
Sample Answers for Week 4 MT1121 Derivatives, Series, Complex Numbers

Easy Questions

1. (a) y + 1 = 1
4 (x− π) (b) y + 1 = −4(x− π)

2. (a) d

dx

1

1 + x
= − 1

(1 + x)2
which is never zero. So there are no critical points.

(b) d

dx
(1 + x4) = 4x3 = 0 at x = 0 where 1 + x4 = 1.

The first non-zero derivative at x = 0 is d4

dx4
(1 + x4) = 4! > 0, so the point (0, 1) is a minimum.

(c) d

dx
(3x + x3) = 3 + 3x2 which is never zero. So there are no critical points.

(d) d

dx
(3x− x3) = 3− 3x2 = 0 at x = 1 where 3x− x3 = 2 and x = −1 where 3x− x3 = −2.

Because these are the only turning points, (−1,−2) is a minimum and (1, 2) is a maximum.

(e) d

dx

x

1− x
= (1− x)×1− x(−1)

(1− x)2
= 1

(1− x)2
which is never zero. So there are no critical points.

(f) d

dx
(1− x−4) = 4x−5 which is never zero. So there are no critical points.

(g) d

dx
x5 = 5x4 = 0 at x = 0 where x5 = 0.

The first non-zero derivative at x = 0 is d5

dx5
x5 = 5!, so (0, 0) is a point of inflection.

(h) d

dx
(2− x6) = −6x5 = 0 at x = 0 where 2− x6 = 2.

The first non-zero derivative at x = 0 is d6

dx6
(2− x6) = −6! < 0, so the point (0, 2) is a maximum.

3. (a) 1 = ei0 (b) −i = ei3π/2

(c) i = eiπ/2 (d) −1 = eiπ

(e) 1 + i =
√

2eiπ/4 (f) 1− i =
√

2e−iπ/4

(g) −1 + i =
√

2e−i3π/4 (h) −1− i =
√

2e−i5π/4

(i) 1 + i
√

3 = 2eiπ/3 (j)
√

3− i = 2ei11π/6

(k) −1 + i
√

3 = 2ei2π/3 (l) −
√

3− i = 2ei7π/6

These are not the only answers because the argument
can be changed by any multiple of 2π.

4. (a) ex =
∞∑

k=0

xk

k!
= 1 + x +

x2

2
+

x3

3!
+

x4

4!
+ · · ·+ xk

k!
+ · · ·

(b) sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)k x2k+1

(2k + 1)!
+ · · ·

(c) cos x =
∞∑

k=0

(−1)k x2k

(2k)!
= 1− x2

2
+

x4

4!
− x6

6!
+ · · ·+ (−1)k x2k

(2k)!
+ · · ·

(d) ln(1 + x) =
∞∑

k=1

(−1)k+1 xk

k
= x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)k+1 xk

k
+ · · ·
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Standard Questions

5. (a) ii = (eiπ/2)i = e−π/2 ?(b) i−i = (eiπ/2)−i = eπ/2

(c) (−i)i = (ei3π/2)i = e−3π/2 (d) ln i = ln eiπ/2 = iπ/2
?(e) ln(−1) = ln eiπ = iπ (f) ln(−

√
3− i) = ln(2ei7π/6) = ln 2 + i7π/6

The answers are not unique because the arguments of i, −i, −1 and −
√

3−i can be changed by any
multiple of 2π.

?6. 8t

4 + t2
for t ∈ R. The function is zero at t = 0;

the function is odd; it approaches zero as t → ±∞.
d

dt

8t

4 + t2
= 8 (4 + t2)− t(2t)

(4 + t2)2
= 8 4− t2

(4 + t2)2

which is zero at t = 2, where 8t

4 + t2
= 16

4 + 4
= 2

and at t = −2, where 8t

4 + t2
= −16

4 + 4
= −2.

These are the only critical points and so (−2,−2) is a
minimum and (2, 2) is a maximum.

7. ?(a) The curve A: 2x = y2

2
− 2.

At (x, y) = (0, 2) we have 2×0 = 22

2
− 2 which is true, so (0, 2) is on the curve.

At
(
− 1

2 ,
√

2
)

we have 2×(− 1
2 ) = (

√
2)2

2
− 2 = −1 which is true, so

(
− 1

2 ,
√

2
)

is on the curve.

?(b) Differentiating curve A, gives 2 = y
dy

dx

∣∣∣
A

so that dy

dx

∣∣∣
A

= 2/y and dy

dx

∣∣∣
A

= 2/2 = 1 at (0, 2).

Differentiating curve B
(
2x = b− y2

c

)
gives 2 = −2y

c

dy

dx

∣∣∣
B

so that dy

dx

∣∣∣
B

= −c/y.

At (0, 2) we find dy

dx

∣∣∣
B

= −c/2 and so for A and B to cross at right angles,
dy

dx

∣∣∣
A

dy

dx

∣∣∣
B

= 1× (−c/2) = −1, so that c = 2.

For curve B to pass through (0, 2) we must have 2×0 = b− 22

2
so that b = 2.

(c) At
(
− 1

2 ,
√

2
)

we have dy

dx

∣∣∣
A

= 2/y = 2/
√

2 =
√

2

Differentiating curve P
(
2x = p− y2

q

)
gives 2 = −2y

q

dy

dx

∣∣∣
P

so that dy

dx

∣∣∣
P

= −q/y.

At
(
− 1

2 ,
√

2
)

we find dy

dx

∣∣∣
P

= −q/
√

2, and so for A and P to cross at right angles,
dy

dx

∣∣∣
A

dy

dx

∣∣∣
P

=
√

2× (−q/
√

2) = −1, so that q = 1.

For curve P to pass through
(
− 1

2 ,
√

2
)

we must have 2×(− 1
2 ) = p− (

√
2)2

1
so that p = 1.

8. (a) For r = 1 we consider y = xe1−x, giving
dy

dx
= e1−x − xe1−x = (1− x)e1−x

so that dy

dx
= 0 at x = 1

where y = 1e1−1 = 1.

This is the only critical point
and since xe1−x ≥ 0 for x ≥ 0
it must be a maximum.
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(b) For 0 < r < 1 we consider y = xre1−x, giving
dy

dx
= rxr−1e1−x − xre1−x = r − x

x1−r
e1−x

so that dy

dx
= 0 at x = r < 1

where y = rre1−r.

This is the only critical point
and since xre1−x ≥ 0 for x ≥ 0
it must be a maximum.

Moreover, because the curve passes
through (1, 1), we must have rre1−r > 1.

For r = 1
2 the maximum is at

(
1
2 , (e/2)1/2

)
.

?(c) For r > 1 we consider y = xre1−x, giving
dy

dx
= rxr−1e1−x−xre1−x = (r−x)xr−1e1−x

so that dy

dx
= 0 at x = 0 and x = r > 1

y = 0 at x = 0 and y = rre1−r at x = r.

There are only two critical points
so that (0, 0) is a local minimum
and (r, rre1−r) is a maximum.

Moreover, because the curve passes
through (1, 1), we must have rre1−r > 1.

For r = 2 the maximum is at (2, 4/e).

9. (a)

z2 = i = eiπ/2.
So one root is z = eiπ/4.
Other roots increment
by ei2π/2 = eiπ, so that
z = eiπ/4+ikπ

for k = 0, 1.

(b)

z3 = −1 = eiπ.
So one root is z = eiπ/3.
Other roots increment
by ei2π/3, so that
z = eiπ/3+ik2π/3

for k = 0, 1, 2.

?(c)

z4 = −1 + i
√

3 = 2 ei2π/3.
So one root is z = 4

√
2 eiπ/6.

Other roots increment
by ei2π/4 = eiπ/2, so that
z = 4

√
2 eiπ/6+ikπ/2

for k = 0, 1, 2, 3.

(d)

z5 = −1− i =
√

2 ei5π/4.
So one root is z = 10

√
2 eiπ/4.

Other roots increment
by ei2π/5, so that
z = 10

√
2 eiπ/4+ik2π/5

for k = 0, 1, 2, 3, 4.

(e)

z6 = −i = ei3π/2.
So one root is z = eiπ/4.
Other roots increment
by ei2π/6 = eiπ/3, so that
z = eiπ/4+ikπ/3

for k = 0, 1, 2, 3, 4, 5.

?10. (a) ei4θ = cos(4θ) + i sin(4θ) = (cos θ + i sin θ)4

= cos4 θ + 4 cos3 θi sin θ + 6 cos2 θi2 sin2 θ + 4 cos θi3 sin3 θ + i4 sin4 θ

= cos4 θ − 6 cos2 θ sin2 θ + sin4 θ + i(4 cos3 θ sin θ − 4 cos θ sin3 θ)

Equating real parts gives cos(4θ) = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ.

(b) Equating real parts gives sin(4θ) = 4 cos3 θ sin θ − 4 cos θ sin3 θ.

(c) Using cos x = cosh(ix) and i sinx = sinh(ix) gives

cosh(i4θ) = cosh4(iθ)− 6 cosh2(iθ) sinh2(iθ)

i2
+ sinh4(iθ)

i4

= cosh4(iθ) + 6 cosh2(iθ) sinh2(iθ) + sinh4(iθ)

So, setting iθ = A gives: cosh(4A) = cosh4 A + 6 cosh2 A sinh2 A + sinh4 A.
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Also: sinh(i4θ)

i
= 4 cosh3(iθ) sinh(iθ)

i
− 4 cosh(iθ) sinh3(iθ)

i3

and so sinh(i4θ) = 4 cosh3(iθ) sinh(iθ) + 4 cosh(iθ) sinh3(iθ)

So, setting iθ = A gives: sinh(4A) = 4 cosh3 A sinhA + 4 cosh A sinh3 A.

11. (a) y = ex2√
1 + x sin2 x: dy

dx
= 2xex2√

1 + x sin2 x + ex2 1/2√
1 + x

sin2 x + ex2√
1 + x 2 sinx cos x

(b) x2 − 4xy + y2 = 2

xy
: 2x− 4y − 4x

dy

dx
+ 2y

dy

dx
= −2

(xy)2

(
y + x

dy

dx

)
( 2x

(xy)2
+ 2y − 4x

)dy

dx
= −2y

(xy)2
− 2x + 4y

dy

dx
= 2y − x− 1/(x2y)

1/(xy2) + y − 2x

(c) x = cos θ, y = sin θ: dy

dx
= dy/dθ

dx/dθ
= cos θ

− sin θ
= − cot θ

?(d) y = t3−t, x = t2−t: dy

dx
= dy/dt

dx/dt
= 3t2 − 1

2t− 1

?(e) y − e−xy = x− exy: dy

dx
− e−xy

(
−y − x

dy

dx

)
= 1− exy

(
y + x

dy

dx

)(
1 + xe−xy + xexy

)dy

dx
= 1− yexy − ye−xy

dy

dx
= 1− y(exy + e−xy)

1 + x(exy + e−xy)

(f) y = x2e1−x
√

x2 + 2

(x + 3)(x2 − 1)
: ln y = 2 lnx+1−x+ 1

2 ln(x2+2)−ln(x+3)−ln(x2−1)
1

y

dy

dx
= 2

x
− 1 + 1

2

2x

x2 + 2
− 1

x + 3
− 2x

x2 − 1

dy

dx
= x2e1−x

√
x2 + 2

(x + 3)(x2 − 1)

(
2

x
−1+ x

x2 + 2
− 1

x + 3
− 2x

x2 − 1

)
12. (a) True. eiπ = cos π + i sinπ = −1

(b) True. ei2π = cos(2π) + i sin(2π) = 1
(c) True. eiπ/3 + e−iπ/3 = cos(π/3) + i sin(π/3) + cos(π/3)− i sin(π/3) = 2 cos(π/3) = 2× 1

2 = 1
(d) True. ei2π/3 + e−i2π/3 = cos(2π/3)+ i sin(2π/3)+cos(2π/3)− i sin(2π/3) = 2 cos(2π/3) = 2×(− 1

2
) = −1

(e) az2 + bz + c = 0 has the roots z = −b±
√

b2 − 4ac

2a
which would be complex if b2 − 4ac < 0.

There are two roots unless b2 = 4ac when there is only one root.
The statement is true only if we interpret there being two identical roots whenever b2 = 4ac.

(f) True. To have a non-real root we must have b2− 4ac < 0, in which case the other root is also not
real.

?13. (a) 1

1 + x
= 1

1 + x

1

1 + 0
= 1

d

dx

1

1 + x
= −1

(1 + x)2
−1

(1 + 0)2
= −1

d2

dx2

1

1 + x
= 1×2

(1 + x)3
2!

(1 + 0)3
= 2!

d3

dx3

1

1 + x
= −3!

(1 + x)4
−3!

(1 + 0)4
= −3!

giving 1

1 + x
= 1− x + 2!x

2

2!
− 3!x

3

3!
+ · · ·

= 1− x + x2 − x3 + · · ·

=
∞∑

k=0

(−1)kxk

(b) d

dz
tan−1 z = 1

1 + z2
=
∞∑

k=0

(−1)kz2k so tan−1 z =
∫ ∞∑

k=0

(−1)kz2k dz = C +
∞∑

k=0

(−1)k z2k+1

2k + 1

At z = 0: C = tan−1 0 = 0, so that tan−1 z =
∞∑

k=0

(−1)k z2k+1

2k + 1
.

(c) The radius of convergence should be the same as the series for 1

1 + z2

which has singularities at z = ±i.
Thus the distance to the nearest singularity is |±i− 0| = 1, making the radius of convergence 1.
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Harder Questions

14. (a) Polar coordinates (r, θ) are defined parametrically so that x = r cos θ and y = r sin θ

i. With θ constant: dx

dr

∣∣∣
θ

= cos θ and dy

dr

∣∣∣
θ

= sin θ, so dy

dx

∣∣∣
θ

= dy

dr

∣∣∣
θ

/
dx

dr

∣∣∣
θ

= sin θ

cos θ
= tan θ

ii. With r constant: dx

dr

∣∣∣
r
= −r sin θ and dy

dr

∣∣∣
r
= r cos θ, so dy

dx

∣∣∣
r
= dy

dr

∣∣∣
r

/
dx

dr

∣∣∣
r
= r cos θ

−r sin θ
= − cot θ

iii. Where the curves intersect (having the same values of r and θ) we find that

dy

dx

∣∣∣
θ
× dy

dx

∣∣∣
r

= tan θ cot θ = −1

showing that the curves intersect at right angles.
(b) Parabolic coordinates (u, v) are defined parametrically so that 2x = u2 − v2 and y = uv.

i. With v constant: 2dx

du

∣∣∣
v

= 2u and dy

du

∣∣∣
v

= v, so dy

dx

∣∣∣
v

= dy

dr

∣∣∣
v

/
dx

dr

∣∣∣
v

= v/u

ii. With u constant: 2dx

dv

∣∣∣
u

= −2v and dy

dv

∣∣∣
u

= u, so dy

dx

∣∣∣
u

= dy

dr

∣∣∣
u

/
dx

dr

∣∣∣
u

= −u/v

iii. Where the curves intersect (having the same values of u and v) we find that

dy

dx

∣∣∣
v
× dy

dx

∣∣∣
v

= v

u
×

(
−u

v

)
= −1

showing that the curves intersect at right angles.
(c) Elliptic coordinates (s, t) are defined such that x = cosh s cos t and y = sinh s sin t.

i. With s constant: 2dx

dt

∣∣∣
s

= − cosh s sin t and dy

dt

∣∣∣
s

= sinh s cos t

so dy

dt

∣∣∣
s

= dy

dt

∣∣∣
s

/
dx

dt

∣∣∣
s

= sinh s cos t

− cosh s sin t
= − tanh s cot t

ii. With t constant: 2dx

ds

∣∣∣
t
= sinh s cos t and dy

ds

∣∣∣
t
= cosh s sin t

so dy

ds

∣∣∣
t
= dy

ds

∣∣∣
t

/
dx

ds

∣∣∣
t
= cosh s sin t

sinh s cos t
= coth s tan t

iii. Where the curves intersect (having the same values of s and t) we find that

dy

dx

∣∣∣
s
× dt

dx

∣∣∣
v

= − tanh s cot t× coth s tan t = −1

showing that the curves intersect at right angles.
iv. Since x2 = cosh2 s cos2 t and y2 = sinh2 s sin2 t:

• with s constant, the relation cos2 t + sin2 t = 1 shows that x2

cosh2 s
+ y2

sinh2 s
= 1

which represents ellipses that intersect the x-axis at x = ± cosh s, and the y-axis at
y = ± sinh s.

• with t constant, the relation cosh2 s− sinh2 s = 1 shows that x2

cos2 t
− y2

sin2 t
= 1

which represents hyperbolae that intersect the x-axis at x = ± cos t, having asymptotes
y = ±x tan t for large values of |x| and |y|.
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