Problem Sheet for Week 4 | MT1121 | Derivatives, Series, Complex Numbers

Suggested reading: 'Stewart' Chapters 3, 4, 11 and Appendix G

Easy Questions

- 1. A straight line passing through the point (x_0, y_0) with slope *m* is $y y_0 = m(x x_0)$
 - (a) What is the equation of the straight line parallel to $y = \frac{1}{4}x$ passing through $(-1,\pi)$?
 - (b) What is the equation of the straight line at right angles to $y = \frac{1}{4}x$ passing through $(-1, \pi)$?
- 2. Find all critical points (if any) of the following functions and say whether each is a maximum, minimum or point of inflection
 - (a) $\frac{1}{1+x}$ (b) $1+x^4$ (c) $3x+x^3$ (d) $3x-x^3$ (e) $\frac{x}{1-x}$ (f) $1-x^{-4}$ (g) x^5 (h) $2-x^6$
- 3. Using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ write the following complex numbers in the form $re^{i\theta}$. Sketch all of the points on a single diagram of the complex plane.
 - (a) 1 (b) -i (c) i (d) -1(e) 1+i (f) 1-i (g) -1+i (h) -1-i(i) $1+i\sqrt{3}$ (j) $\sqrt{3}-i$ (k) $-1+i\sqrt{3}$ (l) $-\sqrt{3}-i$
 - Are the answers you have given the only possible answers?
- 4. Write down the Taylor series expansions about x = 0 of the following functions

(a) e^x (b) $\sin x$ (c) $\cos x$ (d) $\ln(1+x)$

You should know these Taylor expansions by heart; if not, then try to memorise them.

Standard Questions

- 5. Using the results you have given in question 3, what are the values of the following? (a) $i^i \star$ (b) i^{-i} (c) $(-i)^i$ (d) $\ln i \star$ (e) $\ln(-1)$ (f) $\ln(-\sqrt{3}-i)$ Are these the only possible values in each case.
- *6. Sketch the function $\frac{8t}{4+t^2}$ for $t \in \mathbb{R}$, making sure to locate all critical points.
- 7. *(a) Show that the curve A given by $2x = \frac{y^2}{2} 2$ passes through (x, y) = (0, 2) and $\left(-\frac{1}{2}, \sqrt{2}\right)$
 - *(b) For what values of b and c does the curve B, given by $2x = b \frac{y^2}{c}$, intersect the curve A at right angles at (0,2)?
 - (c) For what values of p and q does the curve P, given by $2x = p \frac{y^2}{q}$, intersect the curve A at right angles at $\left(-\frac{1}{2}, \sqrt{2}\right)$?
- 8. Find all critical points of the function $x^r e^{1-x}$ with $x \ge 0$ in the following cases:
 - (a) the case r = 1. Sketch the function.
 - (b) cases for which 0 < r < 1. Sketch the function in the case r = 1/2.
 - \star (c) cases for which r > 1. Sketch the function in the case r = 2.

Note. Your sketches should take into account that each function has the value 1 at x = 1.

9. Find all of the roots of the following equations (in the form $re^{i\theta}$) In each case, sketch the roots on a diagram of the complex plane.

(a) $z^2 = i$ (b) $z^3 = -1$ \star (c) $z^4 = -1 + i\sqrt{3}$ (d) $z^5 = -1 - i$ (e) $z^6 = -i$

*10. (a) Use Euler's formula to obtain the identity $\cos(4\theta) = \cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta$.

- (b) Find a corresponding identity for $\sin(4\theta)$?
- (c) From these identities, deduce similar identities for $\cosh(4A)$ and $\sinh(4A)$.
- 11. Use whatever means seems appropriate to find a formula for $\frac{dy}{dx}$ in each of these cases:

(a)
$$y = e^{x^2}\sqrt{1+x}\sin^2 x$$
 (b) $x^2 - 4xy + y^2 = \frac{2}{xy}$ (c) $x = \cos\theta$ and $y = \sin\theta$
(d) $y = t^3 - t$ and $x = t^2 - t$ (e) $y - e^{-xy} = x - e^{xy}$ (f) $y = \frac{x^2 e^{1-x}\sqrt{x^2+2}}{(x+3)(x^2-1)}$

12. True or false. Briefly explain each answer.

- (a) $e^{i\pi} + 1 = 0$ (b) $e^{i2\pi} = 1$ (c) $e^{i\pi/3} + e^{-i\pi/3} = 1$ (d) $e^{i2\pi/3} + e^{-i2\pi/3} + 1 = 0$
- (e) A quadratic equation of the form $az^2 + bz + c = 0$ with real coefficients a, b and c always has exactly two roots which may be real or complex.
- (f) It is impossible for the the quadratic equation in part (e) to have one real root and one non-real root.
- *13. (a) Find the Taylor expansion of $\frac{1}{1+x}$ about x = 0.
 - (b) Use this to find the Taylor expansion for $\tan^{-1} z$ about z = 0 (see the hint below).
 - (c) What should be the radius of convergence of this series?

Hint. Recall that $\frac{d}{dz} \tan^{-1} z = \frac{1}{1+z^2}$ and substitute $x = z^2$ into the expansion of part (a). The result is a Taylor expansion for $\frac{d}{dz} \tan^{-1} z$ which can be integrated.

Harder Questions

- 14. (a) Polar coordinates (r, θ) are defined parametrically so that $x = r \cos \theta$ and $y = r \sin \theta$
 - i. treating θ as a constant, use parametric differentiation with respect to r to show that $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{\theta} = \tan \theta$
 - ii. on any curve for which r is held constant, find the formula for $\frac{dy}{dx}\Big|_r$
 - iii. show that any curve with constant r intersects any curve with constant θ at right angles.
 - (b) Parabolic coordinates (u, v) are defined parametrically so that $2x = u^2 v^2$ and y = uv.
 - i. treating v as a constant, use parametric differentiation to show that $\left.\frac{\mathrm{d}y}{\mathrm{d}x}\right|_{v} = v/u$
 - ii. on any curve for which u is held constant, find the formula for $\frac{dy}{dx}\Big|_{u}$
 - iii. show that any curve with constant v intersects any curve with constant u at right angles.
 - iv. by eliminating u show that curves of constant v are given by $2x = \frac{y^2}{v^2} v^2$. Similarly find the curves of constant u and use these to sketch both families of curves.
 - (c) Elliptic coordinates (s,t) are defined such that $x = \cosh s \cos t$ and $y = \sinh s \sin t$. Show that any curve with constant s intersects any curve with constant t at right angles. Sketch the families of curves with constant s and with constant t.

Suggested reading for week 4: 'Stewart' Chapters 5 and 7