Cartesian and Polar Coordinates

The precise location of a point in a plane can be identified using 2 axes at right angles ($\frac{\pi}{2}$ or 90°) intersecting at an "origin"

- If the distance of the point from the axes is
 x in the direction of the most clockwise axis
 y in the direction of the other axis
 then the point is at (x, y) in Cartesian coordinates
- If the line from the origin to the point:

 has length r
 is rotated an angle θ from the most clockwise axis
 then the point is at (r, θ) in polar coordinates

 Note: conventionally, angles are measured anti-clockwise

From simple geometry $r = \sqrt{x^2 + y^2}$ $x = r \cos(\theta)$ $y = r \sin(\theta)$

Graphs and Curve-Sketching

Using axes, algebraic relationships between two real variables can be drawn as a 'graph' in Cartesian form

Example 1. Sketch the graph of $\frac{x}{5} + \frac{y}{2} = 1$.

Example 2. Sketch s = 3 for any t in the (t, s) plane. Also sketch t = 5.

Example 3. Sketch $xy = b^2$.

What is represented in the case b = 0?

How would you sketch $xy = -b^2$?

Sketching Parametric Relationships Sometimes two variables are each given in terms of a third, tracing out a curve as the third variable changes Example 1. Sketch (u, v) with $u = t^3 - t$, $v = t^2$ for $t \in \mathbb{R}$ *Example 2.* Sketch (x, y) for $\theta \in \mathbb{R}$ with $x = 2\cos(\theta), y = \sin(2\theta)$ *Example 3.* Sketch (r, θ) , in polar form, with $r = \sqrt{s}, \ \theta = \pi s \text{ for } s > 0$

generic equations for 'Conic Sections'

