Functions

functions are a key concept in calculus

Note. In this part of the course we are concerned with functions having real values.

Example 1: \sqrt{a} for real values of $a \ge 0$

- for any number $a \ge 0$
- the <u>function</u> $\sqrt{\cdot}$ 'operates' on a
- and provides a value $\sqrt{a} \ge 0$

Example 2: $\cos \theta$ for real values of θ

- for any number $\theta \in \mathbb{R}$
- ullet the <u>function</u> \cos 'operates' on heta
- and provides a value $\cos \theta \in [-1, 1]$

Example 3: $\sup(A)$ for sets of real numbers A

- ullet for any set A of real numbers
- ullet the <u>function</u> \sup 'operates' on A
- and provides a value $\sup(A) \in \mathbb{R} \cup \{\infty\}$

e.g. $\sup\{1,2\} = 2$, $\sup[0,\pi) = \pi$, $\sup[\mathbb{N}] = \infty$

What is a Function?

1

Any function is associated with two important sets:

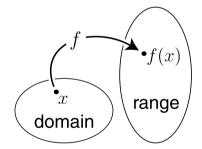
Domain. the function is able to operate meaningfully on all elements in a set called its 'domain'

Range. when the function operates on an element in its 'domain', it returns an element in a set called its 'range'

Hence: $\sqrt{\cdot}$ has domain $[0,\infty)$ and range $[0,\infty)$ cos has domain $\mathbb R$ and range [-1,1] sup has range $\mathbb R \cup \{\infty\}$. Its domain is the set of all non-empty subsets of $\mathbb R$

We can say that

a function 'maps' any
element in its domain to
an element in its range.



Note that:

- a function is *defined for all elements* in its domain.
- a function maps any one element in its domain to *only one element* in its range.

3

Notation

Any function can be written symbolically as f, meaning

if x is in the domain of the function then f(x) takes a value in the range of the function

The function can also be written as $f(\cdot)$ with the dot (\cdot) indicating where the "argument" of the function is to appear.

Examples. sine function : $\sin(\cdot)$

exponential: e

square root : $\sqrt{}$

modulus : | ·

Note. a function is the rule that assigns a value to any argument in the domain.

Thus, $\sin(x)$ is not strictly a function

- it is the value of the function \sin when applied to a number x in its domain

The function \sin is the same in each of

$$\sin(x)$$
, $\sin(t)$, $\sin(\frac{\pi}{2})$, $\sin(10^4)$, etc.

but these only represent values of the function at different points, not (strictly) functions themselves.

Loose Notation (Defining Functions)⁴

We will often use the loose terminology

'the function $\sin(x)$ ' or 'the function $\sqrt{1-t^2}$ '.

Strictly, this is an abbreviation for the correct definition.

For example. $\sqrt{1-t^2}$ stands for:

a function f defined such that $f(t) = \sqrt{1 - t^2}$ for values of t where this formula makes sense

it also suggests that the symbol t is expected to be used as the argument of the function.

The definition can also be written in the form

$$f: t \mapsto \sqrt{1-t^2}$$

meaning the function f maps a number t to $\sqrt{1-t^2}$ (for values of t where $\sqrt{1-t^2}$ is meaningful)

Note. This defines the same function $f(\cdot)$ whatever symbol is used in place of t

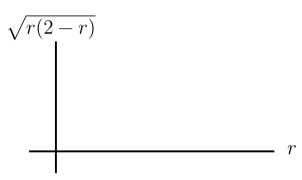
Exercise: State the domain and range of 'the function' $\sqrt{r(2-r)}$

Graphs of Functions

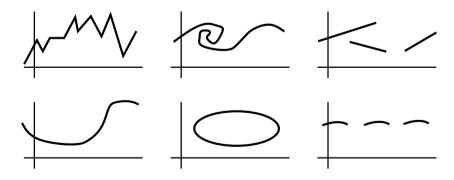
Real-valued functions of real-valued arguments can (usually) be drawn graphically.

Conventionally, the domain is on a horizonatal axis.

Example 1. sketch a graph of the function $\sqrt{r(2-r)}$



Example 2. Which of these curves can represent a function?



Note. Because a function can only be single-valued, the graph of a function cannot intersect a vertical line more than once

Combining Functions

Functions can be added, subtracted, multiplied and divided to create new functions

If f and g are functions with domains A and B, we can define f+g, f-g, fg and f/g such that

$$(f+g)(x) = f(x) + g(x)$$
 for $x \in A \cap B$
 $(f-g)(x) = f(x) - g(x)$ for $x \in A \cap B$
 $(fg)(x) = f(x)g(x)$ for $x \in A \cap B$
 $(f/g)(x) = f(x)/g(x)$

In the latter case, the domain must exclude points where g(x)=0. Thus, the domain is

$$\{x \mid x \in A \cap B \text{ and } g(x) \neq 0\}$$

Exercise. Add, subtract, multiply and divide the functions $\sqrt{x(2-x)}$ and $1-x^2$. In each case, what is the domain?

Composition. A 'composite' function $f \circ g$ can be defined such that

$$(f \circ g)(x) = f(g(x))$$

Exercise. If $f(x) = \sqrt{x}$ and $g(x) = 1 - x^2$, what are the functions $f \circ g$ and $g \circ f$ and what are their domains?

Inverse Functions

If a function f maps x to f(x), the inverse process would map f(x) back to x.

A function that does this reverse mapping is called the 'inverse' of the function f, written as f^{-1} .

The domain/range of f^{-1} is the range/domain of f.

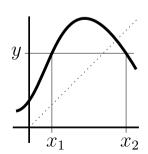
The composition of f and f^{-1} simply maps x to itself:

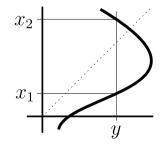
$$f^{-1}\big(f(x)\big)=x \qquad \qquad f\big(f^{-1}(x)\big)=x$$
 or
$$(f^{-1}\circ f)(x)=x \qquad \qquad (f\circ f^{-1})(x)=x$$

Example. What is the inverse function of \sqrt{x} ?

Note. An inverse function cannot be constructed if different points in the domain map to the same point in the range.

Sketch: note reflection about a line at 45°





If $y = f(x_1) = f(x_2)$ for $x_1 \neq x_2$ then we would have $f^{-1}(y) = x_1$ and $f^{-1}(y) = x_2$.

Inverse Functions

How to find the inverse of a function f(x): suppose y = f(x) and solve for $x = f^{-1}(y)$

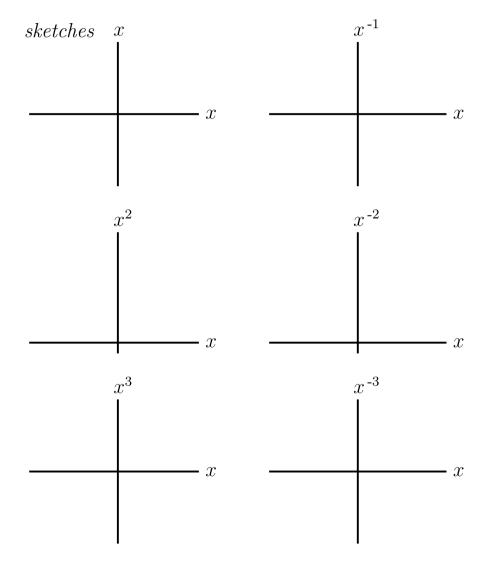
Example 1. Find the inverse of the function $\sqrt[3]{z^5+1}$. What are its domain and range?

Example 2. Limit the domain of $\sqrt[4]{t(8-t)}$ to an interval (including t=0) in which the inverse function can be found. What is the inverse function and what are its domain and range?

Standard Functions

Many functions are well-known:

Powers, e.g. x, x^2 , x^3 , x^{-1} x^{-2} , x^{-3} etc.



Polynomials, e.g. $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$

The 'order' of a polynomial is the highest power we also say:

'constant' for order 0 'linear' for order 1 ax + b'quadratic' for order $2 ax^2 + bx + c$ 'cubic' for order 3 $ax^3 + bx^2 + cx + d$

sketches for polynomials depend very much on the order and the values of the coefficients $(a_0, a_1, \text{ etc.})$

useful

9

the term with the highest power

- *features* where the polynomial is zero
- include
- positions of maxima and minima

the term with the highest power gives Note. the behaviour when |x| is large

Example. sketch the function x(x+1)(2-x)

$$x(x+1)(2-x)$$

Rational Functions, e.g. $\frac{a_0 + a_1x + \cdots + a_nx^n}{b_0 + b_1x + \cdots + b_mx^m}$

Rational functions are ratios of polynomials.

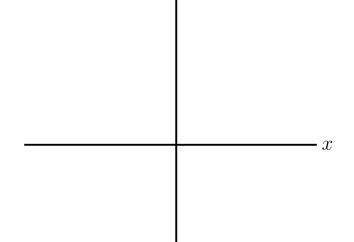
useful

coefficients of the highest powers

- *features* where the polynomials are zero
- include
- positions of maxima and minima

Notes. the ratio $\frac{a_n x^n}{b_m x^m}$ dominates for large |x|zeros arise at zeros of the numerator, and singularities arise at zeros of the denominator (except if numerator and denominator are both zero)

Example. sketch the function $\frac{4(x^2-1)(x^2-9)}{(1+x^2)(2x+3)(x-2)}$



Algebraic Functions. e.g. $\sqrt[3]{z^2-2}$

Algebraic functions can be written using the usual algebra of adding, subtracting, multiplying, dividing, powers and roots.

Examples:
$$\sqrt{1-t^4}$$
, $\frac{1-x}{1+x^2}$, $|z|$, $\sqrt[3]{1-\sqrt{y}+y^2}$

Transcendental Functions

Any function that cannot be written as an algebraic function is called a transcendental function.

transcendental functions include

$$\sin$$
 \cos \tan \cot
 \sec \csc \sin^{-1} \cos^{-1}
 \exp \ln \log \cosh
 \sinh \sinh^{-1} \cosh^{-1}

and many more ...

Exponential and Logarithmic Functions

Exponential functions have the form a^x for some number a > 0 (normally with $a \neq 1$)

The inverse function is written as $\log_a(\cdot)$ for the same number a > 0 (if $a \neq 1$)

Hence, if $y = a^x$ then $x = \log_a y$

Notes. a^x has domain $\mathbb R$ and range $(0,\infty)$ $\log_a x$ has domain $(0,\infty)$ and range $\mathbb R$

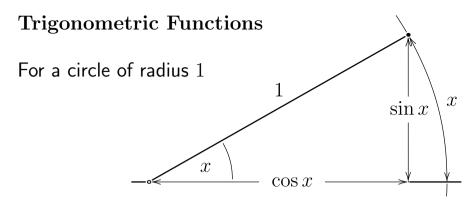
$$a^{-x} = \left(\frac{1}{a}\right)^x \qquad \qquad a^x a^y = a^{x+y}$$
$$\log_a \frac{1}{x} = -\log_a x \qquad \log_a(xy) = \log_a x + \log_a y$$

Sketch

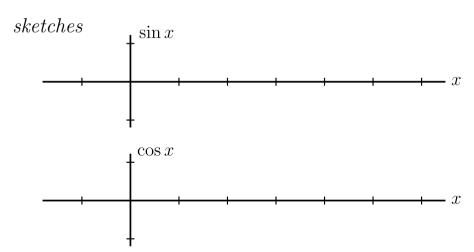
The base e of natural logarithms is the value of a for which the graph of a^x has slope 1 at x=0

This has a special notation:

$$\exp x = e^x \qquad \ln x = \log_e x$$



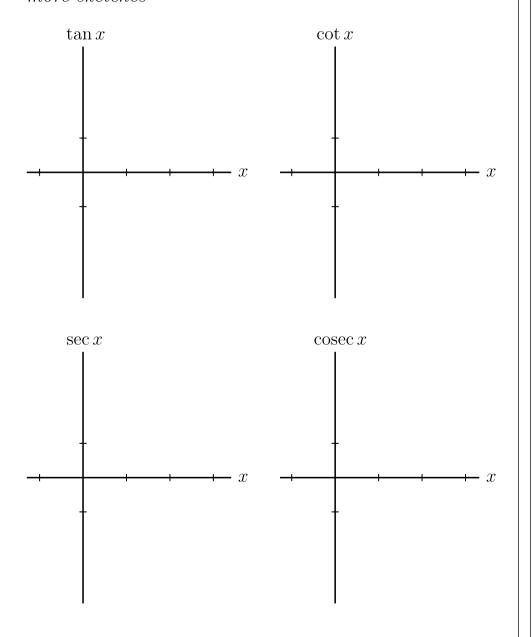
- \bullet angle x is length along the circumference
- $\sin x$ and $\cos x$ are the lengths shown
- ullet x increases by 2π around one full circle
- $\sin x$ and $\cos x$ repeat as x increases by 2π
- \sin and \cos have domain $\mathbb R$ and range [-1,1]



We also define

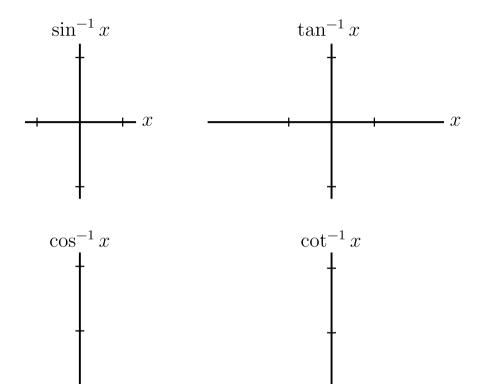
$$\tan = \frac{\sin}{\cos}$$
, $\cot = \frac{\cos}{\sin}$, $\sec = \frac{1}{\cos}$, $\csc = \frac{1}{\sin}$

more sketches



Inverse Trigonometric Functions

for inverses of \sin , \cos , \tan and \cot , the domains are restricted so that the functions are single-valued



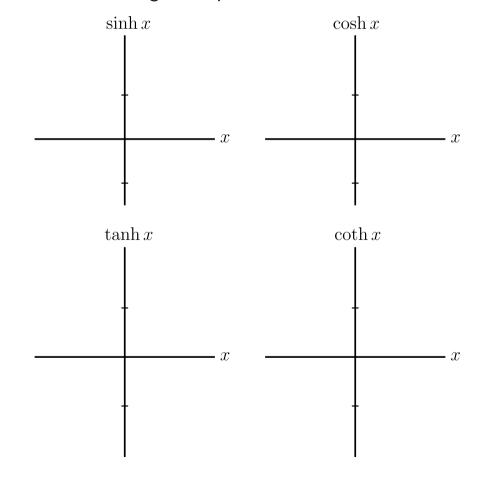
What are the domain and range of $\sin^{-1}(\sin x)$?

What are the domain and range of $\sin(\sin^{-1} x)$?

'hyperbolic' sine, cosine, tangent and cotangent are

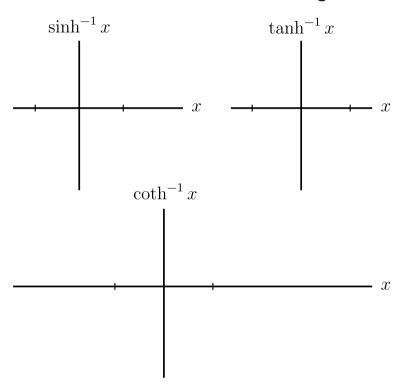
$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$
$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

all defined using the exponential function e^x

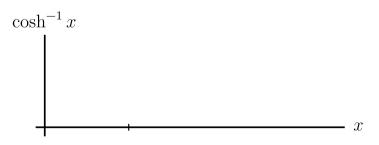


Inverse Hyperbolic Functions

 \sinh , \tanh and \coth are single-valued, so that their domains are not restricted in constructing inverses



For \cosh^{-1} , the domain of \cosh is restricted to $[0, \infty)$



Simple Transformations

A curve (x,y) satisfying y=f(x) is easily shifted or stretched, horizontally or vertically

the curve (x,y) satisfying y=a+f(x-b) is simply

- ullet shifted upwards by a
- shifted to the right by b

the curve (x,y) satisfying $y=cf\left(\frac{x}{d}\right)$ is simply

- ullet stretched vertically by c
- ullet stretched horizontally by d

Examples. Find an equation for the parabola $y = cx^2$ when it is stretched horizontally by a factor of 3 and vertically by a factor of 9?

Sketch the function $1 + \cos(x - \frac{\pi}{3})$

Change of Variable

Sometimes an expression can be written more simply in terms of different variables.

Example: an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ becomes $u^2 + v^2 = 1$ (a circle with unit radius) in terms of new variables defined by x = au, y = bv.

Example 2. Can an hyperbola $\frac{x^2}{a^2} - \frac{x^2}{b^2} = 1$ be transformed into a circle using only real variables?

Symmetry and Periodicity

symmetry: A function f(x) is said to be

an even function if f(x) = f(-x)an odd function if f(x) = -f(-x)

for every value of x and -x in the domain of f.

We can also say that f(x) is

 ${\color{red} symmetric}$ about x=0 if it is even ${\color{red} anti-symmetric}$ about x=0 if it is odd

periodic: A function f(x) is

periodic with 'period' p if f(x+p)=f(x) for every value of x in the domain of f.

Example. What is the minimum period of each of the functions \sin , \cos , \tan and \cot ?

Are any of these functions even or odd?

Are their inverse functions even or odd?

Increasing and Decreasing

<u>increasing</u> or <u>decreasing</u>: A function f(x) is

increasing in an interval if $f(x_1) > f(x_2)$ *decreasing* in an interval if $f(x_1) < f(x_2)$

for every choice of x_1 and x_2 in the interval satisfying $x_1 > x_2$.

Example. Identify all intervals between $-\pi$ and π where \tan and \cot are increasing.

Monotonic is another term that you may encounter. A function is 'monotonic' in an interval if it is not both increasing and decreasing in different parts of the interval, although it may include constant sections.

A function is 'strictly monotonic' in an interval if it is either increasing or decreasing (and never constant).

Example. True or False?

a strictly monotonic functions has an inverse
the inverse of a function is monotonic