Definition of a Derivative

The rate of change f/(t) of a function f(t), as its
argument ¢ changes, can be expressed as the limit

! T f(t+h)7f(t)
. e
provided this limit exists.

The function f’ is called the derivative of f

Calculating f' from f is called differentiation

Sketch: /)

1'(t) gives
the slope of
the tangent

at (¢, f(t)) -

Note. A subtle point is that we temporarily
introduce a new variable A in the expression
flt+h)—f@)
h

which is a function of two variables ¢t and h.
We treat ¢ as a constant in calculating lim
which, then, eliminates h, so that h=0
f'(t) depends only on t.

Alternative forms

Several different notations can be used to represent
the derivative of f(t), namely
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The definition can also be written in an alternative
(but equivalent) way, simply by setting h = s —t.
It follows that
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s=t §—1
H:igher derivatives

If the function f'(t) is differentiated, the result is
the ‘second’ derivative of f, written as f”().

Repeated differentiation gives third, fourth, fifth, etc.,
derivatives, f"(t), f"™(t), f""(t), etc.

It is convenient to write the n™ derivative of f(t)
as g
) — — _f— — D"
! dt”f dtn !
The first three of these notations are the ones that are
most commonly used

Derivative of an Inverse function

If a function f has the inverse f~! and we write
u= f(z) and w = f(z), then

[~ 1) weu

2-z f7Hw) = f7H(w)

It follows that

%fﬁl(u) — lim f_ (w)_f_ (u)

=
—1/< /()

unless L f(z) =0, in which case L f~!(u) is not
defined.

Example. Given that d%x” =na" 1 for neN,

what is %{1/5 for x>07

Differentiating sin and cos

Increasing the angle x by h in the diagram

px W
h
sin(z+h) | = sin(z+h)
sin x —sinx
x \ l [ COST — N
cos(z+h) | conlr BN

COosS T

we can see that,

as h — 0, the T
enlarged diagram sm(.g;juh) h
approaches this —sinz
triangle —
(stretched by %)
cosT —
i h
which demonstrates that cos(z+h)
d o . sin(z +h) —sinx
— sinx = lim = Ccosx
dz ho0 h

= —sinx

d . cos(x+ h)—cosz
— cosz = lim
dz h—0 h




Differentiating e¢* and Inx

Recall that the number e is chosen such that the
slope of the tangent to the graph of ¢* atx =0 is
exactly 1.

This means that

' O+h _ o0 b1
lim ———— = lim =1
h—0 h h—0 h
We can easily use this to calculate
d . ) z+h _ e ) Y €h -1 N
— e’ =lim———=1lime =e
dz h—0 h h—0 h

since e’ is constant in taking the limit }llir%

If we write z = e®, so that the inverse function
gives z =1Inz, we know that

d d Tz
glnz:l/ae fl/e fl/z

So we can write

d 1
JE— 1 - — R — p—
o ne . and e e

Differentiating "

We can write

r__ r r—1 rx(r—1) 12 r—2
(x+h)" =a"+Tha" + F 52" "+

using the binomial theorem, for any value of r.

If » € N then this results in an infinite power series
in h (a topic to be covered in more detail later).

This can be rearranged to give
(x+h)" =2a"+rha™ ' +O(h®) as h—0
so that
) — " h r—1 0] h2
(J:—l—f)L a’ _rha :L— ( ):m’*l—ﬁ—O(h)
It follows that

If f(h)=0O(h") as h— 0, with n >0, then
im |0 <0 — lim‘m‘|h”|<lim0|h"|
h—0| h™ h—0 | h™ h—0
and so

. < : _
lim[f(h)] <0 = lim f(h) =0

Sums and Products

L (f(@) +9(@) = f'(x) + ¢/ (x)

derivative of a sum
3

Example. 1% and 2"¢ derivatives of sin z+cosz—x
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f(@)g'(x) + f'(x)g(x)

derivative of a product

first times derivative of second
plus second times derivative of first

Example. differentiate e”sinxcosz

= (ef (@) = ()

derivative with a constant factor

Example. differentiate 7e” sinx cosx

Quotients and Chain Rule

d fl@) _ g@)f'(x) - f2)g (=)

dz g(z) g°(x)

derivative of a quotient

bottom times derivative of top minus top times
derivative of bottom, over bottom squared
d 3t -2

FEzxample. Find pro

L fg@) = £ (9(0))9' () chain rule

or function of a function rule

derivative of the outer function
times derivative of the inner function

Ezample. If y= (23 +2)° find dy

Ezample. Find %f(at +b)




More Trigonometric Derivatives

d sinz  coszcosz — sinz(—sinx)

dx cosx cos? x
cos? x + sin® x 1
B cos?x -~ cos?z
= sec’x

this also equals 1+ tan?z (why?)

d 1 cos x
cosec x —— =——
dz sinx sin® x
cosx 1
sinx sinx

= —cot x cosec T
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Inverse Trigonometric Derivatives

sintz

cos'tz| Lety=cos 'z forze[-1,1], y €[0,7]

SO x =cosy giving g—Z:—siny
d el — Y _ 1/de — 1/
so gycos w=gl=1/F= 1/siny

Using cos?y + sin®y = 1 and siny > 0
(for y € [0,7]) we can solve for siny:
siny = \/1 —cos?2y = /1 — 22, and so

LcosTle=—1/V1—2a?forz € (—1,1).

tan~! x
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Derivatives of sinh and cosh

- dem—e*’”_ez—i-e*z
foe oot

= coshx

cosh x

sinh !z

Let y = cosh™' z for z € [1,00), y € [0, 00)

so x = coshy giving %zsinhy
so %coshflxzj—z:l/g—;zl/sinhy

Using cosh?y — sinh?y = 1 and sinhy > 0
(for y € [0, 00]) we can solve for sinh y:

sinhy = y/cosh®y — 1 =22 — 1, and so
L cosh™ 2 =1/Va? — 1 for z € (1,00).

More Hyperbolic Derivatives ”

d coshz  sinh zsinhx — cosh x cosh z
— =

dz sinh x sinh?
sinh? x — cosh? z —1
N sinh?  sinh’z
= —cosech’z

this also equals 1 — coth®z (why?)

sech x

cosech x




Derivatives of tanh™' and coth™*

[tanh ™'«

[coth ™ «]
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I’Hopital’s Rule

The definition of derivative helps to make it clear why
I'Hopital's rule works.

We will show why it works for functions f(z) and g(x)
that are continuous at = = a, with f(a) = g(a) =0

Since f(a) = 0 we must have

=t P00 g T
Likewise ¢'(a) = illr}l% (since g(a) = 0)
e lim @ = lim fz) x—a = fla)

g i —a 9@ gla)

Given that I'Hépital’s rule applies as x — a, for func-
tions tending to either zero or plus or minus infinity, it
is easy to demonstrate that the rule applies for func-
tions that tend to either 0 or 00, as x — oo

Let « = 1/z then, using I'Hopital’s rule and the chain

rule
f) S0/

1m ———F = 111 —1mM
S gla) v g(1f2)  —er —g(1/)/2
i
e ()’
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Parametric Differentiation

Curves defined parametrically involve two functions,
suchasz =t —t, y =12

Sketch:

In general we would have = = f(t), y = g(t) for two
functions f and g.

The slope of the curve at any point (f (), g(t)) is:

dy dy/dt  g'(t)

de  dz/dt  f(t)

Ezample. What is the slope of the curve (z,y) given
that v =3 —tand y =27
Hence show that the curve is multivalued

forx € [—%, %}

Implicit Differentiation b

Curves of (x,y) that are defined through a single
relation between = and y can also be differentiated
to find Cdi—g, using the procedure

e treat y as the function y(z)

e differentiate with respect to x

e solve for j—y
T

22 2 . dy
Ezxample 1. |If pol i 1 find W

Note. The derivative is often found in terms of
both x and y and is only meaningful at
points on the curve.

du

Example 2. If u+ v? =sin(u? +v) find o




Logarithmic Differentiation v

Differentiating a function consisting of positive terms
multiplied or divided together can often be made easier
by first taking logarithms

Cr(l+a?)Va? -1

Example 1. y = for x > 2
T —2
Ezample 2. v=1t' for t >0
S 17
Example 3. w = 62(728) for s >+/2
—s
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Curves at Right Angles

b W (

If a line has slope a/b

then a line rotated by 7
has slope —b/a.

a b .
X Product of the slopes is —1
Generally:
If curves A and B have slopes dy and dy
dy| dy dzx A dz |
and -Z| -=| = —1 where the curves intersect,
dxladx|B

then the curves intersect at right angles (7 or 90°)

Example. The formulae z2+y? =72 and y = ztan6

define two curves for constant r or 6
(r and 6 represent polar coordinates)

Sketch:

For 2% +y?=r? wehave $¥| =—u/y.
For y =axtanf we have %|9:tan0:y/$.

dy dj‘ _
So Gl arle =

i.e.. 7 and 0 offer an ‘orthogonal coordinate system’

—1 where the curves intersect.

Turning Points and Critical Points

A function f(t) has a critical point where f'(t) =0

A critical point a (where f'(a) =0) is a
‘maximum’ if f(t) < f(a) for all ¢ close to a
‘minimum’ if f(t) > f(a) for all t close to a

If f(t) < f(a) on oneside of aand f(t) > f(a) on the

other (for all ¢ close enough to a) then a is called a

‘point of inflection’.

Sketch:

At a critical point a, if
f"(a) > 0 then the point is a minimum
f"(a) < 0 then the point is a maximum
f"(a) = 0 then further information is needed

In fact, if the first non-zero derivative is of odd order,
then a is a point of inflection. If it is of even order,
then it has the same effect as f”(a) above.

Derivatives in Curve Sketching *

Knowing the location and type (max, min, inflection)
of critical points is valuable additional information that
can be used in curve sketching.

2

Example 1. Sketch the function 671 +$4.
3+
t(t —2)

Example 2. Sketch the function

+2

(even knowing there are no turning points is useful)




