
Infinite Power Series
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An infinite power series is a polynomial of ‘infinite’
order

a0 + a1x + a2x
2 + · · · + akx

k + · · ·
The notation ∞∑

k=0

akx
k

is used to represent the summation of all terms akxk

starting from k = 0.

The infinite summation is only meaningful if the series
‘converges ’, meaning that

∞∑
k=0

akx
k = lim

N→∞

N∑
k=0

akx
k

provided the limit of N -term sums exists, as N →∞.

The series is said to ‘diverge ’ if it does not converge.

Example. A string of length 1 is cut into two halves.
One of those pieces is cut into two halves,
of which one of the pieces is again cut in
half, and so on ‘ad infinitum’. The total
length of all of the pieces must be

1 = 1
2 + (1

2)
2 + (1

2)
3 + · · · + (1

2)
k + · · ·

=
∞∑

k=1
(1

2)
k

Derivatives of Power Series
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It is most useful to consider z ∈ C in the power series
‘about the point z = z0’

f(z) =
∞∑

k=0

ak(z − z0)
k

Written in this way, the series defines a function f(z)
for every value of z at which the series converges.

All terms in the power series can be differentiated to
give

f ′(z) =
∞∑

k=1
k ak (z − z0)

k−1

f ′′(z) =
∞∑

k=2
k(k − 1) ak (z − z0)

k−2

...

f (n)(z) =
∞∑

k=n

(
k(k−1) · · · (k−n+1)

)
ak (z − z0)

k−n

etc.

Note. The index (k in the series above) is a dummy
variable that can always be changed. So that

f ′′(z) =
∞∑

j=2
j(j − 1) aj (z − z0)

j−2

f ′′(z) =
∞∑

!=0
(" + 2)(" + 1) a!+2 (z − z0)

!

are exactly the same series for f ′′(z), as above,
obtained simply by rewriting k = j = 2 + ".

Radius of Convergence
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Any power series about a point z = z0

f(z) =
∞∑

k=0

ak(z − z0)
k

has a ‘radius of convergence ’ R such that

• the series converges for all |z − z0| < R

• the series diverges for all |z − z0| > R

• it might converge or diverge if |z − z0| = R

• the differentiated series has the same
radius of convergence

A function f(z) is said to be ‘analytic’ at a point
z = a if there is an infinite power series that converges
to f(z), with z = a within its radius of convergence.

Example 1.
∑∞

n=0 (z − i)n converges for |z − i| < 1,
diverges for |z − i| ≥ 1, and so it has
radius of convergence R = 1

Example 2.
∑∞

n=0 zn/n! converges for all z ∈ C and
so it has radius of convergence R =∞

Example 3.
∑∞

n=0 n!(z − π)n diverges for all z %= π
and so it has radius of convergence R = 0

More on Radius of Convergence
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The radius of convergence of a function given by

f(z) =
∞∑

k=0

ak (z − z0)
k

extends as far as the nearest singularity of f(z),
from z0, in the complex plane.

Example 1. What is the radius of convergence of the

series
1 + t

9 + t2
=

∞∑
n=0

an(t− 4)n ?

What is the radius of convergence of
1 + t

9 + t2
=

∞∑
n=0

bn(t− 1− 4i)n ?



Taylor Series
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Supposing that a function f(z) has the series

f(z) =
∞∑

k=0

ak (z − z0)
k

then, it’s nth derivative has the series

f (n)(z) =
∞∑

k=n

(
k(k−1) · · · (k−n+1)

)
ak (z − z0)

k−n

If we now set z = z0 all terms become zero except
for the first, which involves (z − z0)0, showing that

f(z0) = a0

f (n)(z0) = n! an

The coefficient an in the series is therefore given by

an =
f (n)(z0)

n!
for n = 0, 1, 2, etc.

in which f (0) represents f and 0! = 1.

This leads to Taylor’s series for the function f(z),
‘expanded’ about the point z0

f(z) =
∞∑

k=0

f (k)(z0)

k!
(z − z0)

k

(also called a ‘Taylor expansion ’ about z0)

Series Expansions of sin, cos and exp
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Infinite power series can now be found for functions
that can be differentiated an unlimited number of times.

exp z

about
z = 0

sin t

about
t = 0

cos x

about
x = 0

Series Approximations
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It is never practically possible to add together an
infinite number of terms. Instead, functions are often
approximated using truncated series expansions.

Example 1. Approximations for sin x and cos x are

sin x = x − 1
6x

3 + 1
120x

5 + O(x7)

cos x = 1 − 1
2x

2 + 1
24x

4 + O(x6)

giving an error of less than 1
3 × 10−3

for |x| ≤ 1
4π, using only 3 terms.

Example 2. Find the Taylor series expansion for
ln x about x = 1. Write down a 3-term
approximation for ln x.

Euler’s Formula
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We already know that

ez = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!
+ · · ·

cos z = 1 − z2

2!
+

z4

4!
− · · ·

sin z = z − z3

3!
+

z5

5!
− · · ·

A remarkable property of complex numbers arises from
the power series for eix, taking x to be real

eix = 1 + ix +
i2x2

2!
+

i3x3

3!
+

i4x4

4!
+

i5x5

5!
+ · · ·

= 1 + ix− x2

2!
− ix3

3!
+

x4

4!
+

ix5

5!
− · · ·

=
(
1− x2

2!
+

x4

4!
− · · ·

)
+ i

(
x− x3

3!
+

x5

5!
− · · ·

)
= cos x + i sin x

The result is Euler’s formula

eix = cos x + i sin x

making a direct link between trigonometric functions
and the exponential function for complex numbers



Applications of Euler’s Formula
9

The formula eix = cos x + i sin x can be used to
obtain trigonometric identities

Example. ei(A+B) = cos(A + B) + i sin(A + B)

and

ei(A+B) = eiAeiB

= (cos A + i sin A)(cos B + i sin B)

= cos A cos B − sin A sin B

+ i(cos A sin B + sin A cos B)

Equating real and imaginary parts yields the
well-known trigonometric identities

cos(A + B) = cos A cos B − sin A sin B

sin(A + B) = cos A sin B + sin A cos B

Exercise 1. Find formulae for cos(3A) and sin(3A)

Complex forms of sin and cos
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Euler’s formula and its complex conjugate are

eix = cos x + i sin x and e−ix = cos x− i sin x

Solving for cos x and sin x, gives

cos x =
eix + e−ix

2
= cosh(ix)

i sin x =
eix − e−ix

2
= sinh(ix)

which link trigonometric and hyperbolic functions.

Any trigonometric identity mirrors a hyperbolic
identity (and vice versa)

Exercise 1. Find the hyperbolic equivalent of
cos(3A) = cos A (1− 4 sin2 A)

Exercise 2. Find the trigonometric equivalent of
sinh(3A) = sinh A (4 cosh2 A− 1)

de Moivre’s Theorem
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Because of Euler’s formula, the polar form of a
complex number can be written, equivalently, as

z = r(cos θ + i sin θ) = reiθ

with ‘modulus’ r and ‘argument’ θ.

Sketch:

In polar form, multiplying or dividing complex numbers

z = r eiθ and w = s eiφ

simply involves adding or subtracting angles

zw = rs ei(θ+φ) and
z

w
=

r

s
ei(θ−φ)

As a special case:

de Moivre’s Theorem gives powers of z = r eiθ,
namely:

zn =
(
r (cos θ + i sin θ)

)n

= rn
(
cos(nθ) + i sin(nθ)

)

Complex Roots
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de Moivre’s theorem helps to find the roots of any
complex number.

If w ∈ C and n is a natural number, then the values
of z that satisfy zn = w

are the nth roots of w. There are n roots if w %= 0.

Example. The roots of unity: zn = 1 = ei0

If z = reiθ then, by de Moivre’s theorem
zn = rn

(
cos(nθ) + i sin(nθ)

)
= 1.

Since rn = |1| = 1, we must have r = 1.

Equating real and imaginary parts gives
sin(nθ) = 0 and cos(nθ) = 1

so that nθ = 0, 2π, 4π, etc., and so

11/n = ei0, ei2π/n, ei4π/n, . . . ei2π(n−1)/n

(roots are successively rotated by 2π/n)

Exercise. Find all roots of z5 = i−√3


