$\frac{4}{x}$

True

(b)

(b)

$$0 < -\frac{1}{y} \le 2$$
, for which $-y \ge \frac{1}{2}$, or $y \le -\frac{1}{2}$.

 $x^2 - 4y^2 < 4$: bounded by hyperbolae with $x = \pm 2$ at y = 0asymptotes $y = \pm \frac{1}{2}x$ all larger values of yand smaller values of x

Easy Questions

(b) $x \in \left[-\frac{2}{3}, 2\right]$

1. (a) $x \in (-4, -2)$

True

True

6. (a) $\cos(\frac{\pi}{4}) = 1/\sqrt{2}$

or $-1 < u^2 < 5$.

Hence $u \in (-\sqrt{5}, \sqrt{5})$.

*(c) $1/y \ge -2$ is satisfied for both

2.

3.

4.

(a)

(c)

(a)

(a)

(a)

(c)

(d) $x \in (0, \frac{1}{2}]$

(c) $x \in (\infty, -6]$ or $x \in [4, \infty)$

space between circles with centre at w = 2and radii 1 and 3, including the circle with radius 3 but not the circle with radius 1

10. $z = \cos(A) + i\sin(A)$ and $w = \cos(B) + i\sin(B)$

(a)
$$|z| = \sqrt{\cos^2(A) + \sin^2(A)} = \sqrt{1} = 1.$$
 Similarly $|w| = 1.$
(b) $zw = (\cos(A) + i\sin(A))(\cos(B) + i\sin(B))$
 $= \cos(A)\cos(B) + i\sin(A)\cos(B) + \cos(A)i\sin(B) + i^2\sin(A)\sin(B)$
 $= \cos(A)\cos(B) - \sin(A)\sin(B) + i(\sin(A)\cos(B) + \cos(A)\sin(B))$
(c) $\cos(A + B) + i\sin(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B) + i(\sin(A)\cos(B) + \cos(A)\sin(B))$
which is exactly the same as in part (b).
Hence $zw = \cos(A + B) + i\sin(A + B).$
That is: $(\cos(A) + i\sin(A))(\cos(B) + i\sin(B)) = \cos(A + B) + i\sin(A + B)$

(d) i.
$$z\overline{w} = (\cos(A) + i\sin(A))(\cos(B) - i\sin(B))$$

 $= (\cos(A) + i\sin(A))(\cos(-B) + i\sin(-B))$
 $= \cos(A - B) + i\sin(A - B)$
ii. $\frac{z}{w} = \frac{z\overline{w}}{w\overline{w}} = \frac{(\cos(A) + i\sin(A))(\cos(B) - i\sin(B))}{|w|^2}$
 $= (\cos(A) + i\sin(A))(\cos(-B) + i\sin(-B))$
 $= \cos(A - B) + i\sin(A - B)$
iii. $w/z = \cos(B - A) + i\sin(B - A)$ — similar to part ii.
iv. $\overline{z}\overline{w} = (\cos(A) - i\sin(A))(\cos(B) - i\sin(B))$
 $= (\cos(-A) + i\sin(-A))(\cos(-B) + i\sin(-B))$
 $= \cos(-A - B) + i\sin(-A - B)$

$$v. \quad z^{2} = (\cos(A) + i\sin(A))(\cos(A) + i\sin(A))$$
$$= \cos(2A) + i\sin(2A)$$
$$vi. \quad w^{3} = (\cos(2B) + i\sin(2B))(\cos(B) + i\sin(B))$$

$$= \cos(3B) + i\sin(3B)$$

vii. $w^p/z^q = \cos(pB - qA) + i\sin(pB - qA)$

11. (a)
$$(5+i)(2+3i) = 10 + 2i + 15i + 3i^2 = 10 + (2+15)i - 3 = 7 + 17i$$

(b)
$$(3+4i)(3-4i) = 9 - 16i^2 = 9 + 16 = 25$$

(c) $(-2+i)^3 = (-2)^3 + \frac{3}{1}(-2)^2i + \frac{3 \times 2}{1 \times 2}(-2)i^2 + i^3$
 $= -8 + 12i + 6 - i = -2 + 11i$
 \leftarrow note the difference of two squares
 \leftarrow note use of the binomial theorem

$$\begin{array}{ll} \text{(d)} & (2-i)^4 = 2^4 + \frac{4}{1}2^3(-i) + \frac{4\times3}{1\times2}2^2(-i)^2 + \frac{4\times3\times2}{1\times2\times3}2(-i)^3 + (-i)^4 & \leftarrow \text{ binomial theorem} \\ & = 16 - 32i - 24 + 8i + 1 = -7 - 24i \\ \text{(e)} & \frac{13}{3-2i} = \frac{13}{3-2i}\frac{3+2i}{3+2i} = \frac{13(3+2i)}{9+4} = 3 + 2i \\ \text{(f)} & \frac{i(7+3i)}{3-7i} = \frac{7i-3}{3-7i} = -\frac{3-7i}{3-7i} = -1 & \leftarrow \text{ always try to simplify first} \end{array}$$

(g)
$$\frac{5-5i}{i(1+i)(2+i)} = \frac{5(1-i)}{(i-1)(2+i)} = -\frac{5}{2+i}\frac{2-i}{2-i} = -\frac{5(2-i)}{4+1} = -2+i$$

(h)
$$\frac{4+5i}{2-3i} = \frac{4+5i}{2-3i}\frac{2+3i}{2+3i} = \frac{(4+5i)(2+3i)}{4+9} = \frac{8-15+(10+12)i}{13} = -\frac{7}{13} + \frac{22}{13}i$$

Harder Questions

- 12. Note that $3.\overline{9}$ cannot be bigger than 4, so that we must have $4 3.\overline{9} \ge 0$.
 - Assume (for the moment) that $4 3.\overline{9} > 0$.
 - Let $\delta = 4 3.\overline{9} > 0$, then $\log_{10} \delta$ exists. \leftarrow For any base a, $\log_a x$ exists only if x > 0.
 - We can then choose any number k such that $k > -\log_{10} \delta$.
 - For such a value of k we must have $10^{-k} < \delta$.
 - As a result, we have $4 N_k = 10^{-k} < 4 3.\overline{9}$ (where $N_1 = 3.9, N_2 = 3.99, N_3 = 3.999$, etc.)
 - It follows that $N_k > 3.\overline{9}$.
 - This cannot be true, because we must always have $N_k < 3.\overline{9}$ for any value of k.
 - The assumption, that $4 3.\overline{9} > 0$, must therefore be false.
 - It follows that $4 3.\overline{9} = 0$, so that $4 = 3.\overline{9}$.
- 13. Using the computer package Maple, $e (1 + \frac{1}{n})^n$ falls below 0.01 for n = 135.

It decreases further as n increases further.

Can you think of the reason why $e \approx (1 + \frac{1}{n})^n$ when n is very large?