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We present an analytical study of triple-flame propagation in a two-dimensional
mixing layer against a parallel flow. The problem is formulated within a constant
density thermo-diffusive model, and solved analytically in the asymptotic limit of
large activation energy of the chemical reaction for flames thin compared with their
typical radius of curvature. Explicit expressions are obtained in this limit, describing
the influence of the flow on the triple-flame. The results are expected to be applicable
when the ratio between the flow-scale and the flame-front radius of curvature (which is
mainly dictated by concentration gradients) is of order unity, or larger. When this ratio
is large, as in the illustrative case of a Poiseuille flow in a porous channel considered
here, the flow is found to negligibly affect the flame structure except for a change in
its speed by an amount which depends on the stoichiometric conditions of the mixture.
On the other hand, when this ratio is of order unity, the flow is able to significantly
wrinkle the flame-front, modify its propagation speed, and shift its leading edge away
from the stoichiometric line. The latter situation is investigated in the illustrative case
of spatially harmonic flows. The results presented describe, in particular, how the
leading-edge of the flame-front can be determined in terms of the flow amplitude A
which is critical in determining the flame speed. The latter is found to depend linearly
on A in the first approximation with a correction proportional to the flame thickness
multiplied by

√|A|, for |A| sufficiently large. The effect of varying the flow-scale on
flame propagation in this context is also described, with explicit formulae provided,
and interesting behaviours, such as non-monotonic dependence on the scale, identified.
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1. Introduction

Flame propagation in a flow field is an important problem from both theoretical and practi-
cal points of view, characterized in general by the interaction of a curved flame with a flow
that can involve a wide range of temporal and spatial scales. The problem is often further
complicated by the presence of various inhomogeneities in the combustion mixture itself.
These include the spatial non-uniformities in the composition of the reactants and their tem-
perature, which are frequently encountered in non-premixed combustion situations such as
in a mixing layer of initially non-premixed reactants. Typically, the composition of the re-
active mixture varies across the mixing layer from fuel-lean to fuel-rich, which leads to the
formation of triple-flames. Such flames, consisting of two premixed branches and a trailing
diffusion flame, were first observed experimentally by Philips in 1965 [1]. Early analytical
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178 Joel Daou and Faisal Al-Malki

investigation of these structures was carried out by Ohki and Tsuge [2]. More detailed
analyses were then undertaken by Dold [3] and Dold and Hartley [4], who examined the de-
pendence of the shape and the propagation speed of triple-flames on the transverse mixture
gradient through which they propagate. Over the past 20 years, a large number of studies
have been devoted to triple-flames due to their importance in applications involving com-
bustion phenomena such as flame propagation in mixing layers, flame spread over solid fuel
surfaces, and autoignition fronts in diesel engines [5]. Many aspects of triple-flames have
been to date investigated theoretically or experimentally including preferential diffusion [6],
heat losses [7–9], reversibility of the chemical reaction [10,11] and other factors [9,12,13].

The purpose of the present work is to study the response of triple-flames to the presence
of a flow field, in the simple situation where the flow is in the direction of flame propagation.
The study, which seems to have received no attention in the literature, can be viewed as
a first step towards understanding the important problem of the propagation of partially
premixed flames in turbulent flows. As a framework for the investigation we consider a
thermo-diffusive model representing a steady single-scale parallel flow along an unstrained
mixing layer where the reactants – fuel and oxidizer – diffuse into each other to support
a propagating triple-flame. The corresponding problem is tackled analytically using an
asymptotic approach under suitably defined conditions. The main aim is to assess the effect
of the flow on the structure and propagation speed of the triple-flame.

The paper is organized as follows. We begin by describing the thermo-diffusive model
adopted and formulating the corresponding problem in Section 2. This is followed by an
asymptotic analysis which is based on a compact reformulation of the problem derived
in Section 3 in the limit of infinitely large activation energy of the chemical reaction. The
reformulated problem is solved analytically for flame-fronts thin compared with their typical
radius of curvature (which is mainly dictated by concentration gradients) in Section 4. The
analytical solution obtained results in explicit expressions, describing the influence of the
flow on the triple-flame, which are expected to be applicable when the ratio between the
flow-scale and the flame-front radius of curvature is of order unity, or larger. Section 5
addresses the case when this ratio is large in the illustrative example of a Poiseuille flow
in a porous channel. Then, in Section 6 we study the situation when this ratio is of order
one within the illustrative case of spatially harmonic flows. Finally, a summary of the main
results and recommendations for further work close the paper.

2. Formulation

We consider triple-flame propagation in a channel of width 2L against a parallel flow
moving along the X-direction, as shown in Figure 1. The walls of the channel are assumed

Figure 1. A schematic illustration of triple-flame propagation against a parallel flow ũ(Y ). The mass
fractions are prescribed by YF = YF,F and YO = 0 on the fuel side, and YF = 0 and YO = YO,O on the
oxidizer side.
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Combustion Theory and Modelling 179

to be porous and that the concentrations of fuel and oxidizer are maintained fixed at the
walls. Although such a setup may be difficult to achieve experimentally, it is adopted here
as a simple theoretical model to understand the effect of a flow on the triple-flame. The
combustion is represented by a single irreversible one-step reaction of the form

F + sO → (1 + s)P + q,

where F denotes the fuel, O the oxidizer and P the products. The quantity s denotes the
mass of oxidizer consumed and q the heat released, both per unit mass of fuel. We consider
a thermo-diffusive approximation with constant density and constant transport properties.
The governing equations in dimensional form can be written

(Ṽ + ũ(Y ))
∂T

∂X
= DT

(
∂2T

∂X2
+ ∂2T

∂Y 2

)
+ q

cp

ω̃

ρ
(1)

(Ṽ + ũ(Y ))
∂YF

∂X
= DF

(
∂2YF

∂X2
+ ∂2YF

∂Y 2

)
− ω̃

ρ
(2)

(Ṽ + ũ(Y ))
∂YO

∂X
= DO

(
∂2YO

∂X2
+ ∂2YO

∂Y 2

)
− s

ω̃

ρ
. (3)

These equations are written in a frame of reference attached to the flame whose propagation
speed relative to the laboratory is Ṽ , with Ṽ > 0 indicating a propagation to the left.
The velocity of the parallel flow along the positive X-direction relative to the laboratory
is denoted by ũ(Y ). The flame speed Ṽ is an eigenvalue of the problem and must be
determined as part of the solution. Here T , YF and YO are respectively the temperature and
the mass fraction of the fuel and oxidizer. In addition, DF, DO, and DT denote the diffusion
coefficients of the fuel, the oxidizer, and heat respectively, and are taken to be constants.
The quantities ρ and cp denote the density and the heat capacity. The reaction rate ω̃,
defined as the mass of fuel consumed per unit volume and unit time, obeys an Arrhenius
law

ω̃ = Bρ2YFYO exp(−E/RT ), (4)

where B and E/R represent, respectively, the (constant) pre-exponential factor and the
activation temperature.

The conditions as X → −∞ correspond to the frozen solution independent of X, which
is given by

T = Tu (5a)

YF = YF,F

2

(
1 + Y

L

)
(5b)

YO = YO,O

2

(
1 − Y

L

)
, (5c)

where YF,F and YO,O refer to the mass fraction of the fuel side and the oxidizer side
respectively, and Tu refers to the temperature on both sides as well as in the unburnt
mixture; thus, the lateral boundary conditions are also given by (5) with Y → ±L for
all X.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
] 

at
 0

4:
20

 2
3 

O
ct

ob
er

 2
01

4 



180 Joel Daou and Faisal Al-Malki

Downstream, at X → ∞, the solution again becomes independent of X, corresponding
to the one-dimensional strongly burning solution of the diffusion flame.

For large activation energies, the flame-front region is expected to be centred around the
stoichiometric surface. Upstream, this surface is located at Y = Yst where Yst is determined
from YO = sYF and Equations (5) to be

Yst

L
= 1 − S

1 + S
, (6)

where S ≡ sYF,F/YO,O is a normalized stoichiometric coefficient.
Next, we write the governing equations in terms of the scaled quantities

yF = YF

YF,st
, yO = YO

YO,st
, θ = T − Tu

Tad − Tu
, (7)

where the subscript ‘st’ indicates values at (X → −∞, Y = Yst) and where Tad ≡ Tu +
qYF,st/cp is the adiabatic flame temperature.

To non-dimensionalize the problem, we follow [6] and select as unit length L/β,
(half) the ratio between the mixing layer thickness and the Zeldovich number β ≡ E(Tad −
Tu)/RT 2

ad, which represents the typical radius of curvature of the triple-flame. As unit speed
we select the laminar speed of the stoichiometric planar flame S0

L, which for large β is given
by

S0
L =

√
4LeFLeO

β3
YO,st(ρDT)B exp

( −E

RTad

)
. (8)

Substituting 7 into Equations (1–3) leads to the non-dimensional model

(V + u(y))
∂θ

∂x
= ε

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
+ ε−1ω (9)

(V + u(y))
∂yF

∂x
= ε

LeF

(
∂2yF

∂x2
+ ∂2yF

∂y2

)
− ε−1ω (10)

(V + u(y))
∂yO

∂x
= ε

LeO

(
∂2yO

∂x2
+ ∂2yO

∂y2

)
− ε−1ω , (11)

in terms of the coordinates x = βX/L and y = β(Y − Yst)/L. Here

ε ≡ �Fl

L/β
= DT/S0

L

L/β
, (12)

represents the thickness of the laminar stoichiometric flame �Fl ≡ DT/S0
L measured in terms

of the reference length L/β. The non-dimensional reaction rate ω is given by

ω = β3

4LeFLeO
yFyO exp

(
β(θ − 1)

1 + α(θ − 1)

)
, (13)

where α = (Tad − Tu)/Tad. Finally, V and u(y) are the non-dimensional propagation speed
and flow velocity (both relative to the laboratory).
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Combustion Theory and Modelling 181

The upstream and lateral boundary conditions are

θ = 0 (14a)

yF = 1 + γF
y

β
(14b)

yO = 1 − γO
y

β
, as x → −∞ , y → β

γO
or y → − β

γF
, (14c)

where

γF = 1 + S

2
and γO = 1 + S

2S
. (15)

Downstream, we require that

∂yF

∂x
= ∂yO

∂x
= ∂θ

∂x
= 0 as x → ∞ . (16)

The problem now is fully formulated by Equations (9–11) with the boundary conditions
(14–16). The solution of this problem, e.g. numerically, can provide, in addition to the
profiles of θ , yF, and yO, the flame speed V in terms of u(y), LeF, LeO, S , ε, β and α. For
the sake of an analytical treatment, however, we consider herein the problem in the limiting
case β → ∞ where a compact reformulation can be derived, and solved analytically when
the radius of curvature is large compared with the flame thickness (i.e. for ε � 1). The
derivation of this reformulation is given next.

3. The large activation energy asymptotic limit

3.1. A β-free reformulated problem

In this section, we derive a compact formulation valid in the distinguished limit β → ∞
with ε = O(1). The analysis is restricted to near equidiffusion flames for which

LeF ∼ 1 + lF

β
and LeO ∼ 1 + lO

β
,

where lF and lO are the reduced Lewis numbers of the fuel and oxidizer respectively. In this
limit, the reaction zone is confined to an infinitely thin sheet that we shall call the flame
surface, which is given by F (x, y) = x − f (y) = 0, say. A reformulation of the problem
free from the presence of β can then be derived as in [6]. Consider a coordinate system
attached to the flame

ξ = x − f (y), y = y,

so that the flame surface is located at ξ = 0. Expand the dependent variables in terms of
β−1 in the form

θ = θ0 + θ1

β
+ · · · , yF = y0

F + y1
F

β
+ · · · , yO = y0

O + y1
O

β
+ · · ·
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182 Joel Daou and Faisal Al-Malki

In the reaction zone and behind it, we assume that θ0 = 1 and y0
F = y0

O = 0, which leads to

θ = 1 + θ1

β
+ · · · , yF = y1

F

β
+ · · · , yO = y1

O

β
+ · · · , for ξ ≥ 0. (17)

The reaction term can be eliminated from Equations (9–11) by using the variables ZF ≡
θ + yF and ZO ≡ θ + yO which when substituted into (9–11) leads to

(V + u(y))
∂ZF

∂ξ
= ε�ZF − ε

lF

β
�yF, (18)

(V + u(y))
∂ZO

∂ξ
= ε�ZO − ε

lO

β
�yO, (19)

where u(y) represents the flow in the limit β → ∞ and y = O(1). The variables ZF and
ZO can be expanded as

ZF = Z0
F + Z1

F

β
+ · · · , ZO = Z0

O + Z1
O

β
+ · · · , (20)

but since θ0 + y0
F = 1 and θ0 + y0

O = 1 everywhere, one obtains

Z0
F = θ0 + y0

F = 1 , Z1
F = θ1 + y1

F ≡ h(ξ, y) ,

Z0
O = θ0 + y0

O = 1 , Z1
O = θ1 + y1

O ≡ k(ξ, y) .

Substitution of (17) and (20) into Equations (9), (18) and (19) yield the governing equations
for θ0, h and k in the form

(V + u(y))
∂θ0

∂ξ
= ε�θ0, (21)

(V + u(y))
∂h

∂ξ
= ε�h + εlF�θ0, (22)

(V + u(y))
∂k

∂ξ
= ε�k + εlO�θ0, (23)

which are to be solved on both sides of the reaction sheet where ξ 
= 0, with the upstream
boundary conditions

θ0 = 0, h = γFy, k = −γOy as ξ → −∞ (24)

and the downstream boundary conditions

∂θ0

∂ξ
= ∂h

∂ξ
= ∂k

∂ξ
= 0 as ξ → ∞ . (25)

The jump conditions at ξ = 0 are

[θ0] = [h] = [k] = 0 , (26a)
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Combustion Theory and Modelling 183

[
∂h

∂ξ

]
= −lF

[
∂θ0

∂ξ

]
,

[
∂k

∂ξ

]
= −lO

[
∂θ0

∂ξ

]
, (26b)

ε
√

1 + f ′2
[
∂θ0

∂ξ

]
= −

√
1 + |h − k|

2
exp

(
h + k − |h − k|

4

)
, (26c)

which can be derived following the methodology described in [11]; see also [14, p. 39].

3.2. Leading edge of the flame-front

A quantity of great interest to our study is the local burning speed SL, which is defined as
the component of the fluid velocity ahead of the flame-front normal to the flame surface,
given by SL = (

V + u(y)
)
i.n, i.e.

SL = V + u(y)

(1 + f ′(y)2)1/2
. (27)

Here, i and j are unit vectors in the x and y directions, respectively, and n = (i −
f ′(y)j)/(1 + f ′(y)2)1/2 is a unit vector normal to the reaction sheet pointing to the burnt
gas.

We now derive a useful criterion for the determination of the leading edge(s) of a flame-
front propagating in a parallel flow field, whose local burning speed is given by 27; such a
determination is a key step in describing the flame-front of triple-flames, see Figure 1.

Geometrically, a flame-edge, located at y = y∗ say, corresponds to a minimum of the
function x = f (y), typically characterized by

f ′(y∗) = 0 and f ′′(y∗) > 0 . (28)

It is easy to show that the local flame speed in the negative x-direction with respect to the
laboratory given by SL(y) − u(y) must have a maximum at y = y∗. In other words, we
must (typically) have

S ′
L(y∗) − u′(y∗) = 0 and S ′′

L(y∗) − u′′(y∗) < 0 . (29)

This can be explained by a Taylor expansion of 27 which implies that, for y sufficiently
close to a point y∗ where f ′ = 0, we have

(SL(y∗) − u(y∗) − V ) + (y − y∗)(S ′
L(y∗) − u′(y∗)) +

(y − y∗)2

2
(S ′′

L(y∗) − u′′(y∗) + SL(y∗)f ′′2(y∗)) + · · · = 0 .

This expansion implies that

V = SL(y∗) − u(y∗) , (30)

a formula for the determination of the flame speed V , along with

S ′
L(y∗) − u′(y∗) = 0 and S ′′

L(y∗) − u′′(y∗) = −SL(y∗)f ′′2(y∗) < 0, (31)
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184 Joel Daou and Faisal Al-Malki

which justifies that SL(y) − u(y) must have a (local) maximum at y = y∗ (unless f ′′(y∗)
or SL(y∗) vanish).

In fact, under the assumption that SL(y) is always positive, as it is in the asymptotic
study for ε � 1 carried out below, we may affirm that the location of a leading edge must
correspond to a global maximum of SL − u. This statement follows at once from (27) which
implies, when used with the fact that 1 + f 2

y ≥ 1 and SL > 0, that SL(y) − u(y) ≤ V =
SL(y∗) − u(y∗) for any y.

Clearly, there are two factors influencing the location of the leading edge, namely the
local burning speed SL and the flow itself. In the absence of flow, i.e. when u ≡ 0, the
leading edge corresponds to the location where SL is maximum according to (29), which
is the criterion used in previous studies such as [3, 6, 11] to determine the leading edge. In
the presence of the flow, however, the leading edge is determined by a balance between the
local burning speed and the flow. Finally, if we introduce the propagation speed

U ≡ V + u(y∗) , (32)

which represents the flame speed with respect to the gas located at y = y∗, then (30)
shows that U = SL(y∗), i.e. that U is equal to the burning velocity at the leading edge.
We note that the sign of U determines whether the flame-front is an ignition front (U > 0)
or an extinction front (U < 0); however extinctions fronts will not be encountered in the
asymptotic analysis below since SL remains positive in the limit ε → 0, as mentioned above
and as will be confirmed shortly.1

4. Analytical results in the limit ε → 0

We now consider the limit ε → 0 applied to the β-free reformulated problem of Section 3.1.
The results to be derived are expected to be valid provided the activation energy is large
and ε small, more precisely for β−1 � ε � 1.

For ε → 0, the flame including its preheat zone can be seen as an infinitely thin layer,
located at ξ = 0, with thickness of order O(ε). We introduce expansions in terms of ε in
the form

f (y) = f0(y) + εf1(y) + · · · , V = V0 + εV1 + · · · ,

with similar expansions for other variables. In particular, for SL defined in (27) we can write

SL = SL0 + εSL1 + · · · , (33)

where SL0 = V0 + u(y)√
1 + f ′2

0

, (34)

SL1 = 1√
1 + f ′2

0

[
V1 − (

V0 + u(y)
) f ′

0f
′
1

1 + f ′2
0

]
. (35)

1See e.g. Equation 45.
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Combustion Theory and Modelling 185

4.1. Outer solution

On both sides of the flame (ξ 
= 0), we seek expansions in the form

θ0 = �0 + ε�1 + · · · , h = H0 + εH1 + · · · , k = K0 + εK1 + · · · ,

which we substitute into Equations (21–26a). We get to leading order

(V0 + u(y))
∂�0

∂ξ
= (V0 + u(y))

∂H0

∂ξ
= (V0 + u(y))

∂K0

∂ξ
= 0,

subject to the boundary conditions

�0 = 0, H0 = γFy, K0 = −γOy as ξ → −∞ ,

∂�0

∂ξ
= ∂H0

∂ξ
= ∂K0

∂ξ
= 0 as ξ → ∞.

We thus find that

�0 =
{

0

1,
H0 =

{
γFy

B(y),
K0 =

{
−γOy (ξ < 0)

C(y) (ξ > 0),
(36)

where we have used the fact that θ0 = 1 for ξ ≥ 0 and where B(y) and C(y) are functions
of y which can be determined by matching with the inner solution. We note that θ0 = �0

is in fact an outer solution to all orders in ε, i.e. that �1 = �2 = · · · = 0.

4.2. Inner solution

Using the stretched variable ζ = ξ/ε, we write inner expansions in the form

θ0 = θ0 + εθ1 + · · · , h = h0 + εh1 + · · · , k = k0 + εk1 + · · ·

Substituting these in the jump conditions (26a–26c) gives to leading order

[θ0] = [h0] = [k0] = 0, (37a)[
∂h0

∂ζ

]
= −lF

[
∂θ0

∂ζ

]
,

[
∂k0

∂ζ

]
= −lO

[
∂θ0

∂ζ

]
, (37b)

√
1 + f ′2

0

[
∂θ0

∂ζ

]
= −

√
1 + |h0 − k0|

2
exp

(
h0 + k0 − |h0 − k0|

4

)
. (37c)

In terms of ζ , the leading order equations in the inner region take the form

∂2θ0

∂ζ 2
= λ

∂θ0

∂ζ
, (38)

∂2h0

∂ζ 2
= λ

∂h0

∂ζ
− lF

∂2θ0

∂ζ 2
, (39)
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186 Joel Daou and Faisal Al-Malki

∂2k0

∂ζ 2
= λ

∂k0

∂ζ
− lO

∂2θ0

∂ζ 2
(40)

where

λ = V0 + u(y)

1 + f ′2
0 (y)

. (41)

The solution of (38–40) subject to the jump conditions (37a–37b) and the matching re-
quirements with the outer solution (36) can be written as

θ0 =
{

exp(λζ ) ζ < 0

1 ζ > 0
(42)

h0 =
{

γFy − lFλζ exp(λζ ) ζ < 0

γFy ζ > 0
(43)

k0 =
{

−γOy − lOλζ exp(λζ ) ζ < 0

−γOy ζ > 0,
(44)

which gives the leading order approximation to the inner solution. We note parenthetically
that the matching also determines the constants B(y) and C(y) in 36 as being equal to γFy

and −γOy, respectively.

4.3. Local burning speed (to leading order)

At this stage, the local burning speed to leading order SL0 given by (34) can be obtained by
using the jump condition (37c) together with (43) and (44), whence

SL0 =
√

1 + (γF + γO)

2
|y| exp

(
(γF − γO)y − (γF + γO)|y|

4

)
.

Using (15), SL0 can be written as

SL0 =
√

1 + (S + 1)2

4S
|y| exp

(
(S2 − 1)y − (S + 1)2|y|

8S

)
, (45)

in terms of the stoichiometric coefficient S. Thus, to leading order, the local burning speed
is independent of the flow and depends only by S and the transverse coordinate y. For
S = 1, for example, the above formula reduces to

SL0 =
√

1 + |y| exp

(
−|y|

2

)
. (46)

Figure 2 shows a plot of the burning speed SL0 for selected values of S. When S = 1, the
burning speed is an even function of y with a peak located at the stoichiometric line y = 0.
The peak is seen to move away from the stoichiometric line y = 0 towards the fuel side (right
side) as S is increased. In all cases SL0 decays exponentially to zero for large value of |y|.
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Figure 2. Leading order burning speed SL0 versus y for selected values of S.

4.4. Flame speed and flame shape

The first approximation to the flame speed V (with respect to the laboratory) given by 30
can now be determined to be

V0 = SL0(y∗) − u(y∗),

in which the leading edge(s) y∗ will be found explicitly later once the flow has been
specified. In the absence of flow, u = 0, y∗ = ȳ∗ where ȳ∗ is the location of the maximum
of SL0(y∗), given by

ȳ∗ = S − 1

S + 1

(
1 + |S − 1|

S + 1

)
. (47)

Similarly, the propagation speed U (with respect to the gas at the leading edge) defined in
(32) can be determined to be to leading order given by

U0 = SL0(y∗) .

With V0 being known, equations (34) and (45) can be reused to determine f ′
0(y) and hence,

by integration, the flame shape to leading order f0(y). Thus, we obtain

f ′
0

2 =
(

SL0(y∗) + u(y) − u(y∗)

SL0(y)

)2

− 1, (48)

which specifies the combined effect of concentration inhomogeneities (non-constant SL0(y))
and the flow u(y) on the flame slope. Finally, the curvature of the flame-front at the leading
edge f ′′

0 (y∗) can be evaluated by differentiating Equation (48), or using the second equality
in (31), to obtain

f ′′
0 (y∗) =

√
u′′(y∗) − S

′′
L0(y∗)

SL0(y∗)
, (49)
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188 Joel Daou and Faisal Al-Malki

whose sign is consistent with (28). This formula clearly shows the dependence of the
curvature at the leading edge on the flow field and the burning speed.

4.5. The solution in the next approximation

The above analysis provides a leading order description of the flame. For a better description,
we carry out the asymptotic analysis to the next order in ε. The governing equations in the
inner region are

(V0 + u(y))
∂θ1

∂ζ
+ V1

∂θ0

∂ζ
= F(θ0) + (

1 + f ′2
0

)∂2θ1

∂ζ 2
(50)

(V0 + u(y))
∂h1

∂ζ
+ V1

∂(h0 + lFθ0)

∂ζ
= F(h0) + (

1 + f ′2
0

)∂2(h1 + lFθ1)

∂ζ 2

(V0 + u(y))
∂k1

∂ζ
+ V1

∂(k0 + lOθ0)

∂ζ
= F(k0) + (

1 + f ′2
0

)∂2(k1 + lOθ1)

∂ζ 2
,

where

F = 2f ′
0f

′
1

∂2

∂ζ 2
− f ′′

0

∂

∂ζ
− 2f ′

0

∂

∂ζ∂y
.

The jump conditions (26a–26c) at ζ = 0 give to O(ε)

[θ1] = [h1] = [k1] = 0 , (51a)[
∂h1

∂ζ

]
= −lF

[
∂θ1

∂ζ

]
,

[
∂k1

∂ζ

]
= −lO

[
∂θ1

∂ζ

]
, (51b)

[
∂θ1

∂ζ

]
=

(
σ1

2
+ (h1 − k1)(h0 − k0)

2(h0 − k0)2 + 4|h0 − k0| − f ′
0f

′
1

1 + f ′2
0

) [
∂θ0

∂ζ

]
, (51c)

where

σ1 = h1 + k1

2
− (h1 − k1)(h0 − k0)

2|h0 − k0| .

Downstream of the reaction sheet, it is found that θ1 must be zero so as to be bounded
as ζ → ∞ and to allow matching with the outer solution. We thus have from (50) after
eliminating exponentially growing terms

θ1 = 0 , h1 = h̃1 , k1 = k̃1 for ζ ≥ 0 , (52)

where h̃1 and k̃1 are independent of ζ and are as yet undetermined.
We now integrate Equations (50) from ζ = −∞ to ζ = 0− to obtain

(
1 + f ′

0
2) [

∂θ1

∂ζ

]
= Iθ − V1

(V0 + u(y))h̃1 = Ih + lFIθ (53)
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Combustion Theory and Modelling 189

(V0 + u(y))k̃1 = Ik + lOIθ ,

after using the jump conditions (52), the matching requirement that θ1, h1 and k1 and their
derivatives with respect to ζ must vanish as ζ → −∞, and the fact that these derivatives
must also vanish at ζ = 0+ on account of (52). In (53) we have introduced the quantities

Iθ ≡
∫ 0

−∞
F(θ0)dζ, Ih =

∫ 0

−∞
F(h0)dζ, and Ik =

∫ 0

−∞
L(k0)dζ

which can be evaluated from (42–44) to yield

Iθ = 2λf ′
0f

′
1 − f ′′

0 , Ih = −2lFλf
′
0f

′
1 , Ik = −2lOλf ′

0f
′
1 ,

where λ is given by (41). Hence, we have

(
1 + f ′

0
2) [

∂θ1

∂ζ

]
= 2λf ′

0f
′
1 − f ′′

0 − V1

(V0 + u(y))h̃1 = −lFf
′′
0 (54)

(V0 + u(y))k̃1 = −lOf ′′
0 ,

in which [∂θ1/∂ζ ] can be eliminated using (51c); thus (54) appears as a system of three
equations for the four unknowns f ′

1, V1, h̃1 and k̃1. Using this system of equations at
the leading edge y = y∗, the unknown f ′

1 drops because f ′
0(y∗) = 0, allowing V1 to be

determined by

V1 = −L(y∗)f ′′
0 (y∗) ,

where

L(y) = 1 + lF + lO

2
− lF − lO

2

(S + 1)2y

4S + (S + 1)2|y| . (55)

Thus, a two-term approximation to the flame speed V is now available and is given by

V ∼ SL0(y∗) − u(y∗) − εL(y∗)f ′′
0 (y∗), (56)

which shows the dependence of V on the Lewis numbers and on the local burning velocity,
the flow, and the flame curvature at the leading edge. In this formula, which is one of the
main aims of the analysis, all terms are readily available; indeed SL0(y∗), y∗, f ′′

0 (y∗), and
L(y∗) are to be determined from (45), (29), (49), and (55).2

Finally, with V1 determined, we can reuse the system of equations (54) for values of y

different from y∗ to find f ′
1, h̃1 and k̃1. The results can be used, in particular, to find the

2Strictly speaking, y∗ should be denoted by y∗
0 since it stands for the leading-order location of the

leading edge. It is to be determined precisely as the location of a global maximum of SL0 − u. Since
we only need a leading-order approximation to y∗, we will not use any additional subscript.
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190 Joel Daou and Faisal Al-Malki

perturbation in the burning velocity SL1 introduced in (35). Then, from Equation (33), we
find that SL can be expressed in the form

SL ∼ SL0(y)[1 − L(y)κ(y)], (57)

where L(y) and κ(y) appear as a local Markstein length and a local flame stretch, respec-
tively, the latter being found to be given by

κ(y) = ε

SL0(y)

f ′′
0 (y)√

1 + f ′2
0 (y)

.

We have now completed our asymptotic analysis of triple-flame propagation in a parallel
flow. Explicit analytical formulae describing the shape, the propagation speed and the
local burning velocity of the flame-front have been obtained. These formulae involve the
leading edge of the flame-front, y∗, which can be determined from Equation (29), or
more precisely as the location of a global maximum of SL0(y) − u(y). To further qualify
the flame behaviour, we need to specify the flow. In the next section, we shall consider
the case of a Poiseuille flow (in a porous channel); in this case the flow-scale, which is
determined by the channel width, is large compared to the flame-front radius of curvature.
Then, in Section 6, we shall consider a flow, more specifically a harmonic flow, whose scale
is equal in order of magnitude to the flame-front radius of curvature.

5. Application to Poiseuille flow in a porous channel

We study in this section triple-flame propagation in the presence of a parallel flow whose
scale is large compared to the flame radius of curvature L/β. Specifically, we consider the
case of a Poiseuille flow in a porous channel of width L given, in terms of dimensional
quantities, by

ũ = Ã

(
1 − Y 2

L2

)
.

In non-dimensional form we have

u = A

(
1 −

{
1 − S

1 + S
+ y

β

}2
)

,

where u = ũ/S0
L, A = Ã/S0

L, and y = β(Y − Yst)/L, after using (6). We note that

u ∼ 4S

(1 + S)2
A (58)

in the limit β → ∞, in the flame-front region y ∼ 1. Thus the flow appears as uniform,
with an effective amplitude depending on the stoichiometric coefficient S. On using (58)
in the analytical results derived above, a description of the flame-front is readily obtained.
Indeed the uniformity of the flow for y ∼ 1 implies that the location of the leading edge y∗

corresponds simply to the maximum of SL(y), as dictated by (29), and is thus independent
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Combustion Theory and Modelling 191

of the flow. Using (29), (45), and (49), we thus find

y∗ = S − 1

(S + 1)

(
1 + |S − 1|

S + 1

)
, (59)

SL0(y∗) =
√

2(S + 1)

S + 1 − |S − 1| exp

(
−1

2

|S − 1|
S + 1

)
, (60)

and

f ′′
0 (y∗) = S + 1

(S + 1 + |S − 1|)√2
, (61)

which are, respectively, the leading order approximation for the location of the leading
edge, and for the burning velocity and curvature of the flame-front there. Furthermore, on
using (59) in (55) we find

L(y∗) = 1 + lF

S + 1
+ S lO

S + 1
. (62)

A fully explicit two-term approximation of the flame speed V is now available using
(56) and (58), namely,

V ∼ SL0(y∗) − 4S

(1 + S)2
A −

(
1 + lF

S + 1
+ S lO

S + 1

)
εf ′′

0 (y∗) , (63)

with SL0(y∗) and f ′′
0 (y∗) given by (60) and (61). The propagation speed U ≡ V + u(y∗)

introduced in (32) consequently satisfies

U ∼ SL0(y∗) −
(

1 + lF

S + 1
+ S lO

S + 1

)
εf ′′

0 (y∗) , (64)

on taking 58 into account.
We conclude that the presence of the large-scale Poiseuille flow only modifies the flame

speed V through the second term on the right-hand side of 63 but has no influence on
the propagation speed U , the local burning speed SL(y) and the flame shape f (y). Similar
behaviour is of course expected for flames propagating in parallel flows whose transverse
length-scale is of the order of the mixing layer thickness, since these appear uniform on the
transverse length-scale of the flame-front.

We close this section by illustrating the results in the special case S = 1 for which we
obtain y∗ = 0,

U ∼ 1 −
(

1 + lF

2
+ lO

2

)
ε√
2

,
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192 Joel Daou and Faisal Al-Malki
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Figure 3. Shape of the flame-front f0(y) for S = 1.

V = U + A and SL0(y) as given by 46. Equation 48 then implies that f ′
0 = sgn(y)(S−2

L0 (y) −
1)1/2, and hence, by numerical integration (using the condition f0(0) = 0), that the shape
of the flame-front f0(y) is as depicted in Figure 3.

6. Application to a harmonic flow

We consider in this section triple-flame propagation in a parallel flow whose scale is
of the order of magnitude of the flame-front radius of curvature (L/β). To illustrate the
methodology, we specifically consider the case of a harmonic flow given in non-dimensional
form by

u(y) = A cos(πy), (65)

where A is the flow intensity (measured with S0
L) and y the transverse coordinate (measured

with L/β).
A two-term approximation to the flame speed V (relative to the laboratory) in this case

is obtained on using 65 in 56:

V ∼ SL0(y∗) − A cos(πy∗) − ε

(
1 + lF + lO

2
− lF − lO

2

(S + 1)2y∗

4S + (S + 1)2|y∗|
)

f ′′
0 (y∗),

(66)
in which SL0(y∗) and f ′′

0 (y∗) are given by (45) and (29). The main task is thus to determine
the leading edge location y∗, and to this end we shall use the simple criterion of Section 3.2,
namely that y∗ must be a global maximum of the function SL0(y) − u(y).

The symmetrical case S = 1

We begin with the stoichiometrically symmetrical case S = 1, for which SL0 is given by
(45). A necessary condition for y∗ to be a maximum of SL0(y) − u(y) is thus that it satisfies
the equation

− ye−|y|/2

2
√

1 + |y| + Aπ sin(πy) = 0 , (67)
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Combustion Theory and Modelling 193

for which y = 0 is a root for any value of A. An elementary study shows that this trivial root
corresponds to a unique global maximum if A < Ac ≈ 0.0451, a non-global maximum for
Ac < A < 1/2π2 and a minimum for 1/2π2 < A. For A > Ac, we have two global maxima
symmetrically located with respect to the origin. We conclude that the flame-front must
have two leading edges which are symmetrically located with respect to the stoichiometric
line y = 0 when A > Ac, while a single leading edge located at y = 0 is expected for
A < Ac (including negative values of A).

The results to leading order are summarized in Figure 4, which shows the location of the
leading edge y∗ (top), the propagation speed U ∼ SL0(y∗) (middle), and the flame speed
V ∼ SL0(y∗) − u(y∗) (bottom), versus the flow amplitude A. We note that to the jump in y∗

at A = Ac observed (from y = 0 to y = ±yc ≈ ±0.3475), there corresponds a jump in the
leading-order propagation speed U (from U = 1 to U ≈ 0.975); however the flame speed
V remains continuous because the function SL0 − u has three global maxima when A = Ac,
located at y = 0 and y = ±yc, such that SL0(±yc) − u(±yc) = SL0(0) − u(0) = V .

It is interesting to note that V exhibits a non-monotonic dependence on A, which is
intimately linked to behaviour of y∗. Indeed, the linear decrease of V is due to the fact
that for A < Ac we have y∗ = 0 and hence V ∼ SL0(0) − u(0) = 1 − A. As A increases
above Ac, however, y∗ moves away from the origin leading to an exponential decrease
in SL0(y∗) according to 45 which is dominated by an algebraic increase in −u(y∗) (for
|y∗| < 1) so that V ∼ SL0(y∗) − u(y∗) is an increasing function of y∗ and hence of A. As A

increases the global maxima of SL0(y) − u(y) tend to (±1,−u(±1)) which are the global
maxima of −u(y) closest to y = 0; this determines the asymptotic behaviour y∗ ∼ ±1 and
V ∼ SL0(±1) + A = √

2/e + A for A � 1; in fact for these asymptotic values to be good
approximations for y∗ and V , A needs only to be moderately large, say A > 1.

Finally, to complete the leading-order description of the flame we plot in Figure 6
f0(y) for selected values of A and S = 1, based on a numerical solution of 48. The figure
illustrates how the flow deforms the flame, and shifts its leading edge towards y = ±1 for
A > 0 (except for very small values of A < Ac ≈ 0.0451 which are not shown). For A < 0,
the flame has a single edge. In all cases, an increase in |A| is seen to typically decrease the
transverse extent of the flame-front and to increase its curvature at the leading-edge(s). To
account for curvature effects, we now turn to the two-term approximation of V given in 66,
which we plot versus A in Figure 5 for selected values of ε in the case where lF = lO = 0.
We note that all curves present a slope discontinuity at A = Ac, and more importantly that
account of curvature effects decreases the value of V by an amount which increases with
the magnitude of the flow amplitude, |A|. More specifically, fully explicit expressions for
V can be written down using 45 and the determination of y∗ discussed above. We find that

V ∼ 1 − A − ε√
2

√
1 − 2π2A for A < Ac , (68)

including negative values of A, and that

V ∼
√

2

e
+ A − ε

( e

2

)1/4
π

√
A for A > 1 , (69)

or strictly speaking for A � 1. The formulae show that V depends linearly on A in the first
approximation (i.e for ε = 0) with correction proportional to ε multiplied by

√|A| for |A|
sufficiently large (but such that ε

√|A| � 1 for the ε-expansion to make sense).

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
] 

at
 0

4:
20

 2
3 

O
ct

ob
er

 2
01

4 



194 Joel Daou and Faisal Al-Malki

Figure 4. Leading edge location y∗ (top), propagation speed U (middle), and flame speed V (bottom)
versus the flow amplitude A, to leading order.
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Combustion Theory and Modelling 195

Figure 5. Flame speed V versus the flow amplitude A based on the two-term approximation (66)
for selected values of ε, S = 1, and lF = lO = 0.

Results for a non-unit value of S

The results just presented were obtained for a flame which is symmetrical with respect to
the stoichiometric line y = 0 given our choice S = 1 and the symmetry of the flow 65 (and
equal Lewis numbers). We now consider a case with non-unit value of S, namely S = 2,
where this symmetry is broken. Again, a key step is the determination of the leading edge
as a global maximum of SL0 − u, where SL0 is given by (45) with S = 2. An elementary
study shows that SL0 − u has a unique global maximum for any value of A and that the
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Figure 6. Flame shape f0(y) for selected values of A and S = 1.
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196 Joel Daou and Faisal Al-Malki

Figure 7. Leading edge location y∗ versus A (top) and flame speed V (based on the two-term
approximation (66)) versus A for selected values of ε (bottom); S = 2 and lF = lO = 0.

location y∗ of this maximum satisfies 0 < y∗ < 1 and is related to A by the explicit relation

A = 3 (9y∗ − 4) exp(−3y∗/8)

16 π
√

18y∗ + 16 sin(πy∗)
. (70)

With y∗ thus determined, we may now use the two-term expansion (56) for the flame speed
V . The results are summarized in Figure 7 showing y∗ versus A (top), and V versus A

for selected values of ε and lF = lO = 0 (bottom). We note that, unlike in the case S = 1,
the leading edge y∗ is now a function of A which is continuous, in addition to being
single-valued. Furthermore we record the asymptotic behaviour y∗ → 1 as A → ∞ and
y∗ → 0 as A → −∞, with the asymptotic values being in fact closely approached by y∗

for values of A of order unity. The asymptotic behaviour is simply explained by noting that
y = 1 (respectively y = 0) is the location of the maximum of −u(y) which is closest to
ȳ∗ when A > 0 (respectively A < 0); here ȳ∗ = 4/9 is the location of the leading edge in
the absence of flow, A = 0, as given by 47. Turning to the flame speed V , we note that a
non-monotonic dependence on A may be obtained for non-zero values of ε, both for A > 0
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Combustion Theory and Modelling 197

and A < 0. For large, or moderately large, values of |A|, it can be shown that

V ∼
(

17

8
e−3/4

)1/2

+ A − ε

(
17

8
e−3/4

)−1/4

π
√

A ,

if A is positive, and

V ∼ 1 − A − επ
√−A , (71)

if A < 0. Thus, as in the case S = 1, V depends linearly on A in the first approximation (i.e
for ε = 0) with correction proportional to ε multiplied by

√|A| for |A| sufficiently large.

Generalization and additional results

To test the influence of varying the flow-scale, we slightly generalize the flow given in (65)
to become

u = A cos
πy

�
,

where � is the (non-dimensional) flow-scale. Again, the location y∗ of the leading edge is
to be determined as a global maximum of SL0 − u, and a necessary condition for this is
that y∗ satisfies

A = �(S + 1)3

8πS(S + 1 + |S − 1|)
(y∗ − ȳ∗)

sin(
πy∗

�
)

exp

(
(S2 − 1)y∗ − (S + 1)2|y∗|

8S

)
√

1 + (S + 1)2

4S
|y∗|

, (72)

where ȳ∗ is the location of the leading edge in the absence of flow given by (47). Clearly,
Equation (72) reduces for � = 1 to (67) when S = 1 and to (70) when S = 2, as it should.
More importantly, we note that the right-hand side of (72) is only defined for y∗ belonging to
open intervals of the form (n�, (n + 1)�), where n is an arbitrary integer. There is typically,
however, a unique such interval which has physical significance, namely the one containing
ȳ∗; this interval is given by (y∗

min, y
∗
max) ≡ (n�, (n + 1)�), where n = floor(ȳ∗/�), with

floor(x) designating the largest integer which is less or equal to x. This is so, except if ȳ∗/�
is an integer. For example, for S > 1, for which ȳ∗ > 0 on account of 47, we have n = 0 for
� > ȳ∗, n = 1 for ȳ∗/2 < � < ȳ∗, and more generally n = k for ȳ∗/(k + 1) < � < ȳ∗/k,
for any positive integer k. Thus,

(y∗
min, y

∗
max) =

{
(0, �) for � > ȳ∗

(n�, (n + 1)�) for
ȳ∗

n + 1
< � <

ȳ∗

n

(S > 1) . (73)

In the special cases where ȳ∗/� is an integer, equal to n, (y∗
min, y

∗
max) must be taken to be

((n − 1)�, (n + 1)�). For example, such special cases occur for all values of � when S = 1,
since then ȳ∗/� is equal to zero on account of 47 and hence (y∗

min, y
∗
max) = (−�, �), as seen

in Figure 4 pertaining to � = 1.
In all cases, by letting y∗ sweep the interval (y∗

min, y
∗
max), A versus y∗, and thus y∗ versus

A, can be generated using Equation (72), although special care must be exercised in cases
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198 Joel Daou and Faisal Al-Malki

where (72) specifies y∗ as a multi-valued function of A. In turn, knowledge of y∗ allows
determination of V and U , using (56) and (32), and the dependence on � may be written
down explicitly, at least for large values of |A|.

Thus, for S > 1 and large negative values of A, we find that

U ∼ V + A ∼ 1 − επ

�

√−A , (74)

assuming that the flow-scale � > ȳ∗ and using (73) along with the fact that

y∗ → 0 , u(y∗) → A , u′′(y∗) → −Aπ2

�2
as A → −∞ .

Equation (74) generalizes (71) and indicates that U is independent of �, equal to one,
to leading order. It also shows that the curvature term decreases in inverse proportion to
increasing �, and the formula exhibits a remarkable independence of the stoichiometric
coefficient S, in the limit considered. This independence of S and the simple dependence
on � are not encountered for large positive values of A, for which we obtain

U ∼ V − A ∼ SL0(�) − επ

�

√
A

SL0(�)
, (75)

again using (73) and the fact that

y∗ → � , u(y∗) → −A , u′′(y∗) → Aπ2

�2
as A → +∞ .

Equation (75) exhibits an essentially exponential decrease of U with �, to leading order,
on account of (45). Interestingly, it also indicates that the curvature term, proportional to
�−1S

−1/2
L0 (�), is a non-monotonic function of �.

We now examine the effect of small-scale flow, � � 1, with ε � � however. In this
case, (73) implies that the width of the interval (y∗

min, y
∗
max) sandwiching ȳ∗, equal to �, is

also � 1; that is the small-scale flow negligibly affects the location of the leading edge y∗.
We thus find that

U ∼ V ∓ A ∼ SL0(ȳ∗) − επ

�

√
|A|

SL0(ȳ∗)
as A → ±∞ . (76)

This equation shows that U is equal to the propagation speed of the triple-flame in the
absence of flow, to leading order, and that the curvature term3 is inversely proportional to
�.

At this point, we note that the results just derived for S > 1 provide readily similar
results for 0 < S < 1, given that a change of S to S−1 merely changes y∗ to its negative
and the graphs of SL(y) and f (y) to their symmetric with respect to the y = 0 axis, without
affecting U or V . Thus, 76 is still applicable if S < 1, and so are 74 and 75 provided that

3For this ε-expansion to make sense, we further assume that ε|A|1/2/� � 1.
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Combustion Theory and Modelling 199

Figure 8. Leading edge location y∗ (top), propagation speed U (middle), and flame speed V (bottom)
versus the flow amplitude A for selected values of �, to leading order (ε = 0). The dashed portions
of the curves corresponding to � = 6 are to be discarded.
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200 Joel Daou and Faisal Al-Malki

Figure 9. Propagation speed U and flame speed V versus A for selected values of � and ε = 0.1.

� > |ȳ∗| and that SL0(�) is replaced by SL0(−�). As for the symmetrical case S = 1, a study
similar to that carried out leading to Figures 4 and 5 reveal, in particular, that

U ∼ V + A ∼ 1 − ε

√
1

2
− Aπ2

�2
for A ≤ 0 , (77)

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
] 

at
 0

4:
20

 2
3 

O
ct

ob
er

 2
01

4 



Combustion Theory and Modelling 201

and

U ∼ V − A ∼ SL0(�) − επ

�

√
A

SL0(�)
for A � 1 . (78)

Clearly, (77) generalizes (68) to arbitrary values of �, and vividly illustrates the influence
of the flow for negative or zero values of A. Similarly, (78) generalizes (69), and exhibits a
curvature term, proportional to �−1S

−1/2
L0 (�), which is a non-monotonic function of �.

As a final example, we reconsider the case S = 2, described in Figure 7 for � = 1,
which we reexamine for selected values of �. Shown in Figure 8 are the leading-order
results representing y∗ (top), U ∼ SL0(y∗) (middle), and V ∼ SL0(y∗) − u(y∗) (bottom),
versus the flow amplitude A. We note that the figure is generated using 72, 56 and 32 with
the intervals of variation of y∗ selected to be (1/3, 2/3), (0, 1), (0, 3) and (0, 6), for � = 1/3,
1, 3, and 6, respectively, as dictated by 73.4 An important feature observed in the figure is
the multi-valued dependence on A when � = 6, which is in fact found for values of � > 4.5,
approximately. The cases of multi-valued behaviour can be resolved by examining whether
the values of y∗ plotted are true global maxima of SL0 − u, as discussed in connection with
Figure 4. Graphically, we have observed that multi-valued behaviour occurs when the curve
of V versus A crosses itself. This happens in the case � = 6 at the point C indicated in the
bottom subfigure, corresponding to an amplitude Ac; the portion of the V -curve below this
point must be discarded along with the dashed portions of the curves in the top and middle
subfigures. A single value behaviour is thus obtained with a jump discontinuity for y∗ and
U , and a slope discontinuity for V , at A = Ac. Finally, with meaningless portions of curves
similarly discarded, we plot in Figure 9 the curves representing U and V versus A for
ε = 0.1. We simply remark that Figures 8 and 9 both confirm and illustrate the asymptotic
behaviours predicted by Equations (74–76), which have been discussed earlier.

7. Concluding remarks

We have presented an analytical study of triple-flame propagation against a parallel flow in
a mixing layer, based on a thermo-diffusive model. The analysis has been carried out in the
asymptotic limit of large Zeldovich number and small values of ε, where ε is a measure of
the flame-front thickness relative to its typical radius of curvature. Analytical expressions
describing the local burning velocity, the shape of the flame-front, and the overall flame
speed have been derived. In particular, a two-term expansion of the latter for small ε has
been given, Equation (56). Two cases have been considered to illustrate the influence of the
flow on triple-flame propagation. In the first case, corresponding to a Poiseuille flow in a
porous channel, the flow-scale is large compared to the flame-front radius of curvature and
is thus found to negligibly affect the flame structure except for a change in its speed by an
amount which depends on the stoichiometric conditions of the mixture. In the second case,
the effects of harmonic flows whose scale is of the order of the flame radius of curvature
have been studied; these were found to significantly wrinkle the flame-front, shift its leading
edge away from the stoichiometric line, and modify its overall speed. The results presented

4It may be useful to point out that 72 and 73 imply that y∗ → y∗
min as A → −∞, y∗ → y∗

max as
A → +∞ if n ≡ floor(ȳ∗/�) is even, and y∗ → y∗

max as A → −∞, y∗ → y∗
min as A → +∞ if n is

odd. This explains why y∗ is a decreasing function of A for � = 1/3, but not for the other values of �
considered.
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202 Joel Daou and Faisal Al-Malki

describe, in particular, a systematic way of determining the leading-edge of the flame-front
in terms of the flow amplitude A which is critical in determining the flame speed. The latter
is found to depend linearly on A in the first approximation with correction proportional
to the flame thickness multiplied by

√|A|, for |A| sufficiently large. Furthermore, in the
context harmonic flows, the effect of varying the flow-scale on flame propagation has
been investigated, with insightful formulae derived, and interesting behaviours such as
non-monotonic dependence on the flow-scale identified.

The approach adopted and the results obtained constitute valuable tools to further
investigate flame propagation in non-uniform reactive mixtures under more complex flows.
However, even in the simple case of parallel flows considered, many important aspects
remain to be studied since they are outside the scope of this asymptotic study. These
include the effect of flows with small scales, of order ε or smaller, finite values of the
Zeldovich number, and non-small values of ε leading to extinction fronts. These aspects
necessitate a numerical approach and will be discussed in a separate study.
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