MT1121

	Easy Questions
1.	(a) $-6(1-x^2)^2$ (b) $2\sin t \cos t$ (c) $\frac{1}{(1-x)^2}$ (d) $2\theta \tan \theta + \theta^2 \sec^2$
	(e) $\frac{3u^2+1}{2\sqrt{u^3+u}}$ (f) $\frac{-e^{-t}\cosh t \sinh t}{+e^{-t}\sinh^2 t}$ (g) $\frac{3x^2\exp(-2x)}{-2x^3\exp(-2x)}$ (h) $\frac{-2z^{-3}\ln(1+z^2)}{+z^{-2}\frac{2z}{1+z^2}}$
2.	(a) $\lim_{x \to \infty} \sin^{-1} \frac{1-x}{1+x}$. For large x : $\frac{1-x}{1+x} = \frac{2-1-x}{1+x} = -1 + \frac{2}{1+x} \in [-1,1]$ (domain of \sin^{-1}). $\lim_{x \to \infty} \sin^{-1} \frac{1-x}{1+x} = \sin^{-1} \lim_{x \to \infty} \frac{1/x-1}{1/x+1} = \sin^{-1} \left\{ \frac{-1}{1} \right\} = \sin^{-1}(-1) = -\frac{\pi}{2}$
	(b) $\lim_{x \to -\infty} \frac{\ln(1+e^x)}{x} = \left\{\frac{\ln 1}{-\infty}\right\} = \left\{\frac{0}{-\infty}\right\} = 0$
	(c) $\lim_{x \to \infty} \frac{4 + 4x^2 - x^4}{3 + x^4} = \lim_{x \to \infty} \frac{4/x^4 + 4/x^2 - 1}{3/x^4 + 1} = \left\{\frac{-1}{1}\right\} = -1$
	(d) $\lim_{x \to 0} \frac{\sinh(x)}{x} = \left\{\frac{0}{0}\right\} = \lim_{x \to 0} \frac{\cosh(x)}{1} = \left\{\frac{1}{1}\right\} = 1$
3.	(a) $f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0 \\ A & \text{if } x = 0. \end{cases}$ $\lim_{x \to 0} e^{-1/x^2} = \{e^{-\infty}\} = 0.$ So choose $A = 0.$
	(b) $g(x) = \begin{cases} 1/\sqrt{x^4} & \text{if } x \neq 0 \\ A & \text{if } x = 0. \end{cases} \lim_{x \to 0} \frac{1}{\sqrt{x^4}} = \lim_{x \to 0} \frac{1}{ x ^2} = \left\{\frac{1}{0}\right\} = \infty.$
	So no choice of value of A can make $g(x)$ continuous.
4.	(a) Consecutive derivatives of $\frac{1}{1+x}$ are: $\frac{-1}{(1+x)^2}$, $\frac{2}{(1+x)^3}$, $\frac{-2\times 3}{(1+x)^4}$, $\frac{2\times 3\times 4}{(1+x)^5}$,
	So we can write: $\frac{d^n}{dx^n} \frac{1}{1+x} = \frac{(-1)^n n!}{(1+x)^{n+1}}$
	(b) Consecutive derivatives of $\frac{1}{1-x}$ are: $\frac{1}{(1+x)^2}$, $\frac{2}{(1+x)^3}$, $\frac{2\times 3}{(1+x)^4}$, $\frac{2\times 3\times 4}{(1+x)^5}$, \cdots
	So we can write: $\frac{d^n}{dx^n} \frac{1}{1+x} = \frac{n!}{(1+x)^{n+1}}$
	Standard Questions

5. *(a)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) = \lim_{x \to \infty} \left(x \sqrt{1 + 1/x} - x \right) = \left\{ \infty - \infty \right\} = \lim_{x \to \infty} \frac{\sqrt{1 + 1/x} - 1}{1/x} = \left\{ \frac{0}{0} \right\}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{2}/\sqrt{1 + 1/x}(-1/x^2)}{-1/x^2} = \lim_{x \to \infty} \frac{1/2}{\sqrt{1 + 1/x}} = \frac{1}{2}$$

Alternatively:

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) \frac{\sqrt{x^2 + x} + x}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{\cancel{x^2} + x - \cancel{x^2}}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + 1/x} + 1} = \frac{1}{2}$$

(b)
$$\lim_{x \to \infty} x \left(\ln(x+1) - \ln x \right) = \lim_{x \to \infty} x \ln \frac{x+1}{x} = \lim_{x \to \infty} \ln(1 + 1/x)^x = \ln e = 1$$

*(c) For
$$n, m \in \mathbb{Z}$$
: $\lim_{x \to \pi} \frac{\sin(mx)}{\sin(nx)} = \left\{ \frac{0}{0} \right\} = \lim_{x \to \pi} \frac{m\cos(mx)}{n\cos(nx)} = \frac{m}{n} \frac{\cos(m\pi)}{\cos(n\pi)} = \frac{m}{n} (-1)^{m-n}$
Note. $\cos(m\pi) = (-1)^m, \ \cos(n\pi) = (-1)^n, \ \text{so} \ \frac{\cos(m\pi)}{\cos(n\pi)} = \frac{(-1)^m}{(-1)^n} = (-1)^{m-n}.$

6. (a) $\frac{d}{dx} \sin^2 x \cos^3 x = 2 \sin x \cos^4 x - 3 \sin^3 x \cos^2 x$

(b)
$$\frac{d}{du}(au + b)^{3/2} = \frac{3}{2}a(au + b)^{1/2}$$

(c) $\frac{d}{da}(au + b)^{3/2} = \frac{3}{2}u(au + b)^{1/2}$
*(d) $\frac{d}{dv}\sqrt{\frac{a+x}{a+x}} = \frac{1}{2}\sqrt{\frac{a-x}{a+x}} \times \frac{a-x+(a+x)}{(a-x)^2} = \frac{a}{(a-x)^2}\sqrt{\frac{a-x}{a+x}}$
*(e) $\frac{d}{dv}p\sin(s/p) = \sin(s/p) = f_{p^2}^s\cos(s/p) = \sin(s/p) = \frac{s}{p}\cos(s/p)$
*(f) $\frac{d}{d\theta}a^{\mu}\sin^{m}(a\theta + b) = n a^{n-1}\sin^{m}(a\theta + b) + ma a^{\mu}\sin^{m-1}(a\theta + b)\cos(a\theta + b)$
7. (a) $g(t) = \begin{cases} t^{t} & \text{if } t > 0 & & & \text{inthetermation of the term of term of the term of term of the term of ter$

For
$$n > m$$
: $\lim_{x \to \infty} R(x) = \lim_{x \to \infty} x^{n-m} \frac{a_n + a_{n-1}/x + \dots + b_1/x^{m-1} + b_0/x^m}{b_m + b_{m-1}/x + \dots + a_1/x^{n-1} + a_0/x^n} = \infty$

 $\star 10.\,$ Are the following true or false?

- (a) $\lim_{x \to 0} \frac{1}{1 + e^{1/x}} = 0$. This is false because $\lim_{x \to 0^+} \frac{1}{1 + e^{1/x}} = 0$ and $\lim_{x \to 0^-} \frac{1}{1 + e^{1/x}} = \frac{1}{2}$. The two-sided limit does not exist.
- (b) $\lim_{x \to 1} \tan^{-1} \frac{1}{1-x} = \frac{\pi}{2}$. This is false because $\lim_{x \to 1^{-}} \tan^{-1} \frac{1}{1-x} = \{ \tan^{-1} \infty \} = \frac{\pi}{2}$ and $\lim_{x \to 1^{+}} \tan^{-1} \frac{1}{1-x} = \{ \tan^{-1}(-\infty) \} = -\frac{\pi}{2}$. The two-sided limit does not exist.
- (c) $\lim_{x \to 0} x \sin \frac{1}{x} = 0$ is true because $\lim_{x \to 0} \left| x \sin \frac{1}{x} \right| \le \lim_{x \to 0} |x| = 0$, requiring $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.

11.
$$f(x) = 1 + x^2$$
 and $g(x) = \begin{cases} 1 & \text{for } x \ge 0 \\ -1 & \text{for } x < 0. \end{cases}$

$$f(g(x)) = \begin{cases} 1+1^2 & \text{for } x \ge 0\\ 1+(-1)^2 & \text{for } x < 0 \end{cases} = 2 \text{ for all } x \in \mathbb{R}, \text{ so that } f(g(x)) \text{ is continuous}$$

 $f(x) = 1 + x^2 > 0$ for all $x \in \mathbb{R}$ so g(f(x)) = 1 for all x, so that g(f(x)) is continuous.

- 12. (a) x [x] is discontinuous at every integer $x \in \mathbb{Z}$
 - (b) $[\sin x]$ is discontinuous where $\sin x = 0$ (i.e. $x = k\pi$ for $k \in \mathbb{Z}$) and where $\sin x = 1$ (i.e. $x = \frac{\pi}{2} + 2k\pi$ for $k \in \mathbb{Z}$). It is not discontinuous where $\sin x = -1$ (why?).
 - (c) [1/x] is discontinuous where $1/x \in \mathbb{Z}$ and at x = 0.
 - (d) $(-1)^{[x]}$ is discontinuous at every integer $x \in \mathbb{Z}$, where the value swops between -1 and 1.
 - (e) $(-1)^{2[\ln x^2]} = ((-1)^2)^{[\ln x^2]} = 1^{[\ln x^2]}$ is only discontinuous at x = 0 where it is not defined.

Harder Questions

13. (a) Given that
$$\lim_{x \to \infty} (f(x) - (ax + b)) = 0$$

we must have $\lim_{x \to \infty} (f(x) - ax) - b = 0$ and $\lim_{x \to \infty} \left(\frac{f(x)}{x} - \frac{ax + b}{x}\right) = 0$
so that $\lim_{x \to \infty} (f(x) - ax) = b$ and $\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{ax + b}{x} = a$.

(b) Given that $\lim_{x \to \infty} (f(x) - ax) = b$ it follows that $\lim_{x \to \infty} (f(x) - ax) - b = \lim_{x \to \infty} (f(x) - (ax+b)) = 0$ which means that y = f(x) has the asymptote y = ax + b as $x \to \infty$.

(c) Since
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 8x} - x}{x} = \lim_{x \to \infty} \left(\sqrt{4 - 8/x} - 1\right) = 1$$
 and
 $\lim_{x \to \infty} \left(\left(\sqrt{4x^2 - 8x} - x\right) - x\right) = \lim_{x \to \infty} \frac{(\sqrt{4x^2 - 8x} - 2x)(\sqrt{4x^2 - 8x} + 2x)}{\sqrt{4x^2 - 8x} + 2x} = \lim_{x \to \infty} \frac{4x^2 - 8x - 4x^2}{\sqrt{4x^2 - 8x} + 2x}$
 $= \lim_{x \to \infty} \frac{-8x}{\sqrt{4x^2 - 8x} + 2x} = \lim_{x \to \infty} \frac{-8}{\sqrt{4 - 8/x} + 2} = \frac{-8}{4} = -2,$
the asymptote as $x \to \infty$ is $x - 2$.
Also, since $\lim_{x \to -\infty} \frac{\sqrt{4x^2 - 8x} - x}{x} = \lim_{x \to -\infty} \left(-\sqrt{4 - 8/x} - 1\right) = -3$ and
 $\lim_{x \to -\infty} \left(\left(\sqrt{4x^2 - 8x} - x\right) + 3x\right) = \lim_{x \to -\infty} \left(\sqrt{4x^2 - 8x} + 2x\right) = \lim_{x \to -\infty} \left(2|x|\sqrt{1 - 2/x} - 2|x|\right)$
 $= \lim_{x \to -\infty} 2\frac{\sqrt{1 - 2/x} - 1}{-1/x} = 2\lim_{x \to -\infty} \frac{\frac{1}{2}/\sqrt{1 - 2/x} \times 2/x^2}{1/x^2} = 2,$

the asymptote as $x \to \infty$ is -3x + 2.

- 14. (a) False. A function such as $f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$ is discontinuous at x = 1, but f^2 is continuous.
 - (b) True. If f is continuous, then |f| is also continuous.
 - (c) True. If f is continuous and g is discontinuous at a point, then (f + g) is discontinuous at that point.
 - (d) False. If f is continuous and equal to zero and g is discontinuous at a point, then (fg) is always zero and so is continuous wherever it is defined.
 - (e) False. If f and g are both discontinuous at a point, then (f + g) is not necessarily discontinuous at that point. We could, for example have f = -g so that (f + g) is always zero.
 - (f) False. If f and g are both discontinuous at a point, then (fg) is not necessarily discontinuous at that point. We could, for example have f = 1/g so that (fg) is always equal to 1.