Functions

functions are a key concept in calculus

Note. In this part of the course we are concerned with functions having real values.

Example 1: \sqrt{a} for real values of $a \ge 0$

- for any number $a \ge 0$
- the function $\sqrt{\cdot}$ 'operates' on a
- and provides a value $\sqrt{a} \ge 0$

Example 2: $\cos \theta$ for real values of θ

- for any number $\theta \in \mathbb{R}$
- the function \cos 'operates' on heta
- and provides a value $\cos \theta \in [-1, 1]$

Example 3: sup(A) for sets of real numbers A

- for any set A of real numbers
- the function \sup 'operates' on A
- and provides a value $\sup(A) \in \mathbb{R} \cup \{\infty\}$

e.g.
$$\sup\{1,2\} = 2$$
, $\sup[0,\pi) = \pi$, $\sup(\mathbb{N}) = \infty$

Notation

Any function can be written symbolically as f, meaning

if x is in the domain of the function then f(x) takes a value in the range of the function

The function can also be written as $f(\cdot)$ with the dot (\cdot) indicating where the "argument" of the function is to appear.

Note. a function is the rule that assigns a value to any argument in the domain.

Thus, sin(x) is not strictly a function

- it is the value of the function \sin when applied to a number x in its domain

The function \sin is the same in each of

 $\sin(x)$, $\sin(t)$, $\sin(\frac{\pi}{2})$, $\sin(10^4)$, etc.

but these only represent values of the function at different points, not (strictly) functions themselves.

What is a Function?

Any function is associated with two important sets:

- *Domain.* the function is able to operate meaningfully on all elements in a set called its 'domain'
- *Range.* when the function operates on an element in its 'domain', it returns an element in a set called its 'range'

Hence: $\sqrt{\cdot}$ has domain $[0,\infty)$ and range $[0,\infty)$

- \cos has domain $\,\mathbb{R}\,$ and range [-1,1]
- $\begin{array}{l} \sup \mbox{ has range } \mathbb{R} \cup \{\infty\}. \mbox{ Its domain is} \\ \mbox{ the set of all non-empty subsets of } \mathbb{R} \end{array}$

We can say that

a function 'maps' any element in its domain to an element in its range.

Note that:

- a function is *defined for all elements* in its domain.
- a function maps any one element in its domain to *only one element* in its range.

Loose Notation (Defining Functions) 4

We will often use the loose terminology

'the function $\sin(x)$ ' or 'the function $\sqrt{1-t^2}$ '.

Strictly, this is an abbreviation for the correct definition.

For example. $\sqrt{1-t^2}$ stands for:

a function f defined such that $f(t)=\sqrt{1-t^2}$ for values of t where this formula makes sense

it also suggests that the symbol t is expected to be used as the argument of the function.

The definition can also be written in the form

$$f : t \mapsto \sqrt{1-t^2}$$

meaning the function f maps a number t to $\sqrt{1-t^2}$ (for values of t where $\sqrt{1-t^2}$ is meaningful)

Note. This defines the same function $f(\cdot)$ whatever symbol is used in place of t

Exercise: State the domain and range of 'the function' $\sqrt{r(2-r)}$

Graphs of Functions

5

7

Real-valued functions of real-valued arguments can (usually) be drawn graphically.

Conventionally, the domain is on a horizonatal axis.

Example 2. Which of these curves can represent a function?

Note. Because a function can only be single-valued, the graph of a function cannot intersect a vertical line more than once

Combining Functions

Functions can be added, subtracted, multiplied and divided to create new functions

If f and g are functions with domains A and B, we can define f + g, f - g, fg and f/g such that

$$\begin{split} (f+g)(x) &= f(x) + g(x) \quad \text{for} \quad x \in A \cap B \\ (f-g)(x) &= f(x) - g(x) \quad \text{for} \quad x \in A \cap B \\ (fg)(x) &= f(x)g(x) \quad \text{for} \quad x \in A \cap B \\ (f/g)(x) &= f(x)/g(x) \end{split}$$

In the latter case, the domain must exclude points where g(x) = 0. Thus, the domain is

$$\{x \mid x \in A \cap B \text{ and } g(x) \neq 0\}$$

 $\pmb{Composition.}$ A 'composite' function $f\circ g$ can be defined such that

$$(f \circ g)(x) = f(g(x))$$

 $\label{eq:exercise. If } f(x) = \sqrt{x} \text{ and } g(x) = 1 - x^2 \text{, what} \\ \text{ are the functions } f \circ g \text{ and } g \circ f \text{ and} \\ \text{ what are their domains?} \end{cases}$

Inverse Functions

If a function f maps x to f(x), the inverse process would map f(x) back to x.

A function that does this reverse mapping is called the 'inverse' of the function f, written as f^{-1} .

The domain/range of f^{-1} is the range/domain of f.

The composition of f and f^{-1} simply maps x to itself:

$$\begin{split} f^{-1}\big(f(x)\big) &= x & f\big(f^{-1}(x)\big) = x \\ \text{or} & (f^{-1}\circ f)(x) = x & (f\circ f^{-1})(x) = x \end{split}$$

Example. What is the inverse function of \sqrt{x} ?

Note. An inverse function cannot be constructed if different points in the domain map to the same point in the range.

If $y = f(x_1) = f(x_2)$ for $x_1 \neq x_2$ then we would have $f^{-1}(y) = x_1$ and $f^{-1}(y) = x_2$.

Inverse Functions

How to find the inverse of a function f(x): suppose y = f(x) and solve for $x = f^{-1}(y)$

Example 1. Find the inverse of the function $\sqrt[3]{z^5+1}$. What are its domain and range?

Example 2. Limit the domain of $\sqrt[4]{t(8-t)}$ to an interval (including t = 0) in which the inverse function can be found.

What is the inverse function and what are its domain and range?

Rational Functions, e.g. $\frac{a_0 + a_1x + \dots + a_nx^n}{b_0 + b_1x + \dots + b_mx^m}$ Rational functions are ratios of polynomials. useful • coefficients of the highest powers features • where the polynomials are zero include • positions of maxima and minima Notes. the ratio $\frac{a_nx^n}{b_mx^m}$ dominates for large |x|zeros arise at zeros of the numerator, and singularities arise at zeros of the denominator (except if numerator and denominator are both zero) Example. sketch the function $\frac{4(x^2 - 1)(x^2 - 9)}{(1 + x^2)(2x + 3)(x - 2)}$ Algebraic Functions. e.g. $\sqrt[3]{z^2-2}$

Algebraic functions can be written using the usual algebra of adding, subtracting, multiplying, dividing, powers and roots.

Examples:
$$\sqrt{1-t^4}$$
, $\frac{1-x}{1+x^2}$, $|z|$, $\sqrt[3]{1-\sqrt{y}+y^2}$

Transcendental Functions

Any function that cannot be written as an algebraic function is called a transcendental function.

transcendental functions include

\sin	\cos	\tan	\cot
sec	cosec	\sin^{-1}	\cos^{-1}
\exp	ln	\log	\cosh
\sinh	\sinh^{-1}	\cosh^{-1}	

and many more ...

Hyperbolic Functions

17

'hyperbolic' sine, cosine, tangent and cotangent are

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$
$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

all defined using the exponential function e^x

Inverse Hyperbolic Functions

 \sinh , \tanh and \coth are single-valued, so that their domains are not restricted in constructing inverses

Simple Transformations

19

A curve (x,y) satisfying y = f(x) is easily shifted or stretched, horizontally or vertically

the curve (x, y) satisfying y = a + f(x - b) is simply

- shifted upwards by a
- shifted to the right by b

the curve (x, y) satisfying $y = cf\left(\frac{x}{d}\right)$ is simply

- stretched vertically by c
- stretched horizontally by d

Examples. Find an equation for the parabola $y = cx^2$ when it is stretched horizontally by a factor of 3 and vertically by a factor of 9?

Sketch the function $1 + \cos(x - \frac{\pi}{3})$

Change of Variable

Sometimes an expression can be written more simply in terms of different variables.

- *Example*: an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ becomes $u^2 + v^2 = 1$ (a circle with unit radius) in terms of new variables defined by x = au, y = bv.
- Example 1. Find a change of variables for which the formula $9x^2 + 36x 4y^2 + 8y 4 = 0$ can be rewritten as $s^2 t^2 = 1$

Sketch both expressions.

Example 2. Can an hyperbola $\frac{x^2}{a^2} - \frac{x^2}{b^2} = 1$ be transformed into a circle using only real variables?

20

Symmetry and Periodicity

21

0 0	v
symmetry: A fu	nction $f(x)$ is said to be
an $even$ functi an odd functi	on if $f(x) = f(-x)$ on if $f(x) = -f(-x)$
for every value of x	and $-x$ in the domain of f .
We can also say tha	at $f(x)$ is
symmetrie anti-symmetrie	c about $x = 0$ if it is even c about $x = 0$ if it is odd
periodic: A func	tion $f(x)$ is
<i>periodic</i> with	'period' p if $f(x+p) = f(x)$
for every value of x	in the domain of f .
Example. What is the fund	the minimum period of each of etions \sin , \cos , \tan and \cot ?
Are any	of these functions even or odd?
Are the	r inverse functions even or odd?

Increasing and Decreasing

increasing or decreasing: A function f(x) is

increasing in an interval if $f(x_1) > f(x_2)$ *decreasing* in an interval if $f(x_1) < f(x_2)$

for every choice of x_1 and x_2 in the interval satisfying $x_1 > x_2$.

Example. Identify all intervals between $-\pi$ and π where tan and cot are increasing.

Monotonic is another term that you may encounter. A function is '<u>monotonic</u>' in an interval if it is not both increasing and decreasing in different parts of the interval, although it may include constant sections.

A function is 'strictly monotonic' in an interval if it is either increasing or decreasing (and never constant).

Example. True or False? a strictly monotonic functions has an inverse

the inverse of a function is monotonic