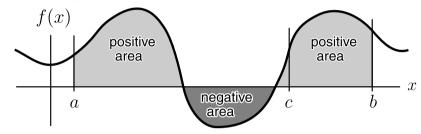
Definite Integrals

The 'definite integral' symbol $\int_a^b f(x) dx$ in spoken words is:

'the integral from a to b of the function f(x)' Graphically, it represents an area

1



<u>between</u>: the function f(x) and the x-axis, from the vertical line x=a on the left to the vertical line x=b on the right

(where f(x) < 0 the 'area' is taken to be negative)

<u>also</u> if the direction of integration is reversed the sign of the area is changed

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

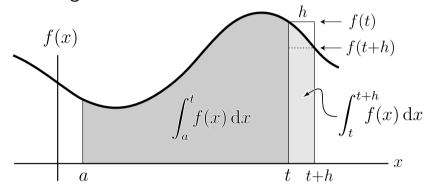
The integral can be split up into separate parts

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

covering the same overall domain, for any $c \in (a, b)$

Fundamental Theorem of Calculus

Suppose that the right end-point is $\ t$ and that it can change from t to t+h



For h small, the light area is approximately $h \times f(t)$

$$\int_{t}^{t+h} f(x) dx = \int_{a}^{t+h} f(x) dx - \int_{a}^{t} f(x) dx$$
$$= hf(t) + \mathbf{O}(h^{2}) \quad \text{as} \quad h \to 0$$

so that differentiating the integral gives

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{a}^{t} f(x) \, \mathrm{d}x = \lim_{h \to 0} \frac{1}{h} \left(\int_{a}^{t+h} f(x) \, \mathrm{d}x - \int_{a}^{t} f(x) \, \mathrm{d}x \right)$$
$$= \lim_{h \to 0} \left(f(t) + \mathbf{O}(h) \right)$$
$$= f(t)$$

(differentiation and integration are inverse operations)

This fact is 'the fundamental theorem of calculus'

3

Evaluating Definite Integrals

As a result of the fundamental theorem of calculus, the integral from a to b of f'(x) is simply

$$\int_{a}^{b} f'(x) \, \mathrm{d}x = f(b) - f(a)$$

 $\underline{provided}: f'(x) \text{ is continuous for all } x \in [a, b]$ and f(x) has derivative f'(x)

but, if f'(x) is continuous only for $x \in (a,b)$, then

$$\int_{a}^{b} f'(x) dx = \lim_{x \to b^{-}} f(x) - \lim_{x \to a^{+}} f(x)$$
$$= \left[f(x) \right]_{a}^{b}$$

<u>provided</u>: both limits exist and are finite.

Otherwise, the integral is said to 'diverge'

Exercise. Integrate $\frac{1}{s^2}$ from s=1 to ∞ .

Indefinite Integrals

Any function whose derivative is f'(x) is called an 'indefinite integral' of f'(x), written as

4

$$\int f'(x) \, \mathrm{d}x = f(x) + C$$

for any constant C

Example.
$$\int \frac{1}{s} ds = \ln|s| + C \qquad (s \neq 0)$$

Exercise 1.
$$\int e^t dt =$$

Exercise 2.
$$\int x^n \, \mathrm{d}x = \qquad (n \neq -1)$$

Exercise 3.
$$\int \frac{1}{\sqrt[4]{v}} \, \mathrm{d}v = \qquad (v > 0)$$

Exercise 4.
$$\int \sec^2 \theta \, d\theta =$$

Exercise 5.
$$\int \sinh w \, \mathrm{d}w =$$

Exercise 6.
$$\int f'(|z|) dz =$$

If the 'integrand' f(t) is singular at $t=c\in(a,b)$, the domain $\underline{must\ be}$ divided so that t=c is an end-point

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$

Examples:

$$\int_0^4 \frac{1}{\sqrt{x}} \, \mathrm{d}x$$

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}x} 2\sqrt{x} \\ = 1/\sqrt{x} \end{cases}$$

$$\int_{-8}^{27} |x|^{-2/3} \, \mathrm{d}x$$

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}x} 3x^{1/3} \\ = x^{-2/3} \end{cases}$$

Non-Integrable Singularities

More Examples:

$$\int_0^2 \frac{1}{t} \, \mathrm{d}t$$

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \ln|t| \\ = 1/t \end{cases}$$

$$\int_{-2}^{1} \frac{2}{t^3} \, \mathrm{d}t$$

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}(-1/t^2) \\ = 2/t^3 \end{cases}$$

7

Some Key Basic Integrals

f(x)	$\int f(x) \mathrm{d}x$
e^x	$e^x + C$
x^n for $n \neq -1$	$\frac{x^{n+1}}{n+1} + C$
$1/x$ for $x \neq 0$	$\ln x + C$
$\cos x$	$\sin x + C$
$\sin x$	$-\cos x + C$
$\frac{1}{x^2+1}$	$\tan^{-1} x + C$
$\frac{1}{1-x^2} \text{for } x < 1$	$\tanh^{-1} x + C$
$\frac{1}{x^2-1} \text{for } x >1$	$-\coth^{-1}x + C$
$\frac{1}{x^2 - 1} \text{for } x \neq 1$	$\frac{1}{2}\ln\left \frac{x-1}{x+1}\right + C$
$\frac{1}{\sqrt{1-x^2}} \text{for } x < 1$	$\sin^{-1}x + C$
$\frac{1}{\sqrt{x^2+1}}$	$\sinh^{-1} x + C$
$\frac{1}{\sqrt{x^2 - 1}} \text{for } x > 1$	$\cosh^{-1} x + C$
$\frac{1}{\sqrt{x^2 \pm 1}}$	$\ln\left x + \sqrt{x^2 \pm 1}\right + C$

 $\int c f(x) \, \mathrm{d}x = c \int f(x) \, \mathrm{d}x$

integral with a constant factor

Exercise. integrate $\pi \cos \theta$ w.r.t. θ

 $\int f'(ax+b) \, \mathrm{d}x = \frac{1}{a}f(ax+b) + C$

integral of a function of a linear functionExercise. find $\int \sec^2(\pi t - 2) dt$

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

$$integral \ of \ a \ s$$

$$Exercise. \ find \ \int \frac{2}{1 - x^2} dx$$

integral of a sum