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Abstract
We derive analytical expressions for the burning rate of a flame propagating in
a prescribed steady parallel flow whose scale is much smaller than the laminar
flame thickness. In this specific context, the asymptotic results can be viewed as
an analytical test of Damköhler’s hypothesis relating to the influence of the small
scales in the flow on the flame; the increase in the effective diffusion processes
is described. The results are not restricted to the adiabatic equidiffusional case,
which is treated first, but address also the influence of non-unit Lewis numbers
and volumetric heat losses. In particular, it is shown that non-unit Lewis number
effects become insignificant in the asymptotic limit considered. It is also shown
that the dependence of the effective propagation speed on the flow is the same
as in the adiabatic equidiffusional case, provided it is scaled with the speed of
the planar non-adiabatic flame.

1. Introduction

Current views on premixed flame propagation in turbulent flow fields1 are, to a large extent,
still based on two influential hypotheses proposed by Damköhler in 1940 [1].

According to the first hypothesis, the large flow scales wrinkle the flame without a
significant change in its structure. The increase in the effective propagation speed UT is thus
associated with increased flame area, with local normal propagation speed and flame thickness
being those of the laminar planar flame UL and δL, say; these are given by UL = √

D/τ

and δL = √
Dτ , where D and τ are the thermal diffusion coefficient and the chemical time

characteristic of the reactive mixture, respectively. We shall not be concerned in this paper with
this turbulent combustion mode known as the flamelet regime, see e.g. [3]. We simply note that
a large amount of work has been devoted to it due to its importance in applications, which seems
to be in line with Damköhler’s original view2. Examples of analytical contributions useful in

1 See the monograph by Peters for an up-to-date account on turbulent combustion, [2].
2 It should be mentioned, however, that an important poorly understood issue, particularly relevant in the flamelet
regime, is related to the manifestation of intrinsic flame instabilities under turbulence (see [2, 4–6]).
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142 J Daou et al

the flamelet regime include Clavin–Williams’ formula [7,8], which provides a relation between
UT and the turbulence intensity u′, the G-equation type studies [9,10], which model the flame
as an interface advancing relative to the combustible gas with normal speedUL (possibly with a
stretch-correction), and the renormalization method studies which yield analytical expressions
for UT in terms of u′ [11,12]. A serious limitation shared by such approaches, however, is that
they do not extend to strongly turbulent situations for which the flow scales become comparable
to or smaller than δL.

In such situations, the small scales in the flow, according to Damköhler’s second
hypothesis, do not cause any significant flame wrinkling but do change the flame structure
by enhancing the diffusive processes; the normal propagation speed and flame thickness are
the same as in the laminar case, but withD replaced by an effective thermal diffusivityD∗, i.e.
U ∗

L = √
D∗/τ and δ∗

L = √
D∗τ . However, unlike the first hypothesis, this second one seems to

have received little support, especially as far as analytical work is concerned. A good summary
of reservations against it is given in Williams’ book [7 p 438]; questions arise concerning the
legitimacy of using the laminar flame chemical time τ in U ∗

L, possible extinction phenomena
caused by the small scales, and the fact that the true flame structure is not yet known at high
turbulent intensities. Notwithstanding these reservations, the hypothesis remains a legitimate
starting point to account for the effect of small flow scales, as used, for example, by Ronney and
Yakhot in [13] for extending Yakhot’s turbulent flame speed formula [11] to highly turbulent
situations.

Clearly, this hypothesis needs serious examination before it can be accepted as well
founded. For this purpose, analytical results that are valid in the limit of small flow scales would
provide valuable insight into the dependence of the effective propagation speed on the scale and
intensity of the flow, even if only available in the simplest flow configurations. Surprisingly,
such results seem to be unavailable. Investigations based on the stagnation flow configuration
[2–7] are of limited help since the flow involved is characterized by a single parameter, the strain
rate, rather than two independent ones for the scale and intensity of the velocity field. More
suitable for our purpose are the two-parameter flow models which have been successfully
used in the literature to describe some features of turbulent combustion, see e.g. [10] and
[14–18]. These studies, however, are generally restricted to the flamelet regime, since they
rely on the eikonal equation or on a slowly varying flame approximation [16, 17]. They do
not, therefore, address Damköhler’s second hypothesis, although the types of flow used would
be suitable candidates at small enough scales.

In the present investigation, we perform a test of Damköhler’s second hypothesis in the
framework of an arbitrarily prescribed parallel steady flow. This is probably the simplest
possible choice if two independent flow parameters are to be retained. The analysis will be
carried out in the asymptotic limit where the flow scale l (relative to δL) tends to zero, while
the flow intensity is an arbitrary O(1) quantity. In this specific context, our main objectives
are to

(a) determine the effective flame speed (which will be denoted by UT) and its dependence on
the flow,

(b) assess non-unit Lewis number effects, and

(c) clarify the influence of volumetric heat losses.

It is worth emphasizing that the results must be considered only as a first step towards
clarifying a difficult and as yet controversial problem. Additional important features not
considered in this paper and which will be investigated in the future will be discussed briefly
in the final section.
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The thick flame asymptotic limit and Damköhler’s hypothesis 143

The paper is structured as follows. We begin by formulating the problem within the
constant density approximation. An asymptotic solution is then derived in the equidiffusional
adiabatic case, in order to illustrate the salient features of the approach with maximum
simplicity. The analysis is then extended to account for non-unit Lewis numbers and non-zero
heat losses. Finally a synthesis and discussion of the main results, with answers to the three
objectives outlined above, is given.

2. Formulation

We consider a two-dimensional flame propagating against a steady parallel flow in the
x-direction. Within the thermo-diffusive approximation (with constant density and constant
transport properties), a relevant model consists of the equations

[U + u(y)]Yx = Le−1(Yxx + Yyy)− ω, (1)

[U + u(y)]Tx = Txx + Tyy + ω − κ

β
T , (2)

and the boundary conditions

Y = 1, T = 0 as x → −∞, (3)

Yx = Tx = 0 as x → +∞, (4)

Yy = Ty = 0 at y = 0 and y = l. (5)

The equations above are written in a frame attached to the flame whose propagation speed
relative to the laboratory is U , with U > 0 indicating a propagation to the left. The velocity
of the parallel flow along the positive x-direction relative to the laboratory is denoted by u(y).
T and Y are the (scaled) temperature and mass fraction of the fuel which is assumed to limit
the reaction. Le is the Lewis number and ω is the reaction rate which is taken to be of the
Arrhenius form

ω = β2

2Le
Y exp{β(T − 1)},

where β is the Zeldovich number. A sink term of strength κ/β is included in the formulation
to account for volumetric heat losses (see [7–19]).

The units for speed and length chosen for non-dimensionalization correspond to the
propagation speed UL and the thickness δL of the adiabatic unstretched planar flame (more
precisely to the asymptotic values of these as β → ∞).

The boundary conditions (3) and (4) correspond to a frozen mixture with prescribed
temperature and composition upstream, and uniform properties far downstream. The boundary
conditions (5) are based on the assumption that all profiles have zero slope at y = 0 and y = l.
Here, broadly speaking, l represents a characteristic (transverse) length of the flow (measured
with planar flame thickness δL). For example, for a parallel flow in a channel with adiabatic
walls, l can be taken as the channel width; (5) then expresses the adiabaticity and impenetrability
of the walls located at y = 0 and y = l. If the flow is periodic in the y-direction then l may
be viewed as equal to the period, and the origin of the y-axis is to be chosen so that the flame
is vertical at y = 0 and y = l.

The solution of the problem thus formulated must yield, in particular, the propagation
eigenvalue U . By integration of (1) over the whole domain, taking into account (5), and
assuming the fuel to be totally depleted far downstream we obtain the relation

UT ≡ U + ū = 1

l

∫ ∞

−∞

∫ l

0
ω dy dx,
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144 J Daou et al

where ū represents the mean flow speed. This implies that the quantity U + ū appears as an
effective propagation speed UT (measured against UL) as conventionally defined in turbulent
combustion; UT is also the flame propagation speed relative to an observer moving with the
mean flow. It makes sense to choose the reference frame of the laboratory such that ū is now
zero, in which case UT = U . Accordingly, we shall use equations (1) and (2) with U replaced
by UT, and hence will have the constraint

ū = 1

l

∫ l

0
u dy = 0 or

∫ 1

0
u dη = 0 (6)

in terms of the scale η = y/l.
Our aim is to determine UT in the asymptotic limit of small flow scale l → 0 and large β

(with β−1 � l).

3. The adiabatic equidiffusional case

In the limit β → ∞ adopted in this study, the reaction is confined to a thin sheet, given by
x = f (y) say. We begin with the equidiffusional adiabatic case (Le = 1, κ = 0) for which
we need only solve for temperature, since the equations and boundary conditions imply that
Y +T = 1. Using the transverse scale η = y/l and the longitudinal coordinate ζ = x−f (y),
and writing f (y) = l2F(η), the problem becomes

T ≡ 1 for ζ > 0,

[UT + u(η) + F ′′]Tζ = (1 + l2F ′2)Tζζ + l−2Tηη − 2F ′Tζη for ζ < 0, (7)

T = 0 as ζ → −∞, (8)

T = 1, Tζ = (1 + l2F ′2)−1/2 at ζ = 0−, (9)

Tη = F ′ = 0 at η = 0 and η = 1. (10)

Note that the fuel is assumed to be depleted behind the flame so that T is identically equal
to one for ζ > 0. In the unburnt gas ζ < 0, T is governed by (7) subject to the upstream
condition (8), the jump conditions (9) (see e.g. [20]), and the zero-slope conditions (10).

In addition, we may impose for convenience that F(0) = 0, since translational invariance
in the x-direction allows the origin on the x-axis to be freely chosen. We shall seek an
asymptotic solution of the problem, thus formulated, in the limit l → 0. We begin by writing
straightforward expansions in the form

T = T0 + lT1 + l2T2 + · · · , UT = U0 + lU1 + l2U2 + · · · ,
F = F0 + lF1 + · · · ,

which we substitute into (7)–(10).
To O(l−2)we find T0ηη = 0 which, when used with the zero-slope conditions (10), implies

that T0 must be a function of ζ only, T0 = T0(ζ ). To O(l−1) we have similarly T1ηη = 0 and
T1 = T1(ζ ).

To O(1) we obtain

[U0 + u(η) + F ′′
0 (η)]T0ζ − T0ζ ζ = T2ηη, (11)

which we integrate with respect to η from 0 to 1, taking into account (6) and (10). This yields
the ordinary differential equation

U0T0ζ − T0ζ ζ = 0,
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The thick flame asymptotic limit and Damköhler’s hypothesis 145

whose solution subject to T0(−∞) = 0, T0(0) = 1 and T0ζ (0) = 1 is given by

U0 = 1, T0 = exp(ζ ) (ζ � 0). (12)

Thus, in a first approximation, the solution corresponds to the laminar planar flame.
We now integrate (11) twice with respect to η from 0 to η using (12). We obtain T2 =

(S(η)+F0(η)) exp ζ +T̃2(ζ ), where T̃2(ζ ) is an arbitrary function of integration and the function
S(η) is defined such that

S(η) ≡
∫ η

0
dη2

∫ η2

0
u(η1) dη1. (13)

From the continuity of temperature at the reaction sheet, T2 = 0 at ζ = 0, and the fact that
S(0) = F0(0) = 0, it then follows that

F0 = −S(η), (14)

giving the first approximation to the flame shape. It also follows that T2 must be a function of
ζ only, T2 = T2(ζ ), with T2(0) = 0.

To O(l) we obtain

T1ζ − T1ζ ζ = −(U1 + F ′′
1 ) eζ + T3ηη, (15)

which, integrated with respect to η from 0 to 1 yields T1ζ − T1ζ ζ = −U1eζ . The auxilliary
conditions for this equation being T1(−∞) = T1(0) = T1ζ (0) = 0, the solution is obviously
the trivial one

U1 = 0 and T1 ≡ 0, (16)

and implies, when reinjected into (15) and using (10), that T3 must be of the form T3 =
eζ F1(η) + T̃3(ζ ). To O(l2) we find

T2ζ − T2ζ ζ = −(U2 + F ′′
2 ) eζ + F ′2

0 eζ + T4ηη,

which we integrate as above from η = 0 to 1 to get

T2ζ − T2ζ ζ = −A eζ ,

where

A ≡ U2 −
∫ 1

0
F ′2

0 dη.

The solution of this equation subject to T2(−∞) = 0 and T2(0) = 0 is

T2 = Aζ eζ . (17)

The constant A is to be determined from the jump in the temperature slope at the reaction
sheet, T2ζ (0−) = −F ′2

0 /2. Clearly, this is impossible since the rhs is a function of η and the
lhs is not. This suggests that our straightforward expansion should be complemented by an
expansion in an inner region near the flame. As we shall show below, the matching between the
two expansions implies that T2 must satisfy the following integral form of the jump condition

T2ζ = −1

2

∫ 1

0
F ′2

0 dη at ζ = 0−, (18)

which allows the constant A to be determined in (17), leading to

U2 = 1

2

∫ 1

0
F ′2

0 dη. (19)

Thus, using (12), (13), (14) and (16), a two-term expansion for the propagation speed is given by

UT ∼ 1 +
l2

2

∫ 1

0

[∫ η

0
u(η1) dη1

]2

dη, (20)

a formula which will be discussed in the final section.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
h
e
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
n
c
h
e
s
t
e
r
]
 
A
t
:
 
1
8
:
3
4
 
2
2
 
O
c
t
o
b
e
r
 
2
0
0
9



146 J Daou et al

In the remainder of this section, we shall examine the inner expansion and the matching
conditions, with the main aim of justifying our use of the jump relationship (18). We denote
the straightforward expansion above by

T outer ∼ eζ + l2T2(ζ ) + l3T3(ζ, η) + · · · , (21)

where T0 and T1 are given by (12) and (17), and write an inner expansion in the form

T inner ∼ 1 + lξ + l2
ξ 2

2
+ l3T̂3(ξ, η) + · · · (ζ = lξ ). (22)

The first three terms of (22) have been given explicitly, using a Taylor expansion of the
uniformly valid leading-order solution eζ as ζ → 0 and the condition T2(0) = 0. By
substitution of (22) into (7)–(10), we find that T̂3 is governed by T̂3ξξ + T̂3ηη = ξ + F ′′

1 (η), so
that

T̂3 = ξ 3

6
+ F1(η) + θ(ξ, η), (23)

where θ satisfies

θξξ + θηη = 0, (24)

and is to be determined subject to the conditions

θη(ξ, 0) = 0, θη(ξ, 1) = 0, θξ (0, η) = −F ′2
0

2
, θ(0, η) = −F1(η). (25)

Using the method of separation of variables, we can determine θ by solving (24) subject to
the first three conditions in (25); the last condition then determines F1. We thus find (using
F1(0) = 0) that

θ = −ξ

2

∫ 1

0
F ′2

0 dη +
∞∑
n=1

an[enπξ cos(nπη)− 1] (26)

and

F1 =
∞∑
n=1

an[1 − cos(nπη)], with an = − 1

nπ

∫ 1

0
F ′2

0 cos(nπη) dη. (27)

Now the matching of the outer and inner expansions (21) and (22) to O(l3) imposes the
requirement

T̂3(ξ, η) ∼ ξ 3

6
+ T2ζ (0

−)ξ + T3(0, η) as ξ → −∞, (28)

which, together with (26) and (23), implies that

T2ζ (0
−)ξ + T3(0, η) ∼ F1(η)− ξ

2

∫ 1

0
F ′2

0 dη + a0 (29)

with a0 = − ∑∞
n=1 an. From this, (18) follows at once (along with T3(0, η) = a0 + F1(η),

which is useful when carrying the problem to higher order). Thus, our use of (18) is justified.
Finally, it should be noted that (18) can be deduced, without actually solving for θ , from

(28) and the relation∫ 1

0
θξ (ξ, η) dη = −1

2

∫ 1

0
F ′2

0 dη, (30)

which must hold, in particular, as ξ → −∞; this relation is obtained by applying the divergence
theorem to the integral of Laplace equation (24) over the rectangular domain [ξ, 0] × [0, 1].
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The thick flame asymptotic limit and Damköhler’s hypothesis 147

4. Heat loss and preferential diffusion effects

We now extend the analysis to account for non-zero heat losses and non-unit Lewis numbers.
With the additional assumption le ≡ β(Le − 1) = O(1) as β → ∞, we may reformulate the
problem in terms of T 0 and H , where T 0 is the leading-order temperature in an expansion in
β−1 and H the excess enthalpy defined by Y + T ∼ 1 + β−1H (see [20]).

Dropping the superscript in T 0, the problem is given by

T = 1, ζ > 0, (31)

[UT + u(η) + F ′′]Tζ = (1 + l2F ′2)Tζζ + l−2Tηη − 2F ′Tζη, ζ < 0, (32)

[UT + u(η) + F ′′]Hζ = ((1 + l2F ′2)∂ζζ + l−2∂ηη − 2F ′∂ζη)(H + le T )

−leF ′′Tζ − κT , ζ �= 0 (33)

subject to the boundary conditions

T = H = 0 as ζ → −∞, (34)

Tη = Hη = F ′ = 0 at η = 0 and η = 1, (35)

and the jump conditions

[T ] = [H ] = 0, [Hζ ] + le[Tζ ] = 0, [Tζ ] = −(1 + l2F ′2)−1/2eH/2 at ζ = 0.

(36)

In addition, we shall disallow exponentially growing solutions as ζ → ∞.
We follow the methodology of the previous section, skipping a few similar details. We

seek expansions in the form

T = T0 + l2T2 + · · · , H = H0 + l2H2 + · · · ,
UT = U0 + l2U2 + · · · , F = F0 + lF1 + · · · ,

which we substitute into (31)–(36). To O(l−2) we find T0ηη = H0ηη = 0 which implies that
T0 = T0(ζ ) and H0 = H0(ζ ).

To O(1) we have

[U0 + u(η) + F ′′
0 ]T0ζ − T0ζ ζ = T2ηη, (37)

[U0 + u(η) + F ′′
0 ]H0ζ −H0ζ ζ = H2ηη + le(T2ηη + T0ζ ζ − F ′′

0 T0ζ )− κT0, (38)

which we integrate with respect to η from 0 to 1, using (6) and (35). This yields the ODE
system

U0T0ζ − T0ζ ζ = 0, U0H0ζ −H0ζ ζ = le T0ζ ζ − κT0, (39)

subject to

T0 = H0 = 0 as ζ → −∞, (40)

[T0] = [H0] = [H0ζ ] + le [T0ζ ] = [T0ζ ] + eH0/2 = 0 at ζ = 0. (41)

We note that (39)–(41) describe the propagation of a planar flame under volumetric heat
losses. This problem is well known in the literature (see e.g. [7–19]). Its solution (free from
exponentially growing terms in the burnt gas) is

T0 =
{

eU0ζ ,

1,
H0 =




[(
κ

U 2
0

− le

)
U0ζ − 2κ

U 2
0

]
eU0ζ , ζ � 0,

− κ

U0
ζ − 2κ

U 2
0

, ζ � 0,
(42)
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148 J Daou et al

where U0 = U0(κ) is the larger of the two roots of the equation

U 2
0 lnU0 = −κ (43)

(the smaller root corresponds to an unstable solution); clearly, solutions exist only if κ is less
than an extinction value given by κext = (2e)−1.

Thus, in a first approximation, the propagation speed is that of the planar non-adiabatic
flame, given by (43). We now integrate (37) twice from η = 0 to η to obtain T2 =
(S(η) + F0(η))eζ + T̃2(ζ ), where T̃2(ζ ) is a function of integration and S is as defined in
(13). From the condition T2 = 0 at ζ = 0, we again conclude that

F0 = −S(η), T2 = T2(ζ ), T2(0) = 0.

Thus, F0 is as in the adiabatic equidiffusional case, and T2 must be a function of ζ only. It
then follows from (38) and (39) that H2ηη = leF ′′

0 T0ζ , and hence (by integrating twice using
(35) and (42)) H2 must be of the form

H2 = H̃2(ζ ) + leF0T0ζ =
{
H̃2(ζ ) + leU0F0(η)eU0ζ , ζ < 0,
H̃2(ζ ), ζ > 0.

(44)

To O(l2) we find

U0T2ζ − T2ζ ζ = −(U2 + F ′′
2 )T0ζ + F ′2

0 T0ζ ζ + T4ηη,

U0H2ζ −H2ζ ζ = −(U2 + F ′′
2 )H0ζ + F ′2

0 (H0ζ ζ + le T0ζ ζ ) + T4ηη + le T4ηη

+le T2ζ ζ − le (F ′′
0 T2ζ + F ′′

2 T0ζ )− 2F ′
0H2ζη − κT2,

which we integrate with respect to η from 0 to 1.
For T2 we obtain

U0T2ζ − T2ζ ζ = −AeU0ζ , ζ < 0,

where

A ≡ U0U2 − U 2
0

∫ 1

0
F ′2

0 dη,

to be solved with T2(−∞) = 0 and T2(0) = 0. Thus

T2 =


A

U0
ζeU0ζ , ζ < 0,

0, ζ > 0.
(45)

For H̃2 we obtain similarly

U0H̃2ζ − H̃2ζ ζ = −U2H0ζ + (H0ζ ζ − le T0ζ ζ )

∫ 1

0
F ′2

0 dη + le T2ζ ζ − κT2

for ζ �= 0, which, when integrated from ζ = −∞ to 0−, yields

U0H̃2(0
−) = H̃2ζ (0

−) + U2

(
le +

3κ

U 2
0

)
− U0

(
3le +

2κ

U 2
0

) ∫ 1

0
F ′2

0 dη. (46)

We also note that in the burnt gas, ζ > 0, U0H2ζ −H2ζ ζ = U2κ/U0 so that

H̃2ζ (0
+) = U2κ

U 2
0

, (47)

after exponentially growing solutions have been eliminated.
We now turn to the remaining jump conditions to be satisfied by T2 and H2, namely

[H2] = 0, [H2ζ ] + le [T2ζ ] = 0, [T2ζ ] = U0

2
(F ′2

0 −H2) at ζ = 0.
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The thick flame asymptotic limit and Damköhler’s hypothesis 149

Given that T2 is independent of η and in view of (44), these cannot be satisfied. This suggests
that our straightforward expansion is to be complemented by and matched with the solution
in an inner region near the flame. From the matching, we shall show that the outer solutions
must obey the following integral form of the jumps

[H̃2] = leU0

∫ 1

0
F0 dη, (48)

[T2ζ ] = U0

2

(∫ 1

0
F ′2

0 dη − H̃2(0
+)

)
, (49)

[H̃2ζ ] + le [T2ζ ] = leU 2
0

∫ 1

0
F0 dη − 2leU0

∫ 1

0
F ′2

0 dη, (50)

which we shall now use before justifying them.
From (45), (47) and (50) we get

H̃2ζ (0
−) = U2

(
κ

U 2
0

− le

)
+ 3leU0

∫ 1

0
F ′2

0 dη − leU 2
0

∫ 1

0
F0 dη,

which substituted into (46) yields

H̃2(0
+) = 4κ

U 3
0

(
U2 − U0

2

∫ 1

0
F ′2

0 dη

)
, (51)

after making note of (48). Using this result with (45) and (49), we find H̃2(0) = 0 and

U2 = U0

2

∫ 1

0
F ′2

0 dη. (52)

This is the main result we have been seeking, which allows a two-term approximation for UT

to be written as

UT

U0
= 1 +

l2

2

∫ 1

0

[∫ η

0
u(η1) dη1

]2

dη, with U 2
0 lnU0 = −κ. (53)

Thus, UT is the same as in the equidiffusional adiabatic case, provided it is scaled with the
propagation speed U0(κ) of the non-adiabatic planar flame. In particular, UT does not depend
on the Lewis number at least for nearly equidiffusive Lewis numbers, Le − 1 = O(β−1).

The rest of this section will be devoted to the analysis of the solution in an inner region
near the flame; the main aim is to justify the integral form of the jumps (48)–(50).

The straightforward expansion above provides an outer expansion

T outer ∼ T0(ζ ) + l2T2(ζ ) + l3T3(ζ, η) + · · · , (54)

H outer ∼ H0(ζ ) + l2H2(ζ ) + l3H3(ζ, η) + · · · , (55)

where T0, H0 are given by (42), T2 by (45) and H2 by (44).
Inner expansions in terms of ξ = ζ/ l are sought in the form

T inner ∼ T̂0(ξ, η) + lT̂2(ξ, η) + l2T̂2(ξ, η) + l3T̂3(ξ, η) + · · · , (56)

H inner ∼ Ĥ0(ξ, η) + lĤ1(ξ, η) + l2Ĥ2(ξ, η) + l3Ĥ3(ξ, η) + · · · . (57)
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150 J Daou et al

In preparation for the matching, we note that

as ζ → 0−, T outer ∼ 1 + lU0ξ + l2U 2
0
ξ 2

2
+ l3

[
U 3

0 ξ
3

6
+ T2ζ (0

−)ξ + T3(0
−, η)

]
, (58)

H outer ∼ − 2κ

U 2
0

− l

[
κ

U 2
0

+ le

]
U0ξ + l2[h̃2(0

−) + leU0F0 − leU 2
0 ξ

2],

+ l3
[(

κ

U 2
0

− 3le

)
U 3

0 ξ
3

6
+ leU 2

0F0ξ + H̃2ζ (0
−)ξ + h3(0

−, η)
]
, (59)

and

as ζ → 0+, H outer ∼ − 2κ

U 2
0

− l
κξ

U0
+ l2H̃2(0

+) + l3[H̃2ζ (0
+)ξ + H3(0

+, η)]. (60)

Since the leading-order solution (42) is uniformly valid and T2(0) = 0, we have, in view of
(58)–(60),

T̂0 = 1, T̂1 = U0ξ, T̂2 = U 2
0
ξ 2

2
, ξ < 0,

and

Ĥ0 = − 2κ

U 2
0

, Ĥ1 =




−
(
κ

U 2
0

+ le

)
U0ξ, ζ < 0,

− κ

U0
ξ, ζ > 0.

For Ĥ2 we have to solve

Ĥ2ξξ + Ĥ2ηη =
{

leU0F
′′
0 − 2leU 2

0 , ζ < 0,
0, ζ > 0,

subject to the boundary and jump conditions

Ĥ2η(ξ, 0) = Ĥ2η(ξ, 1) = 0, [Ĥ2] = [Ĥ2ξ ] = 0 at ξ = 0,

and the matching requirements

Ĥ2 ∼ H̃2(0
−) + leU0F0 − leU 2

0 ξ
2 as ξ → −∞,

Ĥ2 ∼ H̃2(0
+) as ξ → +∞.

Thus, writing

Ĥ2 = φ(ξ, η) +

{
H̃2(0−) + leU0F0 − leU 2

0 ξ
2, ζ < 0,

H̃2(0+), ζ > 0,
(61)

it is seen that φ satisfies the Laplace equation with

φ ∼ 0 as ξ → ±∞, φη(ξ, 0) = 0,

φη(ξ, 1) = 0, [φξ ] = 0, [φ] = leU0F0 − [H̃2].

The solution subject to the first three conditions is

φ(ξ, η) =
{∑∞

n=1 an enπξ cos(nπη), ζ < 0,∑∞
n=1 bn e−nπξ cos(nπη), ζ > 0,

with bn = −an so as to insure that [φξ ] = 0. From the last condition, we then have

[H̃2] = leU0

∫ 1

0
F0 dη,

and

bn = −an = leU0

∫ 1

0
F0 cos(nπη) dη,

legitimizing, in particular, the use of (48).
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The thick flame asymptotic limit and Damköhler’s hypothesis 151

Finally, we note for later reference that∫ 1

0
σ2 dη = H̃2(0

+) = H̃2(0
−) + leU0

∫ 1

0
F0 dη where σ2 ≡ Ĥ2(0, η), (62)

a relation which follows from (61), written at ξ = 0, when integrated with respect to η. The
problem for T̂3 is given by

T̂3ξξ + T̂3ηη = U 3
0 ξ + U0F

′′
1 (η) (ξ < 0),

with

T̂3η(ξ, 0) = 0, T̂3η(ξ, 1) = 0, T̂3ξ (0
−, η) = U0

(
σ2

2
− F ′2

0

2

)
, T̂3(0, η) = 0.

Proceeding as in the equidiffusional adiabatic case, we find that

T̂3 = U 3
0 ξ

3

6
+ U0F1 +

U0ξ

2

∫ 1

0
(σ2 − F ′2

0 ) dη + U0

∞∑
n=1

an[enπξ cos(nπη)− 1],

whereF1 and the coefficients an are as in (27), but withF ′2
0 replaced byF ′2

0 −σ2. The matching
requirement

T̂3(ξ, η) ∼ U 3
0 ξ

3

6
+ T2ζ (0

−)ξ + T3(0, η) as ξ → −∞,

then leads to the jump condition (49).
Finally, the problem for Ĥ3 is found to be

Ĥ3ξξ + Ĥ3ηη =




(
κ

U 2
0

− le

)
U 3

0 ξ −
(
κ

U0
+ leU0

)
F ′′

1 + leU 2
0F

′′
0 ξ, ζ < 0,

+U0Ĥ2ξ + 2F ′
0Ĥ2ξη,

− κ

U0
F ′′

1 + U0Ĥ2ξ + 2F ′
0Ĥ2ξη, ζ > 0,

(63)

with the boundary and jump conditions

Ĥ3η(ξ, 0) = 0, Ĥ3η(ξ, 1) = 0, [Ĥ3ξ ] + le [T̂3ξ ] = 0, [Ĥ3] = 0

and the matching requirements

Ĥ3(ξ, η) ∼
(
κ

U 2
0

− 3le

)
U 3

0 ξ
3

6
+ (H̃2ζ (0

−) + leU 2
0F0)ξ + H3(0

−, η) as ξ → −∞,

Ĥ3(ξ, η) ∼ H̃2ζ (0
+)ξ + H3(0

+, η) as ξ → +∞.

Applying the divergence theorem to the double integral of equation (63) over the right
rectangular domain from ξ = 0+ to ξ large and positive, and using the boundary and matching
conditions, we find

H̃2ζ (0
+)−

∫ 1

0
Ĥ3ξ (0

+, η) dη = U0H̃2(0
+)− U0

∫ 1

0
Ĥ2(0

+, η) dη − 2
∫ 1

0
F ′

0Ĥ2η(0
+, η) dη.

Similarly, by integration over the left rectangular domain from ξ large and negative to ξ = 0−,
we find

H̃2ζ (0
−)−

∫ 1

0
Ĥ3ξ (0

−, η) dη = U0H̃2(0
−)− U0

∫ 1

0
Ĥ2(0

−, η) dη

−2
∫ 1

0
F ′

0Ĥ2η(0
−, η) dη + 2leU0

∫ 1

0
F ′2

0 dη.
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Subtracting the last two equations, we get

[H̃2] −
∫ 1

0
[Ĥ3ξ ] dη = U0[H̃2] − 2

∫ 1

0
F ′

0[Ĥ2η] dη − 2leU0

∫ 1

0
F ′2

0 dη

The jump (50) then follows by noticing that [Ĥ2η] = 0 since [Ĥ2] = 0 and using [Ĥ3ξ ] =
−le [T̂3ξ ] = −leU0(F

′2
0 /2 − σ2/2) and (49). Thus our use of (50) is justified.

In the next section we shall summarize and discuss the main results.

5. Concluding remarks

We have carried out an analytical test of Damköhler’s second hypothesis in the framework of
a prescribed steady parallel flow. The work has exploited the distinguished limit when the
scale l of the flow goes to zero with its intensity being of order unity. The main result is given
in (53), namely

UT

U0
= 1 +

l2

2

∫ 1

0

[∫ η

0
u(η1) dη1

]2

dη,

with

U 2
0 lnU0 = −κ.

This formula demonstrates, in the limit considered, that there is an increase in UT caused by
the flow; this increase is found even in the presence of heat losses, provided these do not
exceed the critical extinction value of the non-adiabatic planar flame, i.e. κ must be less than
κext = (2e)−1. UT is seen to depend quadratically on both the scale and intensity of the flow.
These conclusions are in line with the results of [21], describing flame propagation in Poiseuille
flow under adiabatic conditions, which provide a partial numerical verification of the formula
above. Finally, it is worth noting the non-dependence of UT on the Lewis number (for nearly
equidiffusive values) and the simple way in which heat losses affect the burning rate: UT is the
same as in the equidiffusional adiabatic case, provided it is scaled with the propagation speed
U0(κ) of the non-adiabatic planar flame.

It should be emphasized that several aspects which are important in clarifying more fully
the effect of small flow scales on the flame have not been accounted for. These include flow
unsteadiness, the use of other distinguished limits for scale and intensity, the analysis of more
complex flows, and the effect of the finite activation energy of the reaction. These aspects and
others will be addressed in future studies. The findings presented here do, however, provide a
first step in examining Damköhler’s second hypothesis.
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