Sample Answers for Week 4 MT1121 Derivatives, Series, Complex Numbers

Easy Questions

1. (a)
$$y + 1 = \frac{1}{4}(x - \pi)$$
 (b) $y + 1 = -4(x - \pi)$
2. (a) $\frac{d}{dx}\frac{1}{1+x} = -\frac{1}{(1+x)^2}$ which is never zero. So there are no critical points.
(b) $\frac{d}{dx}(1 + x^4) = 4x^3 = 0$ at $x = 0$ where $1 + x^4 = 1$.
The first non-zero derivative at $x = 0$ is $\frac{d^4}{dx^4}(1 + x^4) = 4! > 0$, so the point $(0, 1)$ is a minimum.
(c) $\frac{d}{dx}(3x + x^3) = 3 + 3x^2$ which is never zero. So there are no critical points.
(d) $\frac{d}{dx}(3x - x^3) = 3 - 3x^2 = 0$ at $x = 1$ where $3x - x^3 = 2$ and $x = -1$ where $3x - x^3 = -2$.
Because these are the only turning points, $(-1, -2)$ is a minimum and $(1, 2)$ is a maximum.
(e) $\frac{d}{dx}\frac{x}{1-x} = \frac{(1-x)\times 1-x(-1)}{(1-x)^2} = \frac{1}{(1-x)^2}$ which is never zero. So there are no critical points.
(f) $\frac{d}{dx}(1 - x^{-4}) = 4x^{-5}$ which is never zero. So there are no critical points.
(g) $\frac{d}{dx}x^5 = 5x^4 = 0$ at $x = 0$ where $x^5 = 0$.
The first non-zero derivative at $x = 0$ is $\frac{d^5}{dx^5}x^5 = 5!$, so $(0, 0)$ is a point of inflection.
(h) $\frac{d}{dx}(2 - x^6) = -6x^5 = 0$ at $x = 0$ where $2 - x^6 = 2$.
The first non-zero derivative at $x = 0$ is $\frac{d^6}{dx^6}(2 - x^6) = -6! < 0$, so the point $(0, 2)$ is a maximum.
3. (a) $1 = e^{i0}$ (b) $-i = e^{i3\pi/2}$
(c) $i = e^{i\pi/2}$ (d) $-1 = e^{i\pi}$
(e) $1 + i = \sqrt{2}e^{-i3\pi/4}$ (h) $-1 - i = \sqrt{2}e^{-i5\pi/4}$
(j) $1 + i\sqrt{3} = 2e^{i2\pi/3}$ (j) $\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (i) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (i) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (i) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (i) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (i) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (i) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (i) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (i) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (j) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (j) $-\sqrt{3} - i = 2e^{i1\pi/6}$
(k) $-1 + i\sqrt{3} = 2e^{i2\pi/3}$ (k) $-1 + i\sqrt{3} =$

4. (a)
$$e^x = \sum_{k=0}^{\infty} \frac{x}{k!} = 1 + x + \frac{x}{2} + \frac{x}{3!} + \frac{x}{4!} + \dots + \frac{x}{k!} + \dots$$

(b)
$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + \dots$$

(c)
$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots$$

(d)
$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{k+1} \frac{x^k}{k} + \dots$$

Standard Questions

5. (a) $i^i = (e^{i\pi/2})^i = e^{-\pi/2}$ *(b) $i^{-i} = (e^{i\pi/2})^{-i} = e^{\pi/2}$ (c) $(-i)^i = (e^{i3\pi/2})^i = e^{-3\pi/2}$ (d) $\ln i = \ln e^{i\pi/2} = i\pi/2$ *(e) $\ln(-1) = \ln e^{i\pi} = i\pi$ (f) $\ln(-\sqrt{3} - i) = \ln(2e^{i7\pi/6}) = \ln 2 + i7\pi/6$ The answers are not unique because the arguments of i, -i, -1 and $-\sqrt{3}-i$ can be changed by any multiple of 2π . $\frac{8t}{4+t^2}$ (2, 2)*6. $\frac{8t}{4+t^2}$ for $t \in \mathbb{R}$. The function is zero at t = 0; the function is odd; it approaches zero as $t \to \pm \infty$. $\frac{\mathrm{d}}{\mathrm{d}t}\frac{8t}{4+t^2} = 8\frac{(4+t^2)-t(2t)}{(4+t^2)^2} = 8\frac{4-t^2}{(4+t^2)^2}$ which is zero at t = 2, where $\frac{8t}{4+t^2} = \frac{16}{4+4} = 2$ and at t = -2, where $\frac{8t}{4+t^2} = \frac{-16}{4+4} = -2$. These are the only critical points and so (-2, -2) is a minimum and (2,2) is a maximum. (-2, -2)7. *(a) The curve A: $2x = \frac{y^2}{2} - 2$. At (x, y) = (0, 2) we have $2 \times 0 = \frac{2^2}{2} - 2$ which is true, so (0, 2) is on the curve. At $\left(-\frac{1}{2},\sqrt{2}\right)$ we have $2\times\left(-\frac{1}{2}\right) = \frac{(\sqrt{2})^2}{2} - 2 = -1$ which is true, so $\left(-\frac{1}{2},\sqrt{2}\right)$ is on the curve. *(b) Differentiating curve A, gives $2 = y \frac{dy}{dx}\Big|_A$ so that $\frac{dy}{dx}\Big|_A = 2/y$ and $\frac{dy}{dx}\Big|_A = 2/2 = 1$ at (0, 2). Differentiating curve $B\left(2x=b-\frac{y^2}{c}\right)$ gives $2=-2\frac{y}{c}\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_B$ so that $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_B=-c/y$. At (0,2) we find $\frac{dy}{dx}\Big|_{P} = -c/2$ and so for A and B to cross at right angles, $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{A} \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{B} = 1 \times (-c/2) = -1$, so that c = 2. For curve B to pass through (0,2) we must have $2 \times 0 = b - \frac{2^2}{2}$ so that b = 2. (c) At $\left(-\frac{1}{2}, \sqrt{2}\right)$ we have $\frac{dy}{dx}\Big|_{A} = 2/y = 2/\sqrt{2} = \sqrt{2}$ Differentiating curve $P\left(2x=p-\frac{y^2}{q}\right)$ gives $2=-2\frac{y}{q}\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_P$ so that $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_P=-q/y$. At $\left(-\frac{1}{2},\sqrt{2}\right)$ we find $\left.\frac{\mathrm{d}y}{\mathrm{d}x}\right|_{P} = -q/\sqrt{2}$, and so for A and P to cross at right angles, $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{A} \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{B} = \sqrt{2} \times (-q/\sqrt{2}) = -1$, so that q = 1. For curve P to pass through $\left(-\frac{1}{2},\sqrt{2}\right)$ we must have $2\times\left(-\frac{1}{2}\right) = p - \frac{(\sqrt{2})^2}{1}$ so that p = 1. 8. (a) For r = 1 we consider $y = xe^{1-x}$, giving $\frac{\mathrm{d}y}{\mathrm{d}x} = e^{1-x} - xe^{1-x} = (1-x)e^{1-x}$ $x^r e^{1-x}$ $\left(\frac{1}{2}, (e/2)^{1/2}\right)$ so that $\frac{dy}{dx} = 0$ at x = 1where $y = 1e^{1-1} = 1$. This is the only critical point and since $xe^{1-x} \ge 0$ for $x \ge 0$ it must be a maximum.

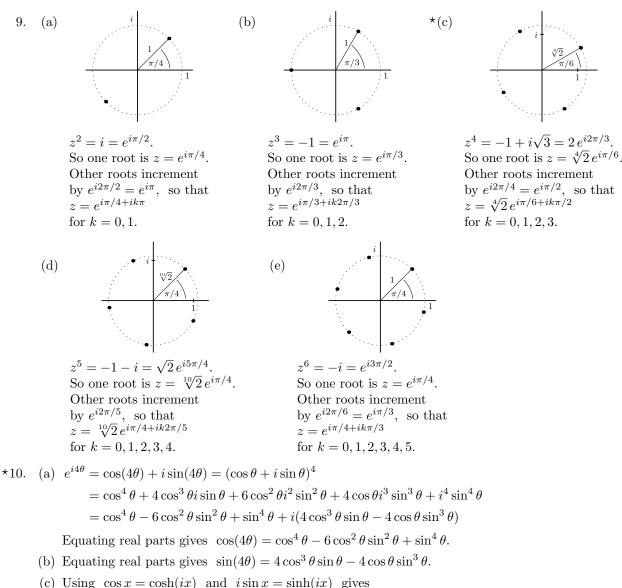
(b) For 0 < r < 1 we consider $y = x^r e^{1-x}$, giving $\frac{dy}{dx} = rx^{r-1}e^{1-x} - x^r e^{1-x} = \frac{r-x}{x^{1-r}}e^{1-x}$ so that $\frac{dy}{dx} = 0$ at x = r < 1where $y = r^r e^{1-r}$. This is the only critical point

and since $x^r e^{1-x} \ge 0$ for $x \ge 0$ it must be a maximum. Moreover, because the curve passes

through (1, 1), we must have $r^r e^{1-r} > 1$. For $r = \frac{1}{2}$ the maximum is at $(\frac{1}{2}, (e/2)^{1/2})$. *(c) For r > 1 we consider $y = x^r e^{1-x}$, giving $\frac{dy}{dx} = rx^{r-1}e^{1-x} - x^r e^{1-x} = (r-x)x^{r-1}e^{1-x}$ so that $\frac{dy}{dx} = 0$ at x = 0 and x = r > 1y = 0 at x = 0 and $y = r^r e^{1-r}$ at x = r.

> There are only two critical points so that (0,0) is a local minimum and $(r, r^r e^{1-r})$ is a maximum.

Moreover, because the curve passes through (1, 1), we must have $r^r e^{1-r} > 1$. For r = 2 the maximum is at (2, 4/e).



$$\cosh(i4\theta) = \cosh^4(i\theta) - 6\cosh^2(i\theta)\frac{\sinh^2(i\theta)}{i^2} + \frac{\sinh^4(i\theta)}{i^4}$$
$$= \cosh^4(i\theta) + 6\cosh^2(i\theta)\sinh^2(i\theta) + \sinh^4(i\theta)$$

So, setting $i\theta = A$ gives: $\cosh(4A) = \cosh^4 A + 6\cosh^2 A \sinh^2 A + \sinh^4 A$.

$$\begin{split} \text{Also:} \quad & \frac{\sinh(i\theta)}{i} = 4\cosh^3(i\theta)\frac{\sinh(i\theta)}{i} - 4\cosh(i\theta)\frac{\sinh^3(i\theta)}{i^3} \\ & \text{and so } \sinh(i\theta) = 4\cosh^3(i\theta)\sinh(i\theta) + 4\cosh(i\theta)\sinh^3(i\theta) \\ \text{So, setting } i\theta = A \text{ gives: } \sinh(4A) = 4\cosh^3A\sinh A + 4\cosh A\sinh^3A. \\ 11. (a) \quad & y = e^{x^2}\sqrt{1+x}\sin^2x: \quad \frac{dy}{dx} = 2xe^{x^2}\sqrt{1+x}\sin^2x + e^{x^2}\frac{1/2}{\sqrt{1+x}}\sin^2x + e^{x^2}\sqrt{1+x}2\sin x\cos x \\ (b) \quad & x^2 - 4xy + y^2 = \frac{2}{xy}: \quad 2x - 4y - 4x\frac{dy}{dx} + 2y\frac{dy}{dx} = \frac{-2}{(xy)^2}(y + x\frac{dy}{dx}) \\ & (\frac{2x}{(xy)^2} + 2y - 4x)\frac{dy}{dx} = \frac{-2y}{(xy)^2} - 2x + 4y \\ & \frac{dy}{dx} = \frac{2y - x - 1/(x^2y)}{1/(xy^2) + y - 2x} \\ (c) \quad & x = \cos\theta, \ y = \sin\theta: \quad \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\cos\theta}{-\sin\theta} = -\cot\theta \\ \star(d) \quad & y = t^3 - t, \ x = t^2 - t: \quad \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 1}{2t - 1} \\ \star(e) \quad & y - e^{-xy} = x - e^{xy}: \quad \frac{dy}{dx} - e^{-xy}(-y - x\frac{dy}{dx}) = 1 - e^{xy}(y + x\frac{dy}{dx}) \\ & (1 + xe^{-xy} + xe^{xy})\frac{dy}{dx} = 1 - ye^{xy} - ye^{-xy} \\ & \frac{dy}{dx} = \frac{1 - y(e^{xy} + e^{-xy})}{1 + x(e^{xy} + e^{-xy})} \end{split}$$

12. (a) True.
$$e^{i\pi} = \cos \pi + i \sin \pi = -1$$

- (b) True. $e^{i2\pi} = \cos(2\pi) + i\sin(2\pi) = 1$
- (c) True. $e^{i\pi/3} + e^{-i\pi/3} = \cos(\pi/3) + i\sin(\pi/3) + \cos(\pi/3) i\sin(\pi/3) = 2\cos(\pi/3) = 2 \times \frac{1}{2} = 1$ (d) True. $e^{i2\pi/3} + e^{-i2\pi/3} = \cos(2\pi/3) + i\sin(2\pi/3) + \cos(2\pi/3) i\sin(2\pi/3) = 2\cos(2\pi/3) = 2 \times (-\frac{1}{2}) = -1$
- (e) $az^2 + bz + c = 0$ has the roots $z = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ which would be complex if $b^2 4ac < 0$. There are two roots unless $b^2 = 4ac$ when there is only one root.
 - The statement is true only if we interpret there being two identical roots whenever $b^2 = 4ac$.
- (f) True. To have a non-real root we must have $b^2 4ac < 0$, in which case the other root is also not real.

*13. (a)
$$\frac{1}{1+x} = \frac{1}{1+x}$$
 $\frac{1}{1+0} = 1$ giving $\frac{1}{1+x} = 1 - x + 2! \frac{x^2}{2!} - 3! \frac{x^3}{3!} + \cdots$
 $\frac{d}{dx} \frac{1}{1+x} = \frac{-1}{(1+x)^2}$ $\frac{-1}{(1+0)^2} = -1$ $= 1 - x + x^2 - x^3 + \cdots$
 $\frac{d^2}{dx^2} \frac{1}{1+x} = \frac{1 \times 2}{(1+x)^3}$ $\frac{2!}{(1+0)^3} = 2!$ $= \sum_{k=0}^{\infty} (-1)^k x^k$
 $\frac{d^3}{dx^3} \frac{1}{1+x} = \frac{-3!}{(1+x)^4}$ $\frac{-3!}{(1+0)^4} = -3!$
(b) $\frac{d}{dz} \tan^{-1} z = \frac{1}{1+z^2} = \sum_{k=0}^{\infty} (-1)^k z^{2k}$ so $\tan^{-1} z = \int \sum_{k=0}^{\infty} (-1)^k z^{2k} dz = C + \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{2k+1}$
At $z = 0$: $C = \tan^{-1} 0 = 0$, so that $\tan^{-1} z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{2k+1}$.

(c) The radius of convergence should be the same as the series for $\frac{1}{1+z^2}$ which has singularities at $z = \pm i$.

Thus the distance to the nearest singularity is $|\pm i - 0| = 1$, making the radius of convergence 1.

Harder Questions

- 14. (a) Polar coordinates (r,θ) are defined parametrically so that $x = r\cos\theta$ and $y = r\sin\theta$
 - i. With θ constant: $\frac{dx}{dr}\Big|_{\theta} = \cos\theta$ and $\frac{dy}{dr}\Big|_{\theta} = \sin\theta$, so $\frac{dy}{dx}\Big|_{\theta} = \frac{dy}{dr}\Big|_{\theta} / \frac{dx}{dr}\Big|_{\theta} = \frac{\sin\theta}{\cos\theta} = \tan\theta$ ii. With r constant: $\frac{dx}{dr}\Big|_{r} = -r\sin\theta$ and $\frac{dy}{dr}\Big|_{r} = r\cos\theta$, so $\frac{dy}{dx}\Big|_{r} = \frac{dy}{dr}\Big|_{r} / \frac{dx}{dr}\Big|_{r} = \frac{r\cos\theta}{-r\sin\theta} = -\cot\theta$
 - iii. Where the curves intersect (having the same values of r and θ) we find that

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{\theta} \times \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{r} = \tan\theta\cot\theta = -1$$

showing that the curves intersect at right angles.

- (b) Parabolic coordinates (u, v) are defined parametrically so that $2x = u^2 v^2$ and y = uv.
 - i. With v constant: $2\frac{dx}{du}\Big|_v = 2u$ and $\frac{dy}{du}\Big|_v = v$, so $\frac{dy}{dx}\Big|_v = \frac{dy}{dr}\Big|_v / \frac{dx}{dr}\Big|_v = v/u$ ii. With u constant: $2\frac{dx}{dv}\Big|_u = -2v$ and $\frac{dy}{dv}\Big|_u = u$, so $\frac{dy}{dx}\Big|_u = \frac{dy}{dr}\Big|_u / \frac{dx}{dr}\Big|_u = -u/v$
 - iii. Where the curves intersect (having the same values of u and v) we find that

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{v} \times \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{v} = \frac{v}{u} \times \left(-\frac{u}{v}\right) = -1$$

showing that the curves intersect at right angles.

- (c) Elliptic coordinates (s,t) are defined such that $x = \cosh s \cos t$ and $y = \sinh s \sin t$.
 - i. With s constant: $2\frac{dx}{dt}\Big|_s = -\cosh s \sin t$ and $\frac{dy}{dt}\Big|_s = \sinh s \cos t$ so $\frac{dy}{dt}\Big|_s = \frac{dy}{dt}\Big|_s / \frac{dx}{dt}\Big|_s = \frac{\sinh s \cos t}{-\cosh s \sin t} = -\tanh s \cot t$
 - ii. With t constant: $2\frac{dx}{ds}\Big|_t = \sinh s \cos t$ and $\frac{dy}{ds}\Big|_t = \cosh s \sin t$ so $\frac{dy}{ds}\Big|_t = \frac{dy}{ds}\Big|_t / \frac{dx}{ds}\Big|_t = \frac{\cosh s \sin t}{\sinh s \cos t} = \coth s \tan t$
 - iii. Where the curves intersect (having the same values of s and t) we find that

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{s} \times \frac{\mathrm{d}t}{\mathrm{d}x}\Big|_{v} = -\tanh s \cot t \times \coth s \tan t = -1$$

showing that the curves intersect at right angles.

- iv. Since $x^2 = \cosh^2 s \cos^2 t$ and $y^2 = \sinh^2 s \sin^2 t$:
 - with s constant, the relation $\cos^2 t + \sin^2 t = 1$ shows that $\frac{x^2}{\cosh^2 s} + \frac{y^2}{\sinh^2 s} = 1$ which represents ellipses that intersect the x-axis at $x = \pm \cosh s$, and the y-axis at $y = \pm \sinh s$.
 - with t constant, the relation $\cosh^2 s \sinh^2 s = 1$ shows that $\frac{x^2}{\cos^2 t} \frac{y^2}{\sin^2 t} = 1$
 - which represents hyperbolae that intersect the x-axis at $x = \pm \cos t$, having asymptotes $y = \pm x \tan t$ for large values of |x| and |y|.

