{1}{n}\sin x \cos^{n-1}x$$
 where $I_n = \int \cos^n x \, dx$. Why is this true only for $n \ge 2$?

i. by direct integration calculate J_1 and use the formula to find $\int \cos^5 x \, dx$

ii. by direct integration calculate J_0 and use the formula to find $\int \cos^4 x \, dx$

7. Determine whether or not the following integrals converge and, if they do, evaluate the integrals.

(a)
$$\int_{-e}^{e^2} \ln|t| dt$$
 (b) $\int_{0}^{\pi} \sec^2 \theta d\theta$ (c) $\int_{0}^{9} \frac{dx}{\sqrt[3]{(x-1)^2}}$ \star (d) $\int_{-1}^{1} \frac{du}{1-u^2}$ \star (e) $\int_{-1}^{1} \frac{dv}{\sqrt{1-v^2}}$

Harder Questions

8. (a) Confirm, by differentiating, that
$$\int f'(|x|) dx = \frac{x}{|x|} f(|x|) + C$$
 for $x \neq 0$.

i. Without splitting the domain of integration, use this formula to calculate $\int_{-\pi/2}^{\pi/2} \sin|x| dx$.

ii. Now calculate the same integral by splitting the domain, $\int_{-\pi/2}^{0} \sin|x| dx + \int_{0}^{\pi/2} \sin|x| dx$. Which of these results is the correct one? (*Hint*. It may help to draw a graph of $\sin|x|$.)

(b) Also confirm, by differentiating, that
$$\int f'(|x|) dx = \frac{x}{|x|} (f(|x|) - f(0)) + C$$
 for $x \neq 0$.

i. Without splitting the domain of integration, use this formula to calculate $\int_{-\pi/2}^{\pi/2} \sin|x| dx$.

ii. Now calculate the same integral by splitting the domain, $\int_{-\pi/2}^{0} \sin|x| dx + \int_{0}^{\pi/2} \sin|x| dx$.

(c) Can you explain why the two formulae for $\int f'(|x|) dx$ differ when integrating across x = 0?