Exercise 1. 
$$\int \frac{2 dx}{9x^2 - 12x + 8}$$

Exercise 2. 
$$\int \frac{-\mathrm{d}z}{\sqrt{12z-4z^2-4}}$$

Exercise 3. 
$$\int \frac{7 \, \mathrm{d}x}{\sqrt{4x^2 - 4x - 2}}$$

### Methods of Integration

Not all formulae involving standard functions have an integral in terms of standard functions, such as

$$\int \sin \frac{1}{\theta} d\theta \qquad \int \frac{e^t}{t} dt \qquad \int e^{-x^2} dx$$

In such cases, the integrals lead to new functions, for example the 'error function' and the 'elliptic function'

$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \quad K(z) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - z \sin^2 \theta}}$$

Note. In a *definite integral*, the variable used for integrating is a 'dummy variable'.

So  $\theta$  or t can be replaced by  $s, \, u$  or anything that is not already used in the integral.

#### in this course

We will consider a variety of techniques for finding integrals that can be worked out using standard functions, such as

$$\int \frac{x-1}{x^2+3x-2} dx$$

$$\int \cos^7 \theta d\theta \qquad \int \frac{t}{\sqrt{2-t^2}} dt$$

and many others.

# a: Standard Integrals

An integral may involve one or more standard anti-derivatives (indefinite integrals)

Example. 
$$\int \left( \operatorname{sech}^2 u + \sqrt[3]{u} \right) du = \tanh u + \frac{3}{4}u^{4/3} + C$$
because 
$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$

$$\frac{d}{dx} \frac{3}{4}x^{4/3} = x^{1/3}$$

Exercise 1. 
$$\int \sec^2(\frac{1}{2}\theta - \pi) d\theta$$

Exercise 2. 
$$\int \frac{4 \, \mathrm{d}t}{2 - 3t}$$

Exercise 3. 
$$\int \frac{\mathrm{d}z}{1 + (3z)^2}$$

Exercise 4. 
$$\int \frac{3 \, \mathrm{d}x}{\sqrt{1 - (x/2)^2}}$$

# b: Algebraic Manipulation

Algebraic manipulation may turn the integral into one or more standard integrals

Exercise 1. 
$$\int \frac{(1+x)^2}{x} dx$$

Exercise 2. 
$$\int \sin^2 t \, dt$$

Exercise 3. 
$$\int \sin x \cos x \, dx$$

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

integration by parts

one part times integral of other, minus integral of derivative of the one times integral of other

Exercise 1. 
$$\int t e^t dt$$

(differentiating should simplify the underlined term)

Exercise 2. 
$$\int \sin x \cos x \, dx$$

Exercise 3. 
$$\int \ln z \, dz$$

Sometimes many integrations by parts are needed to evaluate an integral.

In such cases a 'recurrence formula' can help

Example. Find 
$$\int \sin^5 t \, dt$$

Let 
$$I_n = \int \sin^n t \, dt$$
  

$$= \int \sin t \, \sin^{n-1} t \, dt$$
  

$$=$$
  

$$= -\cos t \sin^{n-1} t + (n-1) \int \cos^2 t \sin^{n-2} t \, dt$$

but 
$$\int \cos^2 t \sin^{n-2} t \, \mathrm{d}t = \int (1 - \sin^2 t) \sin^{n-2} t \, \mathrm{d}t$$
$$= \int \sin^{n-2} t \, \mathrm{d}t - \int \sin^n t \, \mathrm{d}t$$
$$= I_{n-2} - I_n$$

so 
$$I_n = -\cos t \sin^{n-1} t + (n-1)I_{n-2} - (n-1)I_n$$
 giving  $nI_n = (n-1)I_{n-2} - \cos t \sin^{n-1} t$ 

which is an example of a 'recurrence formula'.

So 
$$I_5 = \frac{1}{5}(4I_3 - \cos t \sin^4 t)$$
  
=  $\frac{1}{5}(\frac{4}{3}(2I_1 - \cos t \sin^2 t) - \cos t \sin^4 t)$ 

but 
$$I_1 = \int \sin t \, dt = -\cos t + C$$
 and so  $I_5 = -\frac{8}{15}\cos t - \frac{4}{15}\cos t \sin^2 t - \frac{1}{5}\cos t \sin^4 t + D$ 

Exercise. Find 
$$\int \sin^6 t \, dt$$

#### d: Substitution

Making a *good* substitution can be a powerful technique in simplifying integrals

The key (central) point is

if we set 
$$u=g(x)$$
 then 
$$\mathrm{d} u=g'(x)\,\mathrm{d} x\quad\text{or}\quad\mathrm{d} x=\frac{\mathrm{d} u}{g'(x)}$$

Example. 
$$\int \frac{t}{\sqrt{2-t^2}} dt$$

Setting  $u = 2 - t^2$  simplifies the integrand:

Let 
$$u=2-t^2$$
 so  $du=(-2t) dt$  or  $dt=\frac{du}{-2t}$  so 
$$\int \frac{t}{\sqrt{2-t^2}} dt = \int \frac{t}{\sqrt{u}} \frac{du}{-2t}$$
$$= -\frac{1}{2} \int \frac{du}{\sqrt{u}} \qquad (t \text{ eliminated})$$
$$= -\frac{1}{2} \int u^{-1/2} du = -\frac{1}{2} \frac{u^{1/2}}{1/2}$$

**Note.** The answer must involve t, not u:

So 
$$\int \frac{t}{\sqrt{2-t^2}} dt = -\sqrt{u} \qquad \text{(eliminate } u\text{)}$$
$$= -\sqrt{2-t^2} + C$$

Note. Never forget the arbitrary constant.

#### d: Substitution

For integrating

$$\int f(x) \, \mathrm{d}x$$

the 'substitution' procedure is:

- 1. find a substitution to try u = g(x)
- 2. replace dx by  $\frac{du}{g'(x)}$
- 3. use u = q(x) to completely eliminate x
- 4. evaluate the integral (if possible)
- 5. use u = g(x) to completely eliminate u
- 6. don't forget the arbitrary constant

If step 4 fails, either

- another substitution is needed, or
- the substitution method does not work

It helps to be able to identify situations when the method is most likely to work.

16

$$\int f(g(x))g'(x) \, \mathrm{d}x$$

for example

$$\int\!\!\frac{t}{\sqrt{2-t^2}}\,\mathrm{d}t \quad \left(\text{where } t=\text{const.} \times \frac{\mathrm{d}}{\mathrm{d}t}(2-t^2)\right)$$

$$\int \frac{\cos \theta \sin \theta}{\cos^2 \theta - 1} \, d\theta \qquad \quad \left( \text{where } \sin \theta = -\frac{d}{d\theta} \cos \theta \right)$$

$$\int \frac{f'(x)}{f(x)} dx \quad \text{(where top is derivative of bottom)}$$

Exercise. Find  $\int \cos t \sin t \, dt$ 

(we have integrated  $\sin x \cos x$  in 3 different ways!)

#### d: a factor is derivative of another

When one factor g' is the derivative of another g it is usually best to substitute u=g, not u=g'.

Example. 
$$\int \frac{2\sin\theta}{\cos^2\theta - 1} d\theta \qquad \left(\sin\theta = -\frac{d}{d\theta}\cos\theta\right)$$

• If we use  $u = \sin \theta$ , for which  $d\theta = \frac{du}{\cos \theta}$  we obtain  $\int \frac{2u}{\cos^2 \theta - 1} \frac{du}{\cos \theta}$ .

It is tricky, but possible, to eliminate  $\theta$ , using  $\cos\theta=\sqrt{1-\sin^2\theta}=\sqrt{1-u^2}$ 

giving 
$$\int \frac{2u}{-u^2} \frac{\mathrm{d}u}{\sqrt{1-u^2}} = \int \frac{-2}{u\sqrt{1-u^2}} \,\mathrm{d}u$$

(which is still not simple)

• If we use  $v = \cos \theta$ , for which  $d\theta = \frac{dv}{-\sin \theta}$  we obtain  $\int \frac{2\sin \theta}{v^2 - 1} \frac{dv}{-\sin \theta}$ .

It is much simpler to eliminate  $\theta$  in this case

giving 
$$\int \frac{2 \, \mathrm{d}v}{1 - v^2} = \int \left(\frac{1}{1 - v} + \frac{1}{1 + v}\right) \mathrm{d}v$$
$$= -\ln|1 - v| + \ln|1 + v| + C$$
$$= \ln\left|\frac{1 + \cos\theta}{1 - \cos\theta}\right| + C$$

# d: top is derivative of the bottom

The special case  $\int \frac{f'(x)}{f(x)} dx$  is easily integrated.

Let u = f(x) so that  $dx = \frac{du}{f'(x)}$ , then

$$\int \frac{f'(x)}{f(x)} dx = \int \frac{f'(x)}{u} \frac{du}{f'(x)} = \int \frac{du}{u} = \ln|u|$$
$$= \ln|f(x)| + C$$

This situation can be treated as a general rule, not needing its own substitution every time.

Exercise 1.  $\int \tan x \, dx$ 

Exercise 2. 
$$\int \frac{x^3}{4-x^4} \, \mathrm{d}x$$

Exercise 3.  $\int \coth x \, dx$ 

# d: simplifying substitutions

In many cases, substitution helps just to simplify

Exercise. 
$$\int \frac{3x}{\sqrt{4-x}} \, \mathrm{d}x$$

There are other (often) helpful substitutions:

| if $\int \left(\cdot ight) \mathrm{d} \cdot $ contains                 | try this substitution             |
|------------------------------------------------------------------------|-----------------------------------|
| $\sqrt{ax+b}$                                                          | $u^2 = ax + b$                    |
| $\begin{array}{c} \sqrt{a^2-x^2} \\ \text{or} \ \ a^2-x^2 \end{array}$ | $x = a \sin u$ or $x = a \cos u$  |
| $\begin{array}{c} \sqrt{a^2+x^2} \\ \text{or} \ \ a^2+x^2 \end{array}$ | $x = a \sinh u$ or $x = a \tan u$ |
| $\sqrt{x^2-a^2}$                                                       | $x = a \cosh u$ or $x = a \sec u$ |

### d: more substitutions

Exercise 1.  $\int \sqrt{4-t^2} \, dt$ 

Exercise 2. 
$$\int \frac{\mathrm{d}x}{\sqrt{9+x^2}}$$

# d: more on simplfying substitutions<sup>22</sup>

| if $\int (\cdot) d\cdot$ contains                                                       | try this substitution             |
|-----------------------------------------------------------------------------------------|-----------------------------------|
| $\sqrt{ax+b}$                                                                           | $u^2 = ax + b$                    |
| $ \begin{array}{c c} \sqrt{a^2-x^2} \\ \text{or} \ \ a^2-x^2 \end{array} $              | $x = a \sin u$ or $x = a \cos u$  |
| $   \begin{array}{c c}     \sqrt{a^2 + x^2} \\     \text{or } a^2 + x^2   \end{array} $ | $x = a \sinh u$ or $x = a \tan u$ |
| $\sqrt{x^2-a^2}$                                                                        | $x = a \cosh u$ or $x = a \sec u$ |

These substitutions can be remembered because they depend on the identities:

$$\sqrt{a^2 - x^2} 
 or a^2 - x^2 
 sin^2 + cos^2 = 1$$

$$\sin^2 + \cos^2 = 1$$

$$\sqrt{a^2 + x^2}$$
or  $a^2 + x^2$ 

$$\sqrt{a^2 + x^2}$$
  $\cosh^2 - \sinh^2 = 1$  or  $a^2 + x^2$  or  $\sec^2 - \tan^2 = 1$ 

$$\sqrt{x^2-a^2}$$

$$\sqrt{x^2 - a^2} \qquad \qquad \frac{\cosh^2 - \sinh^2 = 1}{\text{or } \sec^2 - \tan^2 = 1}$$

#### e: Partial Fractions

A rational function

some polynomial

$$\frac{1}{(a_1+b_1x)(a_2+b_2x)\cdots(p_1+q_1x+r_1x^2)(p_2+q_2x+r_2x^2)\cdots}$$

can be rewritten as

an be rewritten as another polynomial 
$$+\frac{A_1}{a_1+b_1x}+\frac{A_2}{a_2+b_2x}+\cdots$$
  $+\frac{P_1+Q_1x}{p_1+q_1x+r_1x^2}+\frac{P_2+Q_2x}{p_2+q_2x+r_2x^2}+\cdots$ 

Example 1. 
$$\frac{x^2 + 15x - 1}{(2 - x)(x^2 + 2x + 3)}$$

### e: Partial Fractions

Example 2.  $\frac{3x^3 - 11x^2 + 15x - 6}{x^2 - 3x + 2}$