Sample Answers for Week 4 | MT1121 | Derivatives, Series, Complex Numbers

Easy Questions

L (a) y+1=2i(x-n) (b) y+1=—-4(x—m)

d 1 1 S .- .
2. (a) Witz Otape which is never zero. So there are no critical points.
(b) i(1—1—:54) =423 =0 at z = 0 where 1 + 2% = 1.

dx
4

The first non-zero derivative at x = 0 is %(1 + %) = 4! > 0, so the point (0, 1) is a minimum.
X

(c) %(?m + x3) = 3 + 322 which is never zero. So there are no critical points.
(d) di(S:cfx‘g) =3—-322=0at z =1 where 3x — 2% = 2 and x = —1 where 3z — 2% = —2.
xX

Because these are the only turning points, (—1, —2) is a minimum and (1, 2) is a maximum.

(e) dil i - = - ;r()lxlm—);c(—l) =a 1:v)2 which is never zero. So there are no critical points.
21— _ _
(f) di(l — 2~%) = 4275 which is never zero. So there are no critical points.
x
(g) dix‘r’ =52t = 0 at z = 0 where 2° = 0.
x
5
The first non-zero derivative at = 0 is %xﬁ = 5!, s0 (0,0) is a point of inflection.
x
(h) (%(2—956) = —62° =0 at x = 0 where 2 — 25 = 2.
x
6
The first non-zero derivative at z = 0 is %(2 —2%) = —6! < 0, so the point (0,2) is a maximum.
i
3. (a) 1=¢° (b) —i=eBm/? ), I L0
(c) i=e™/? (d) —1=¢"
() i1 (¢)
() 1+4i= 12/ (f) 1—i=y2e7i/4 '
) ‘ V2
(8) —1+4i=+2e /4 (h) —1—i=+2e®7/* C@ (a)
. 1
(i) 1+iv3 =2/ () VB —i=2ein/ .
() —1+iV3=270 () —VBoi=2TT0 e e O e
These are not the only answers because the argument
can be changed by any multiple of 27.
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Standard Questions

5. (a) Gt = (eiﬂ'/Z)i — e 7/2 *(b) it = (eiw/2)7i — e7/2
(c) (—i)! = (e37/2)t = ¢=37/2 (d) Ini=Ine"/? =ir/2
*(e) In(=1) =Ine™ =ir (f)  In(—=v3 —14) = In(2e""/%) = In2 +i77/6

The answers are not unique because the arguments of i, —i, —1 and —+/3—i can be changed by any

multiple of 27. s

*6.

st 4+ (2,2)
for t €R. The function is zero at t = 0; ey
4+ 12
the function is odd; it approaches zero as t — £oo.
d 8t (A+t) @) o 4t
dtd+t2 (4+12)2 7 (44 12)2
L 16
which is zero at t = 2, Wl;:re 4+§26 =iri- 2
and at t = —2, where gl i
These are the only critical points and so (—2,—2) is a / |
minimum and (2, 2) is a maximum. (-2,-2)

2
7. *(a) The curve A: 2z = % —2.
2
5 2 which is true, so (0,2) is on the curve.

V2)?
2

[\

At (z,y) = (0,2) we have 2x0 =
At (—%,\/ﬁ) we have 2><(_%) _

—~

— 2 = —1 which is true, so (—%7 \/ﬁ) is on the curve.

dy

*(b) Differentiating curve A, gives 2 = y:—y‘A so that
xX x

_ dy| _ _
L =2/y and dx‘A_Q/Q_lat (0,2).

2
Differentiating curve B (2:17 =b-— y—) gives 2 = 72g@’ so that %‘ = —c/y.
c cdzx|B dx | B

At (0,2) we find % = —¢/2 and so for A and B to cross at right angles,
z|B

dy| dy

dz|Adx

= 1x (—¢/2) = —1, sothat c¢=2.

2
For curve B to pass through (0,2) we must have 2x0 =10 — 2? so that b=2.

(c) At (—1,v/2) we have %\A —2/y=2/v2 =12

2
' iati —p— Y o _ _o¥dy dy| _ _
Differentiating curve P (21: =r— ) gives 2 = 2q alp %° that dlp = q/y.

At (—%, \/5) we find %‘P = —q/V/2, and so for A and P to cross at right angles,

dy| dy| _ _ - _ =
@Aﬂp_\/ix( q/v/?2) = —1, sothat ¢=1.
. 1 1y _ (vV2)? _
For curve P to pass through (—3,v/2) we must have 2x(—1)=p— o 80 that p = 1.
8. (a) For r = 1 we consider y = ze! =%, giving ZrelT (2,4/e)
dy —x —r __ —x 1 1 .
T=e " —ze T = (1-a)e! (3 e/2) )
=

so that @:0 at x=1

dx
where y=1e!"! =1.
This is the only critical point ‘ ! !
and since zel=* > 0 for z > 0 f =1
it must be a maximum.




*10.

(b)

(a)

For 0 < r < 1 we consider y = 2"e! =%, giving *(c) For r > 1 we consider y = 2"e! =%, giving
d 11—z —x T—T {_, d 11— _ 1 1—
d—y:TQTT lel—z _ prel—o — - Tel z d—y:’l“l‘T lel—z _ prel x:(,r_x)xr lel—x
x T x
dy dy

sothat = =0 at x=r<1
dx

where y =r"el"".

This is the only critical point

and since z"el=% >0 for z > 0

it must be a maximum.

Moreover, because the curve passes
through (1,1), we must have r"el=" > 1.

For r = % the maximum is at (%, (6/2)1/2)'

1/4\

2=i=¢
So onerootis z =-e
Other roots increment
by €?27/2 = ¢i™ 5o that
imw/4+ikT

i /2
i /4

zZ=e€

for k=0,1.

2= —1—i=2e0"/4
So one root is z = /2e

Other roots increment
by €?27/5 so that

y = 1\(75 eiﬂ'/4+ik:27r/5
for k=0,1,2,3,4.

(b)

so that d—zO at r=0andx=r>1
xr
y=0atz=0andy=1r"e"" at x =1.

There are only two critical points

so that (0,0) is a local minimum

and (r,7"el ") is a maximum.

Moreover, because the curve passes
through (1,1), we must have r"e!=" > 1.

For r = 2 the maximum is at (2,4/e).

1

.‘v. "’,' \1/5 T :
"A B ‘J' 77/6\ .
.

23 = —1=¢m, 24:—1+i\/§=2ei2”/3.
So one root is z = €'™/3. So one root is z = V2 ¢e/6.
Other roots increment Other roots increment

by €?27/3, so that by €?27/4 = ¢i7/2 50 that
5= ei7r/3+ik27r/3 5= \‘l/ieifr/6+ik7r/2

for k=0,1,2. for k=0,1,2,3.

()

‘ 1/4\ ‘.

H=—i=¢

So one root is z = e
Other roots increment

by €?27/6 = ¢i7/3 50 that
y = ei7r/4+ik7r/3

for k=0,1,2,3,4,5.

37 /2
im/4

Y = cos(46) + i sin(46) = (cos 0 + isin 6)*
= cos* 0 + 4 cos® 0i sin 6 + 6 cos? 0i% sin? 0 + 4 cos 0% sin® 0 + i* sin? 0

= cos? 0 — 6.cos® Osin? 0 + sin® @ + i(4 cos® O sin 6 — 4 cos O sin® 6)

Equating real parts gives cos(46) = cos* 6 — 6 cos? #sin” § 4 sin® 6.

(b) Equating real parts gives sin(46) = 4 cos® §sin@ — 4 cos 6 sin® 6.

(c) Using cosz = cosh(iz) and isinz = sinh(iz) gives

cosh(i40) = cosh*(i6) — 6 cosh? (i)

sinh? (i) i sinh? (i)

i2 7

= cosh?(i0) + 6 cosh? (if) sinh? (i) + sinh*(i6)
So, setting i = A gives: cosh(4A) = cosh® A + 6 cosh? Asinh? A + sinh? A.



Also: M = 4 cosh®(if)

(3

and so sinh(i46) = 4 cosh® (i) sinh(if) + 4 cosh(if) sinh®(i6)
So, setting i@ = A gives: sinh(4A4) = 4 cosh® Asinh A + 4 cosh Asinh® A.

sinh(i6) sinh? (i6)
i i3

— 4 cosh(i0)

1. (a) y=e" 1+ asin?a: W _ gper® T¥z sin’z + e 1/2 sinz + e /1 + z2sinz cos x
dz Vit+azx
2 _ 2_ 2. —dy— 42 oty 2 dy
(b) z* —day +y* = p— 2x — 4y 4xdz +2yd;v )7 (y—l—ajdz)
2 4 - =
(e T2 4 4 = e Y

dy _ 2y—z—1/@a%)

de — 1/(wy?) +y—2a
o T dy _ dy/d§ _ cos®
(¢) x =cosb, y =sinb: e = de/dd ~ —sind cot §
dy _ dy/dt _ 3t°—1
dz  dz/dt 2t -1
ey (g ) — 1 ey dy
o ¢ (y :ndg)fl e (y+xdx)
(1+ ze™™Y 4 ze™) d—y =1-—ye"™ —ye ™
x

*(d) y=t3—t, x =t*—t:

*(e) y—e ™ =g —e":

dy  1—y(e®™ +e™™)

de 1+ x(exv +e—v)

_ 1‘261796 /1'2-1'2. _ 1 9 9
ldy 2 141 2¢ 1 2
ydr = 22242 x+3 22-1

dy_1‘2€17m“/m2+2(z_1+ T _ 1 . 2x )
x 2?>4+2 z+4+3 22-1

de ~ (z+3)(22—1)

12. (a) True. €™ =cosw +isinT = —1
(b) True. 2™ = cos(27) +isin(27) =1
(c) True. e™/3 4 e~"/3 = cos(r/3) + isin(m/3) + cos(m/3) — isin(r/3) = 2cos(m/3) = 2x 5 =1
(d) True. e™/34e7"7/3 = cos(2m/3) +isin(2m/3) + cos(2m/3) —isin(27/3) = 2cos(27/3) = 2x(—1) = —1
)

—b+ Vb?% — dac
2

a
There are two roots unless b> = 4ac when there is only one root.
The statement is true only if we interpret there being two identical roots whenever b? = 4ac.

(f) True. To have a non-real root we must have b> — 4ac < 0, in which case the other root is also not

az? 4+ bz + ¢ = 0 has the roots z = which would be complex if b*> — 4ac < 0.

real.
*13. (a) - =1 L—1 ivin L—1—3:—|—2'£2—:’)13524_...
' 1tz  l1+z 1+0 Ve 1w T 2
a1 _ 1 —1 =1 =l-z4az2—2>+.-.
dz 1+ (1+2)? (1+0)2 s
a1 __1x2 2! — 9l _ Z(—l)kxk
dz? 1+ =z (14+2)3 (1+0)3 k=0
a1 =3 -3 _3
de3 1+2 (14 xz)* 1404 7
d -1 1 - k 2k —1 c- k 2k = o
(b) tanlz=1—7 =3 (-1"" so tan zz/Z(—l) e =+ Y (D) S
k=0 k=0 k=0
1 . 0 L 22k
At z=0: C=tan"'0=0, sothat tan zzZ(—l) T

k=0
(¢) The radius of convergence should be the same as the series for T3
which has singularities at z = 4.
Thus the distance to the nearest singularity is |+¢ — 0| = 1, making the radius of convergence 1.



Harder Questions

14. (a) Polar coordinates (r,f) are defined parametrically so that « =rcosf and y = rsinf

. . d d . d d d. sin 6
i. With 6 constant: 2| =cosf and Y| =sind, so ¢ = vl = MY tang
dr lg drle dz g drlg/ drle cos @
.. . . 0
ii. With r constant: def _ —rsinf and dyl _ rcosf, so dy| _dy def _ PSP — _cotd
r |, dr |y dzl, drly/ drlr —rsin@

iii. Where the curves intersect (having the same values of r and ) we find that

dy
dx

0 dz

X dy =tanfcotf = —1

T

showing that the curves intersect at right angles.

(b) Parabolic coordinates (u,v) are defined parametrically so that 2z = u? —v? and y = uv.

. . d d d d d

i. With v constant: 25| =2u and <¢| =w, so 4| = /&2 —y/u
du ly uly dz |y drly/ drly

. . d d d d d

ii. With u constant: 255| = —2v and Y| =w, so ¥| =Y /—x = —u/v
dv |y vy dz |y drly/ drly

iii. Where the curves intersect (having the same values of u and v) we find that

v u v
showing that the curves intersect at right angles.

(¢c) Elliptic coordinates (s,t) are defined such that x = coshscost and y = sinhssint.

dy
dz

d
x ¥
v dx

. . d . d .
i. With s constant: Qd—ﬂ = —coshssint and £¢| =sinhscost
S S
d d d sinh s cos ¢
so ¥ =Y /—m = ————— = —tanhscott
dt |s dt |g/ dtls —cosh ssint
.. . d . d .
ii. With ¢ constant: 2d—x’ =sinhscost and d—y‘ = cosh ssint
St St
d d d hssint
0o W Y /ﬁ = COSUSEINE _ hth stant
ds ¢ ds |t/ dsl¢ sinh s cost

iii. Where the curves intersect (having the same values of s and ¢) we find that

dy
dz

dt
X

—| = —tanhscott x cothstant = —1
s dx

v

showing that the curves intersect at right angles.
iv. Since 22 = cosh? scos?t and y2 = sinh? ssin® ¢:

2 2
e with s constant, the relation cos?t+sin®t =1 shows that a:iz + y72 =1
cosh®s  sinh”s
which represents ellipses that intersect the z-axis at x = +coshs, and the y-axis at
y = £sinhs.
2 2
e with ¢ constant, the relation cosh? s — sinh? s = 1 shows that x—2 — y—Q =1
cos?t sin“t
which represents hyperbolae that intersect the z-axis at = = +cost, having asymptotes
y = tatant for large values of |z| and |y|.

Y




