Definite Integrals

The 'definite integral' symbol $\int_a^b f(x) \, \mathrm{d}x$ in spoken words is:

'the integral from a to b of the function f(x)'

Graphically, it represents an area

<u>between</u>: the function f(x) and the x-axis, from the vertical line x = a on the left to the vertical line x = b on the right

(where f(x) < 0 the 'area' is taken to be negative)

<u>also</u> if the direction of integration is reversed the sign of the area is changed

$$\int_{a}^{b} f(x) \,\mathrm{d}x = -\int_{b}^{a} f(x) \,\mathrm{d}x$$

The integral can be split up into separate parts

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$$

covering the same overall domain, for any $c \in (a, b)$

Evaluating Definite Integrals

As a result of the fundamental theorem of calculus, the integral from a to b of $f^\prime(x)$ is simply

$$\int_{a}^{b} f'(x) \,\mathrm{d}x = f(b) - f(a)$$

 $\underbrace{ \textit{provided}}_{}: \ f'(x) \ \text{is continuous for all} \ x \in [a,b] \\ \text{and} \ f(x) \ \text{has derivative} \ f'(x) \\ \end{cases}$

 $\boldsymbol{but},$ if $\ f'(x)$ is continuous only for $\ x\in(a,b),\$ then

$$\int_{a}^{b} f'(x) dx = \lim_{x \to b^{-}} f(x) - \lim_{x \to a^{+}} f(x)$$
$$= \left[f(x) \right]_{a}^{b}$$

provided: both limits exist and are finite. Otherwise, the integral is said to '*diverge*'

Exercise. Integrate $\frac{1}{s^2}$ from s = 1 to ∞ .

Fundamental Theorem of Calculus

Suppose that the right end-point is t and that it can change from t to t + h

For h small, the light area is approximately $h \times f(t)$

$$\int_{t}^{t+h} f(x) dx = \int_{a}^{t+h} f(x) dx - \int_{a}^{t} f(x) dx$$
$$= hf(t) + \mathbf{O}(h^{2}) \quad \text{as} \quad h \to 0$$

so that differentiating the integral gives

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{a}^{t} f(x) \,\mathrm{d}x = \lim_{h \to 0} \frac{1}{h} \left(\int_{a}^{t+h} f(x) \,\mathrm{d}x - \int_{a}^{t} f(x) \,\mathrm{d}x \right)$$
$$= \lim_{h \to 0} \left(f(t) + \mathbf{O}(h) \right)$$
$$= f(t)$$

(differentiation and integration are inverse operations) This fact is 'the fundamental theorem of calculus'

Indefinite Integrals

Any function whose derivative is f'(x) is called an 'indefinite integral' of f'(x), written as

4

 $(s \neq 0)$

$$\int f'(x) \, \mathrm{d}x = f(x) + C$$

for any constant C

3

Example.
$$\int \frac{1}{s} ds = \ln |s| + C$$

Exercise 1.
$$\int e^t dt =$$

Exercise 2. $\int x^n dx =$ $(n \neq -1)$

Exercise 3.
$$\int \frac{1}{\sqrt[4]{v}} \,\mathrm{d}v = \qquad (v > 0)$$

Exercise 4.
$$\int \sec^2 \theta \, d\theta =$$

Exercise 5. $\int \sinh w \, dw =$

Exercise 6. $\int f'(|z|) dz =$

Singularities in Definite Integrals

If the 'integrand' f(t) is singular at $t=c\in(a,b),$ the domain $\underline{must\ be}$ divided so that $\ t=c$ is an end-point

$$\int_{a}^{b} f(t) \,\mathrm{d}t = \int_{a}^{c} f(t) \,\mathrm{d}t + \int_{c}^{b} f(t) \,\mathrm{d}t$$

Examples:

$\int_0^4 \frac{1}{\sqrt{x}} \mathrm{d}x \qquad \qquad$	$\frac{\mathrm{d}}{\mathrm{d}x} 2\sqrt{x} \\ = 1/\sqrt{x}$
--	--

$$\int_{-8}^{27} |x|^{-2/3} \, \mathrm{d}x \qquad \begin{cases} \frac{\mathrm{d}}{\mathrm{d}x} \, 3x^{1/3} \\ = x^{-2/3} \end{cases}$$

singularities like $|x|^{-r}$ are 'integrable' if $r \in (0,1)$

Non-Integrable Singularities

More Examples:

5

$$\int_0^2 \frac{1}{t} \, \mathrm{d}t \qquad \qquad \left\{ \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}t} \ln |t| \\ = 1/t \end{array} \right.$$

$$\int_{-2}^{1} \frac{2}{t^3} dt \qquad \begin{cases} \frac{d}{dt} (-1/t^2) \\ = 2/t^3 \end{cases}$$

singularities like $|x|^{-r}\,$ are 'non-integrable' if $\,r\geq 1\,$

Rules for Integration

$$\int c f(x) \, \mathrm{d}x = c \int f(x) \, \mathrm{d}x$$

 $\label{eq:alpha} integral \ with \ a \ constant \ factor \\ Exercise. \ integrate \ \pi\cos\theta \ \ w.r.t. \ \ \theta$

$$\int f'(ax+b) \, \mathrm{d}x = \frac{1}{a}f(ax+b) + C$$

integral of a function of a linear function $\int \sec^2(\pi t - 2) dt$

$$\int (f(x) + g(x)) \, \mathrm{d}x = \int f(x) \, \mathrm{d}x + \int g(x) \, \mathrm{d}x$$

Exercise. find $\int \frac{2}{1-x^2} dx$ *integral of a sum*

8