
Definition of a Derivative
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The rate of change f ′(t) of a function f(t), as its
argument t changes, can be expressed as the limit

f ′(t) = lim
h→0

f(t + h)− f(t)

h

provided this limit exists.

The function f ′ is called the derivative of f

Calculating f ′ from f is called differentiation

Sketch:

f ′(t) gives
the slope of
the tangent
at

(
t, f(t)

)
Note. A subtle point is that we temporarily

introduce a new variable h in the expression

f(t + h)− f(t)
h

which is a function of two variables t and h.
We treat t as a constant in calculating lim

h→0
which, then, eliminates h, so that
f ′(t) depends only on t.

Alternative forms
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Several different notations can be used to represent
the derivative of f(t), namely

f ′(t) = f (1)(t) =
d
dt

f(t) =
df

dt
(t) = Df(t) = ft(t) = ḟ(t)

The definition can also be written in an alternative
(but equivalent) way, simply by setting h = s− t.

It follows that

f ′(t) =
d
dt

f(t) = lim
s→t

f(s)− f(t)

s− t

Higher derivatives

If the function f ′(t) is differentiated, the result is
the ‘second’ derivative of f , written as f ′′(t).

Repeated differentiation gives third, fourth, fifth, etc.,
derivatives, f ′′′(t), f ′′′′(t), f ′′′′′(t), etc.

It is convenient to write the nth derivative of f(t)
as

f (n) =
dn

dtn
f =

dnf

dtn
= Dnf

The first three of these notations are the ones that are
most commonly used

Derivative of an Inverse function
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If a function f has the inverse f−1 and we write
u = f(x) and w = f(z), then

f(z)− f(x)

z − x
=

w − u

f−1(w)− f−1(u)

It follows that

d
du

f−1(u) = lim
w→u

f−1(w)− f−1(u)
w − u

= lim
z→x

z − x

f(z)− f(x)

= 1
/

d
dx

f(x)

unless d
dxf(x) = 0, in which case d

duf−1(u) is not
defined.

Example. Given that d
dxxn = nxn−1, for n ∈ N,

what is d
dx

n
√

x, for x ≥ 0 ?

Differentiating sin and cos
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Increasing the angle x by h in the diagram

we can see that,
as h→ 0, the

enlarged diagram
approaches this

triangle −→
(stretched by 1

h)

which demonstrates that

d
dx

sin x = lim
h→0

sin(x + h)− sinx

h
= cos x

d
dx

cos x = lim
h→0

cos(x + h)− cos x

h
= − sin x



Differentiating ex and ln x
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Recall that the number e is chosen such that the
slope of the tangent to the graph of ex at x = 0 is
exactly 1.

This means that

lim
h→0

e0+h − e0

h
= lim

h→0

eh − 1

h
= 1

We can easily use this to calculate

d
dx

ex = lim
h→0

ex+h − ex

h
= lim

h→0
ex eh − 1

h
= ex

since ex is constant in taking the limit lim
h→0

If we write z = ex, so that the inverse function
gives x = ln z, we know that

d
dz

ln z = 1
/

d
dx

ex = 1
/
ex = 1

/
z

So we can write

d
dx

ln x =
1

x
and

d
dx

ex = ex

Differentiating xr 6

We can write

(x + h)r = xr + r
1hxr−1 + r×(r−1)

1×2 h2xr−2 + · · ·
using the binomial theorem, for any value of r.

If r &∈ N then this results in an infinite power series
in h (a topic to be covered in more detail later).

This can be rearranged to give

(x + h)r = xr + rhxr−1 + O(h2) as h→ 0
so that
(x + h)r − xr

h
=

rhxr−1 + O(h2)

h
= rxr−1 + O(h)

It follows that

d
dx

xr = lim
h→0

(
rxr−1 + O(h)

)
= rxr−1

More on Order Notation

If f(h) = O(hn) as h→ 0, with n > 0, then

lim
h→0

∣∣∣∣f(h)
hn

∣∣∣∣ ≤ C =⇒ lim
h→0

∣∣∣∣f(h)
hn

∣∣∣∣ |hn| ≤ lim
h→0

C|hn|
and so

lim
h→0

|f(h)| ≤ 0 =⇒ lim
h→0

f(h) = 0

Sums and Products
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d
dx

(
f(x) + g(x)

)
= f ′(x) + g′(x)

derivative of a sum

Example. 1st and 2nd derivatives of sin x+cos x−x3

d
dx

(
f(x)g(x)

)
= f(x)g′(x) + f ′(x)g(x)

derivative of a product

first times derivative of second
plus second times derivative of first

Example. differentiate ex sin x cos x

d
dx

(
cf(x)

)
= cf ′(x)

derivative with a constant factor

Example. differentiate 7ex sin x cos x

Quotients and Chain Rule
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d
dx

f(x)
g(x)

=
g(x)f ′(x)− f(x)g′(x)

g2(x)

derivative of a quotient

bottom times derivative of top minus top times
derivative of bottom, over bottom squared

Example. Find
d
dt

3t2 − 2
t2 + 1

d
dx

f
(
g(x)

)
= f ′

(
g(x)

)
g′(x)

chain rule
or function of a function rule

derivative of the outer function
times derivative of the inner function

Example. If y = (x3 + 2)5 find
dy

dx

Example. Find
d
dt

f(at + b)



More Trigonometric Derivatives
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tan x
d

dx

sin x

cos x
=

cos x cos x− sin x(− sin x)

cos2 x

=
cos2 x + sin2 x

cos2 x
=

1

cos2 x
= sec2 x

this also equals 1 + tan2 x (why?)

cot x

cosec x
d

dx

1

sin x
= − cos x

sin2 x

= −cos x

sin x

1

sin x
= − cot x cosec x

sec x

Inverse Trigonometric Derivatives
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sin−1 x

cos−1 x Let y = cos−1 x for x ∈ [−1, 1], y ∈ [0, π]
so x = cos y giving dx

dy = − sin y
so d

dx cos−1 x = dy
dx = 1/dx

dy = −1/ sin y

Using cos2 y + sin2 y = 1 and sin y ≥ 0
(for y ∈ [0, π]) we can solve for sin y:

sin y =
√

1− cos2 y =
√

1− x2, and so
d
dx cos−1 x = −1/

√
1− x2 for x ∈ (−1, 1).

tan−1 x

Derivatives of sinh and cosh
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sinh x
d

dx

ex − e−x

2
=

ex + e−x

2
= cosh x

cosh x

sinh−1 x

cosh−1 x Let y = cosh−1 x for x ∈ [1,∞), y ∈ [0,∞)
so x = cosh y giving dx

dy = sinh y
so d

dx cosh−1 x = dy
dx = 1/dx

dy = 1/ sinh y

Using cosh2 y − sinh2 y = 1 and sinh y ≥ 0
(for y ∈ [0,∞]) we can solve for sinh y:

sinh y =
√

cosh2 y − 1 =
√

x2 − 1, and so
d
dx cosh−1 x = 1/

√
x2 − 1 for x ∈ (1,∞).

More Hyperbolic Derivatives
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tanh x

coth x
d

dx

cosh x

sinh x
=

sinh x sinh x− cosh x cosh x

sinh2 x

=
sinh2 x− cosh2 x

sinh2 x
=

−1

sinh2 x
= −cosech2x

this also equals 1− coth2 x (why?)

sech x

cosech x



Derivatives of tanh−1 and coth−1 13

tanh−1 x

coth−1 x

l’Hôpital’s Rule
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The definition of derivative helps to make it clear why
l’Hôpital’s rule works.

We will show why it works for functions f(x) and g(x)
that are continuous at x = a, with f(a) = g(a) = 0

Since f(a) = 0 we must have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

f(x)

x− a

Likewise g′(a) = lim
x→a

g(x)

x− a
(since g(a) = 0)

and so
lim
x→a

f(x)

g(x)
= lim

x→a

f(x)

x− a

x− a

g(x)
=

f ′(a)

g′(a)
.

Given that l’Hôpital’s rule applies as x→ a, for func-
tions tending to either zero or plus or minus infinity, it
is easy to demonstrate that the rule applies for func-
tions that tend to either 0 or ±∞, as x→∞
Let x = 1/z then, using l’Hôpital’s rule and the chain
rule

lim
x→∞

f(x)

g(x)
= lim

z→0+

f(1/z)

g(1/z)
= lim

z→0+

−f ′(1/z)/z2

−g′(1/z)/z2

= lim
x→∞

f ′(x)

g′(x)
.

Parametric Differentiation
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Curves defined parametrically involve two functions,
such as x = t3 − t, y = t2

Sketch:

In general we would have x = f(t), y = g(t) for two
functions f and g.

The slope of the curve at any point
(
f(t), g(t)

)
is:

dy

dx
=

dy/dt

dx/dt
=

g′(t)
f ′(t)

Example. What is the slope of the curve (x, y) given
that x = t3 − t and y = t2 ?
Hence show that the curve is multivalued
for x ∈ [− 2

3
√

3
, 2

3
√

3
].

Implicit Differentiation
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Curves of (x, y) that are defined through a single
relation between x and y can also be differentiated
to find dy

dx , using the procedure

• treat y as the function y(x)

• differentiate with respect to x

• solve for dy
dx

Example 1. If
x2

a2
− y2

b2
= 1 find

dy

dx

Note. The derivative is often found in terms of
both x and y and is only meaningful at
points on the curve.

Example 2. If u + v2 = sin(u2 + v) find
du

dv



Logarithmic Differentiation
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Differentiating a function consisting of positive terms
multiplied or divided together can often be made easier
by first taking logarithms

Example 1. y =
x(1 + x2)

√
x2 − 1

x− 2
for x > 2

Example 2. v = tt for t > 0

Example 3. w =
es(1− s)

2− s2
for s >

√
2

Curves at Right Angles
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If a line has slope a/b

then a line rotated by π
2

has slope −b/a.

Product of the slopes is −1
Generally :

If curves A and B have slopes
dy

dx

∣∣∣
A

and
dy

dx

∣∣∣
B

and
dy

dx

∣∣∣
A

dy

dx

∣∣∣
B

= −1 where the curves intersect,

then the curves intersect at right angles (π
2 or 90◦)

Example. The formulae x2+y2 = r2 and y = x tan θ
define two curves for constant r or θ
(r and θ represent polar coordinates)

Sketch:

For x2 + y2 = r2 we have dy
dx

∣∣
r

= −x/y.

For y = x tan θ we have dy
dx

∣∣
θ

= tan θ = y/x.

So dy
dx

∣∣
r

dy
dx

∣∣
θ

= −1 where the curves intersect.

i.e.: r and θ offer an ‘orthogonal coordinate system’

Turning Points and Critical Points
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A function f(t) has a critical point where f ′(t) = 0

A critical point a (where f ′(a) = 0) is a

‘maximum ’ if f(t) < f(a) for all t close to a

‘minimum ’ if f(t) > f(a) for all t close to a

If f(t) < f(a) on one side of a and f(t) > f(a) on the
other (for all t close enough to a) then a is called a

‘point of inflection’.

Sketch:

At a critical point a, if

f ′′(a) > 0 then the point is a minimum

f ′′(a) < 0 then the point is a maximum

f ′′(a) = 0 then further information is needed

In fact, if the first non-zero derivative is of odd order,
then a is a point of inflection. If it is of even order,
then it has the same effect as f ′′(a) above.

Derivatives in Curve Sketching
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Knowing the location and type (max, min, inflection)
of critical points is valuable additional information that
can be used in curve sketching.

Example 1. Sketch the function 6
1 + x2

3 + x4
.

Example 2. Sketch the function
t(t− 2)
t2 − 1

(even knowing there are no turning points is useful)


