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Joel Daou∗

University of Manchester, School of Mathematics, Manchester, M60 1QD, UK

(Received 29 June 2010; final version received 19 November 2010)

We provide an analytical description of the effect of preferential diffusion and volumetric
heat-loss on strained premixed flames within a reversible chemistry model. The model
comprises a single reversible reaction of the form F � P whose forward and backward
rates follow an Arrhenius law. An asymptotic analysis of the problem is carried out in
the limit of infinitely large activation energy of the forward reaction. The study allows
for non-unit Lewis numbers for the fuel F and the product P . Two main contributions
are made.

The first contribution consists in identifying the fundamental differences in the asymp-
totic description of the non-adiabatic flame between the reversible and irreversible
cases, and resolving the difficulties by a suitable generalization of the so-called near-
equidiffusion flame approximation to the reversible case, including the derivation of
appropriate jump conditions at the reaction sheet. This is used to demonstrate that the
one-step reversible chemistry model is reducible to the classical irreversible chemistry
model, provided that an effective reduced Lewis number l̄ and an effective heat-loss
parameter κ̄ are used.

The second contribution is the determination of the domain of the solutions and
their multiplicity, for selected values of l̄, in the κ̄-ε plane, where ε is a non-dimensional
measure of the strain rate. For l̄ < 4.03, the diagrams are found to consist of four regions
with one, two, three, and four solutions respectively, including the frozen solution. For
4.03 < l̄ < 5.15, an additional region with three solutions is identified. For larger values
of l̄, the two regions with three solutions merge, and the region with four solutions
is of insignificant size. Our diagrams are found to be in good agreement with, and
complementary to, numerically determined diagrams in flammability limit studies based
on one-step and detailed chemistry models. They are also a valuable component in
studying non-adiabatic premixed edge-flames.

Keywords: premixed flames; reversible reaction; large activation energy asymptotics;
flammability limits; non-adiabatic flames; edge-flames

1. Introduction

Over the last few decades, the counterflow configuration has been extensively adopted in
theoretical, experimental and numerical studies, as a means to investigate various physical
effects on real flames, such as stretch, preferential diffusion, radiation and chemical kinetics.
Examples that are relevant to this work include studies on one-dimensional twin-flames,
a problem of high significance to the determination of flammability limits [1–5], and
investigations of two-dimensional premixed edge-flames in this configuration [6–9]. In this
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438 J. Daou

latter context, the determination of the existence and multiplicity of the one-dimensional
solutions is fundamental since they are the boundary conditions for the two-dimensional
solutions far downstream and far upstream. In fact, this context provides a strong motivation
for this work, especially with regard to the effect of preferential diffusion on the existence
and multiplicity of the one-dimensional solutions in a strain-rate versus heat-loss-intensity
plane. This aspect has been only partially and indirectly addressed in available numerical
studies that are mainly concerned with flammability limits [2–5]. These studies have been
based both on single-step and detailed chemistry models, and suggest that the predictions
of the classical one-step irreversible model are quite robust, at least qualitatively. We shall
test this robustness analytically, by considering a reversible chemistry model.

In fact, the reversibility of the reaction is a fundamental realistic aspect which does
not seem to have been considered in the premixed counterflow configuration, at least in
analytical investigations. This aspect is known to be a significant factor in combustion
phenomena, such as the burning of hydrocarbons or high-caloric fuels in oxygen, if, for
example, realistic values of the flame temperature are to be obtained, see [10, p. 25]. This
significance of reversibility has been recognized in both unpremixed combustion [11, 12],
and premixed combustion [13–16]. In the available analytical studies however, account of
reversibility for flames subject to heat-loss does not seem to have been addressed. In fact, the
theoretical (asymptotic) analysis of non-adiabatic flames with even the simplest reversible
chemistry model presents non-trivial and interesting problems. As we shall show in this
paper, there are fundamental differences in the asymptotic description of the non-adiabatic
flame between the reversible and irreversible cases, with the main difficulty identified being
that the reaction rate in the burnt gas is not transcendentally small in the former case.

Thus, one of our objectives is to present the first analytical study of flames incorporating
reversibility and volumetric heat-loss, and to identify and resolve the corresponding diffi-
culties. A second objective is to provide an analytical description of planar non-adiabatic
strained flames, complementing the results of [1]. In particular, we wish to describe the
influence of preferential diffusion on the existence and multiplicity of the non-adiabatic
planar solutions in the various regions of strain-rate versus effective heat-loss diagrams.
The findings may be useful in studies concerned with flammability limits, premixed edge-
flames, turbulent combustion flamelet modelling, among others.

The paper is structured as follows. We first formulate the one-dimensional problem
including a reversible reaction in the counterflow configuration, using the thermodiffusive
(constant density) approximation for sake of simplicity and tractability. This is followed
by an asymptotic analysis which leads to a full analytical description. The results, includ-
ing generic bifurcation diagrams and useful formulas, are then presented and discussed
with reference to related investigations in the literature which are mostly concerned with
flammability limits. A summary of the main contributions concludes the paper.

2. Formulation

Figure 1 illustrates the configuration under consideration, including the planar twin-flames.
Constant density is assumed throughout and the counterflow velocity is given by v =
(ax,−ay), where a is the (dimensional) strain rate. To capture the effect of the reversibility
of the chemistry in the simplest way, a single reversible reaction is assumed to take place
in a fuel-lean mixture and to be of the form

F � P + q,
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Figure 1. The counterflow configuration and the twin planar premixed flames.

where F , P and q represent the fuel, the product and the heat of reaction. The overall
reaction rate ω̂ is taken to follow an Arrhenius law in the forward and backward directions
of the form

ω̂ = ρYF Be−E/RT − ρYP B ′e−E′/RT .

Here ρ, YF , YP , R, T , B, E, B ′, and E′ are the density, fuel mass fraction, product mass
fraction, the universal gas constant, the temperature, the pre-exponential factor and the
activation energy of the forward reaction and the pre-exponential factor and the activation
energy of the backward reaction, respectively.

The one-dimensional governing equations are

−aY
dT

dY
= DT

d2T

dY 2
+ q

cp

ω̂

ρ
− κ̂(T − Tu) (1)

−aY
dYF

dY
= DF

d2YF

dY 2
− ω̂

ρ
(2)

−aY
dYP

dY
= DP

d2YP

dY 2
+ ω̂

ρ
, (3)

where DT , DF and DP represent the diffusion coefficients for heat, for the fuel and for the
product, respectively. The term κ̂(T − Tu) in Equation (1), where Tu is the temperature of
the incoming fuel streams, is intended to account for heat-loss in a simple way.

Given the symmetry of the configuration about the plane Y = 0, we need only solve the
problem for Y > 0 with the boundary conditions

T = Tu , YF = YF,u , YP = 0 as Y → ∞
dT

dY
= dYF

dY
= dYP

dY
= 0 at Y = 0 .
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440 J. Daou

The equations can be written in non-dimensional form as

−2y
dθ

dy
= d2θ

dy2
+ ε−2ω − ε−2 κθ

β
(4)

−2y
dyF

dy
= 1

LeF

d2yF

dy2
− ε−2ω (5)

−2y
dyP

dy
= 1

LeP

d2yP

dy2
+ ε−2ω, (6)

with the boundary conditions

θ = 0, yF = 1, yP = 0 as y → +∞ (7)

dθ

dy
= dyF

dy
= dyP

dy
= 0 at y = 0 . (8)

Here LeF ≡ DT /DF and LeP ≡ DT /DP are the Lewis numbers of the fuel and product,
respectively. We have also used the Zeldovich number (the non-dimensional activation
energy of the forward reaction) β ≡ E(Te − Tu)/RT 2

e and the scaled variables θ , yF and
yP defined by

θ = T − Tu

Te − Tu

, yF = YF − YFe

YFu − YFe

, yP = YP

YPe

. (9)

Here Te, YFe and YPe are values corresponding to chemical equilibrium given by the
equations

Te − Tu = q

cp

(YF − YFe) = q

cp

YPe

ρYFeBe−E/RTe − ρYPe B ′e−E′/RTe = 0 .

These values correspond to the equilibrium in the burnt gas behind an adiabatic un-
strained planar premixed flame, for which the propagation speed (the laminar flame speed)
is

SL =
[

2
[
LeF + re−αψ (LeP + α2ψ)

]
β2

DT Be−E/RTe

]1/2

,

where α ≡ (Te − Tu)/Te, ψ ≡ (E′ − E)/R(Te − Tu) and r ≡ B ′/B. This expression can
be derived in the asymptotic limit β � 1 as shown in [13]. We note that SL reduces to the
well-known expression of the laminar flame speed in the irreversible case when r = 0.

In obtaining the non-dimensional Equations (4)–(6), we have taken as unit length the
mixing layer thickness L ≡ √

2DT /a and y = Y/L. The parameters κ and ε, defined by
κ ≡ β(DT /S2

L)κ̂ and ε ≡ DT /LSL = √
DT a/SL

√
2, represent a non-dimensional measure

of the heat-loss intensity and strain, respectively. Finally, the non-dimensional reaction rate
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Combustion Theory and Modelling 441

is given by

ω ≡ β2

2
[
LeF + re−αψ (LeP + α2ψ)

] φ exp

(
β(θ − 1)

1 + α(θ − 1)

)
, (10)

where

φ = yF + re−αψ − ryP exp

( −αψ

1 + α(θ − 1)

)
. (11)

We note that when the reversibility parameter r is zero, we recover the reaction rate of
the irreversible case. We also point out that the presence of three terms in φ is due to our
choice of the scaled mass fractions given in Equation (9).

At this stage the formulation of the problem is complete and is given by Equations
(4)–(6) with boundary conditions (7)–(8). The main parameters relevant to this study are ε,
κ , r , in addition to β, LeF and LeP. The paper is devoted to an asymptotic analysis of the
problem in the limit β → ∞, which is presented in the next section.

3. Asymptotic analysis

3.1. Preliminaries

In the limit β → ∞, we postulate that the chemical term is dominant in an infinitely thin
reaction layer, located at y = y∗, say. The reaction layer separates the unburnt gas region,
where the reaction term is exponentially small, as in the irreversible case, from the burnt gas
region where quasi-equilibrium prevails. We say, quasi-equilibrium because, as we shall
confirm, the reaction term is typically O(β−1), whenever the reversibility parameter r is
non-zero.1 This is in marked contrast with the irreversible case, where the reaction term
is zero to all orders in β−1 in the burnt gas. This difficulty can be elegantly circumvented,
however, as we now demonstrate. To this end, we assume that the Lewis numbers are close
to unity, more precisely that

LeF ∼ 1 + lF

β
and LeP ∼ 1 + lP

β
, (12)

where lF and lP are order O(1) constants. This assumption along with the fact that the
heat-loss term is O(β−1) implies the leading order relations y0

F + θ0 = 1, y0
P − θ0 = 0,

everywhere in the domain, and

θ0 = 1, y0
F = 0, y0

P = 1 in the burnt gas 0 ≤ y ≤ y∗ . (13)

This is easily seen on introducing expansions2 of the form

yF = y0
F + β−1y1

F + · · · , yP = y0
P + β−1y1

P + · · · , θ = θ0 + β−1θ1 + · · · (14)

into Equations (4)–(8), and noting that the governing equations for y0
F + θ0 and y0

P − θ0

are free from source terms.
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442 J. Daou

Before proceeding with the analysis, we pause to highlight a key difference between
the irreversible and reversible cases related to the equilibrium in the burnt gas mentioned
above. In the former case, the reaction rate ω given by (10) with φ = yF (on setting r = 0
in (11)), is transcendentally small, on account of yF = 0 to all orders in β−1 in the burnt
gas. Indeed, if yF ∼ γβ−n for some positive number n is substituted into (5), one obtains

−2y
dγ

dy
∼ 1

LeF

d2γ

dy2
− ε−2 exp θ1

2LeF
β2 γ ,

implying that γ must be zero, since otherwise the last term cannot be balanced in the limit
β → ∞. A similar approach in the reversible case, using (10), (11), (13) and (14), leads to

−2y
dy1

F

dy
∼ 1

LeF

d2y1
F

dy2
− ε−2 exp θ1

2
[
LeF + re−αψ (LeP + α2ψ)

] β3

(
φ0 + φ1

β
+ φ2

β2
+ · · ·

)
,

in the burnt gas. This implies that φ0 = 0, φ1 = 0 and φ2 = 0, otherwise the reaction term
cannot be balanced as β → ∞, and

−2y
dy1

F

dy
∼ 1

LeF

d2y1
F

dy2
− ε−2 exp θ1

2
[
LeF + re−αψ (LeP + α2ψ)

] φ3 . (15)

On using (11), the condition φ0 = 0 is trivially satisfied on account of (13), while the
condition φ1 = 0 takes the form

y1
F − re−αψy1

P − re−αψα2ψθ1 = 0 . (16)

At this stage, on inspecting (15) (and similar equations for θ1 and y1
P ), we note that the

O(β−1) problem is not closed in the burnt gas, due to the presence of φ3 in the chemical
source term (involving second and third orders of expansion). We note however, that this
difficulty can be avoided if one works with the variables h ≡ θ1 + y1

F and k ≡ θ1 − y1
P ,

which are governed by equations free from reaction terms.

3.2. Reformulation and jump conditions

More precisely, in terms of θ0, h, and k, the problem consists in solving

−2y
dθ0

dy
= d2θ0

dy2
(17)

−2y
dh

dy
= d2h

dy2
+ lF

d2θ0

dy2
− ε−2κ θ0 (18)

−2y
dk

dy
= d2k

dy2
+ lP

d2θ0

dy2
− ε−2κ θ0, (19)

for y �= y∗, subject to the boundary conditions

θ0 = 0, h = 0, k = 0 as y → ∞ (20)
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Combustion Theory and Modelling 443

dh

dy
= dk

dy
= 0 at y = 0 , (21)

and appropriate jump conditions at y = y∗. The jump conditions can be derived using a
methodology commonly used in the irreversible case (see e.g. [1, p. 39] and [17, p. 527]),
and are found to be

[
θ0

] = [h] = [k] = 0 (22)[
dh

dy

]
+ lF

[
dθ0

dy

]
= 0 ,

[
dk

dy

]
+ lP

[
dθ0

dy

]
= 0 (23)

[
dθ0

dy

]
= ε−1 exp

(
h∗ + re−αψk∗

2
{
1 + re−αψ (1 + α2ψ)

}
)

(24)

with the notation [f ] = f (y−
∗ ) − f (y+

∗ ), and where h∗ ≡ h(y−
∗ ) and k∗ ≡ k(y−

∗ ). In fact,
(22) simply expresses the continuity of the profiles at y∗, while (23) can be obtained by
integration of Equations (18) and (19) across the thin reaction layer located at y = y∗, these
equations being valid everywhere. As for jump condition (24), it can be derived as follows.
We introduce a stretched variable η and inner expansions in the thin reaction layer given by

y = y∗ + η

β
, θ ∼ 1 + �1(η)

β
, yF ∼ F 1(η)

β
, yP ∼ 1 + P 1(η)

β
. (25)

To leading order, the governing equations (4)–(6) then imply that

d2�1

dη2
+ ε−2

2

{
F 1 − re−αψ (P 1 + α2ψ�1)

1 + re−αψ (1 + α2ψ)

}
exp �1 = 0

d2(�1 + F 1)

dη2
= 0 ,

d2(�1 − P 1)

dη2
= 0 .

The last two equations are readily integrated to yield F 1 = h∗ − �1 and P 1 = �1 − k∗,
after using the matching requirement with the outer solution in the burnt gas that �1 =
θ1(y−

∗ ), F 1 = y1
F (y−

∗ ) and P 1 = y1
P (y−

∗ ) as η → −∞. Eliminating F 1 and P 1, the inner
problem reduces to

d2�1

dη2
+ ε−2

2
(h̄∗ − �1) exp �1 = 0 , (26)

where

h̄∗ ≡ h∗ + re−αψk∗
1 + re−αψ (1 + α2ψ)

. (27)

We note that the quasi-equilibrium condition (16), along with the definitions of h

and k, imply that h̄∗ thus defined is the perturbation in the flame temperature, namely
h̄∗ = θ1(y−

∗ ). Now, we multiply Equation (26) by d�1/dη, then integrate with respect to η
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444 J. Daou

using the matching conditions

�1 = h̄∗ as η → −∞ and �1 = h̄∗ + η
dθ0

dy
(y+

∗ ) as η → ∞ (28)

to obtain

(
dθ0

dy

)2
∣∣∣∣∣
y=y+∗

= ε−2
∫ −∞

h̄∗
(�1 − h̄∗) exp �1 d�1 = ε−2 exp h̄∗ .

Thus, dθ0/dy(y+
∗ ) = −ε−1 exp(h̄∗/2), which yields jump condition (24), given the

definition of h̄∗ in (27) and the fact that dθ0/dy(y−
∗ ) = 0 on account of (13).

3.3. Reduction of the problem with reversible reaction to that with an
irreversible reaction

In the previous section, we have provided a reformulation of the problem in terms of θ0, h ≡
θ1 + y1

F , and k ≡ θ1 − y1
P , given by Equations (17)–(24). In arriving at this reformulation,

we emphasize the importance of the near-equidiffusion assumption (12) and the use of the
quasi-equilibrium condition in the burnt gas (16) which has led to expression (27) for the
perturbation in the flame temperature h̄∗ ≡ θ1(y∗). In fact, a major simplification of the
problem can be achieved by introducing an effective excess enthalpy h̄, a linear combination
of h and k suggested by (27) given by

h̄ ≡ h + re−αψk

1 + re−αψ (1 + α2ψ)
. (29)

This combination is seen, on using (16) and (29), to be such that h̄ = θ1, or,

θ ∼ 1 + h̄

β
in the burnt gas 0 ≤ y ≤ y∗ . (30)

In terms of θ0 and h̄, Equations (17)–(24) imply that the problem can be written as

−2y
dθ0

dy
= d2θ0

dy2
(31)

−2y
dh̄

dy
= d2h̄

dy2
+ l̄

d2θ0

dy2
− ε−2κ̄ θ0 (32)

for y �= y∗, subject to the boundary conditions

θ0 = 0, h̄ = 0 as y → ∞ (33)

dh̄

dy
= 0 at y = 0 , (34)
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Combustion Theory and Modelling 445

and the jump conditions

[
θ0

] = [
h̄
]

= 0 (35)[
dh̄

dy

]
+ l̄

[
dθ0

dy

]
= 0 (36)

[
dθ0

dy

]
= ε−1 exp

h̄

2
(37)

at y = y∗. Here, we have introduced the parameters

l̄ = lF + lP re−αψ

1 + re−αψ (1 + α2ψ)
and κ̄ = 1 + re−αψ

1 + re−αψ (1 + α2ψ)
κ . (38)

Thus, l̄ and κ̄ appear as an effective reduced Lewis number and an effective heat-
loss coefficient, and simplify the analysis by significantly reducing the number of
parameters.

More importantly, we note that the introduction of h̄, l̄, and κ̄ formally reduces the prob-
lem with reversible reaction to a familiar problem with an irreversible reaction, for which,
of course, l̄ = lF , κ̄ = κ , and h̄ = h. The three additional non-dimensional parameters r ,
ψ and lP introduced by the reversibility of the reaction can thus be simply accounted for
by (38), without extra cost.

3.4. The quasi-equilibrium in the burnt gas

At this stage, and without the need to solve the equations, which we do in the next section,
we can show that the reaction rate ω is precisely O(β−1) in the burnt gas, provided the
reversibility parameter r and heat-loss coefficient κ are both non-zero. Indeed, in the burnt
gas, Equation (4) implies that

ε−2ω ∼ β−1

(
−2y

dh̄

dy
− d2h̄

dy2
+ ε−2κ

)
,

when used with Equation (30), while Equation (32) reduces to

−2y
dh̄

dy
= d2h̄

dy2
− ε−2κ̄ .

It follows that

ω ∼ β−1(κ − κ̄) ,

that is, using (38), that

ω ∼ β−1κr
α2ψe−αψ

1 + re−αψ (1 + α2ψ)
, (39)

justifying our claim that ω is precisely O(β−1) unless κr = 0.
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446 J. Daou

3.5. Analytical solution

We proceed now to solving the problem of Section (3.3). The results will be expressed in
terms of the effective parameters l̄ and κ̄ given in (38), which incorporate reversibility.3

In the burnt gas region (y < y∗), we find

θ0 = 1

h̄ = h̄∗ − κ̄
√

π

2ε2

(
[erf(y∗) − erf(y)]

∫ y∗

0
eu2

du +
∫ y

y∗
[erf(u) − erf(y)] eu2

du

)
.

In the unburnt gas region (y > y∗) we find

θ0 = �1

h = h̄∗�1 + l̄�2 − κ̄�3 ,

where

�1 = erfc(y)

erfc(y∗)
, �2 = ye−y2

erfc(y∗) − y∗e−y2
∗ erfc(y)√

πerfc2(y∗)
,

�3 =
√

π

2ε2erfc2(y∗)

(
[erf(y) − erf(y∗)]

∫ ∞

y∗
erfc2(u)eu2

du

−erfc(y∗)
∫ y

y∗
[erf(y) − erf(u)] erfc(u)eu2

du

)
.

Jump conditions (36) and (37) then yield

h̄∗ = −κ̄
√

π

2ε2erfc(y∗)
a − l̄b (40)

ε =
√

π

2
erfc(y∗) exp

(
y2

∗ + h̄∗
2

)
, (41)

where

a = erfc2(y∗)
∫ y∗

0
eu2

du +
∫ ∞

y∗
erfc2(u)eu2

du,

b = 1

2

[
1 + 2y2

∗ − 2y∗e−y2
∗

√
πerfc(y∗)

]
.

Equation (41) provides an expression for h̄∗ as a function of ε and y∗, say h̄∗ = h̄∗(y∗; ε),
which when used in (40) yields an expression for κ̄ in terms of y∗, ε and l̄ of the form
κ̄ = κ̄(y∗; ε, l̄). That is, we have the two equations

h̄∗ = 2 ln

(
2εe−y2

∗
√

πerfc(y∗)

)
(42)
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Combustion Theory and Modelling 447

Figure 2. The burning rate per unit flame area, µ, versus κ̄ for selected values of ε, and three values
of l̄.

κ̄ = −2ε2erfc(y∗)

a
√

π

(
h̄∗ + l̄b

)
. (43)

For fixed values of ε and l̄ and by varying y∗, Equations (42) and (43) provide a
parametric plot of h̄∗ (or the burning rate per unit flame area, µ ≡ exp(h̄∗/2)), versus κ̄ .
The results can be used, in particular, to delimit the domains of existence of the solutions
in the κ̄-ε plane.

4. Results and discussion

4.1. Typical illustrative cases

We begin with Figure 2, which shows plots of the burning rate per unit flame area, µ ≡
exp(h̄∗/2), versus κ̄ , for selected values of l̄ and ε. The middle figure, Figure 2(b), is our
reference case and corresponds to l̄ = 0. Figures 2(a) and 2(c) correspond to l̄ = −1 and
l̄ = 1, respectively.
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448 J. Daou

In each figure, the inner solid curve corresponds to κ̄ = −µ2 ln(µ), which is the well-
known relation between the burning rate of the non-adiabatic planar unstrained flame and
the heat-loss coefficient; the turning point of this curve, at κ̄ = κ0 ≡ (2e)−1, corresponds
to extinction and its lower branch is known to represent unstable solutions. Each dashed
line corresponds to a fixed value of ε (or the strain rate), and depicts the dependence of
µ on κ̄ . As can be seen, for vanishing strain, the dashed lines tend to the solid inner line,
as one may expect given that in the limit as ε → 0, the burning rate of the flame must
tend to that of a free deflagration. In each figure, it is observed that for ε smaller than a
critical value εc (depending on l̄), the µ versus κ̄ curves are multivalued inverse S-shaped
curves, exhibiting two turning points. The upper branches of the S-shaped curves consist of
strongly burning solutions, and the lower branches, weakly burning solutions. The middle
branches, however, are presumably unstable since they exhibit the unphysical behaviour
of an increasing burning rate µ with κ̄ . For ε > εc, strongly burning solutions only are
obtained. We note, in each figure, that all dashed curves terminate on the outer solid curve
labelled ‘quenching curve’. The quenching curve is the locus of the points corresponding
to y∗ = 0 which in view of Equations (42) and (43) is given by

κ̄ = − ε2

c
√

π

[
4 ln

(
2ε√
π

)
+ l̄

]
where c =

∫ ∞

0
erfc2(u)eu2

du ≈ 0.391 , (44)

or, since µ = 2ε/
√

π when y∗ = 0,

κ̄ = −
√

πµ2

4c

[
4 ln µ + l̄

]
. (45)

This expression yields a maximum value of κ̄ for µ = exp(− 1
2 − l̄

4 ), which is given by

κ̄max =
√

π

2c
exp

(
−1 − l̄

2

)
≈ 2.27 exp

(
−1 − l̄

2

)
. (46)

Comparing the figures, it is apparent that the range of κ̄ for which burning solutions
exist is reduced as l̄ is increased. This observation is readily explained by Equation (46).
For l̄ = −1, we find that κ̄max ≈ 1.375, a value which is nearly eight times greater than
κ0 = (2e)−1 ≈ 0.184, the extinction value of the unstrained planar flame. For l̄ = 1, κ̄max ≈
0.506, about three times greater than κ0. Thus, in the presence of strain, burning solutions
may be encountered for values of κ much larger than the planar flame extinction value
κ0. This is consistent with similar observations in studies of flammability limits using the
counterflow configuration, see e.g. [1–5]. This fact ceases to be true, however, if l̄ is above
a critical value l̄c (the value of l̄ at which κ̄max = κ0), determined from Equation (46) to be

l̄c = ln(π/c2) ≈ 3.04 ; (47)

large Lewis number cases corresponding to l̄ ≥ l̄c will be considered in Section 4.3.
In fact a lot of information is contained in Figure 2 concerning the coupling between

strain, heat-loss, and preferential diffusion. For example, it is seen that for sufficiently small
values of κ , there is always a strongly burning solution which increases with increasing
(moderate) strain rate ε for l̄ < 0, and decreases for l̄ > 0. For sufficiently high values of
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Combustion Theory and Modelling 449

Figure 3. The regions of solutions in the κ̄-ε plane for three values of l̄. The regions labelled I, II,
III, and IV contain one, two, three, and four solutions, respectively, including the frozen solution.

κ̄ , however, µ is always an increasing function of ε, irrespective of l̄. It is worth noting that
the coupling between κ̄ , l̄ and ε (or equivalent parameters) poses non-trivial difficulties,
when interpreting flammability limit results as in [1–5], or in edge-flame studies [9].
The difficulties appear to be associated with the fact that, although the multiple solutions
described above are fairly well known, they do not seem to have been fully located and
classified in parameter spaces, at least as far as analytical studies are concerned. Therefore,
it is useful to provide below bifurcation diagrams in the κ̄-ε plane based on our analytical
model for fixed values of l̄.

4.2. Bifurcation diagrams in the κ̄-ε plane

Figure 3 represents diagrams in the two-dimensional κ̄-ε plane where regions characterizing
the multiplicity of the solutions are delimited. The diagrams correspond to the same values
of l̄ as in Figure 2, namely l̄ = −1, 0 and 1 from top to bottom.

In each subfigure, the solid curve is the quenching curve, obtained from Equation (44).
It can be seen from this curve that for fixed κ̄ < κ̄max, there exist two quenching points, one
for (moderately) large values of ε which is often termed the quenching limit in flammability
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450 J. Daou

studies, since this type of extinction point exists even in the adiabatic case, and one for small
values of ε, which is called the radiation limit, see e.g. [1–3]. The dotted line represents
the upper turning points, say E, in the inverse S-shaped curves described above and the
dashed line represents the locus of their lower turning points, say I. Typically, the point E
corresponds to an extinction event (a jump from a strongly burning solution to a frozen
solution, µ = 0, as κ is increased), and the point I to a jump from a weakly burning (but
not frozen) solution to a strongly burning one, as κ is decreased. The dashed and dotted
lines meet, forming a cusp, at (κ̄c, εc). Of course εc is the critical value already introduced
in discussing Figure 2, below which µ versus κ̄ is a multivalued function. In fact, (κ̄c, εc)
can be determined using Equation (43) and dκ̄/dµ = d2κ̄/dµ2 = 0, where derivatives
are taken with ε kept fixed. The dashed and dotted lines themselves are determined from
Equation (43) and the relation dκ̄/dµ = 0 which takes the form

ε = A + 1

2y∗
exp

{
l̄(aA + bB) − 2aA

2(a − B)

}

with A = √
πy∗ey2

∗ erfc(y∗) − 1 and B = 2erfc2(y∗)
∫ y∗

0 eu2
du.

In each diagram, four regions are seen to be delimited by the quenching curve and the
dashed and dotted lines. These regions are labelled I, II, III, and IV and contain one, two,
three, and four solutions, respectively, including the frozen solution, µ = 0. In region I,
which lies outside the quenching curve and to the right of the dotted line, only the frozen
solution exists. In region II, which lies inside the quenching curve and outside the cusp
region, we have two solutions, a strongly burning solution and the frozen solutions. In
region III, which lies below the quenching curve and to the left of the dotted line, we
have three solutions, the frozen solution and two burning solutions, the lower of which is
expected to be unstable (this belongs to the middle-branch of the inverse S-shaped curves
in Figure 2). In region IV, which lies inside the cusp and above the quenching curve, we
have four solutions, a strongly burning, a weakly burning, an intermediate (unstable), and
a frozen solution.

The diagrams of Figure 3 show the overall dependence of the solutions of the non-
adiabatic strained twin flame problem on the effective reduced Lewis number l̄. All regions
containing burning solutions (i.e. regions II, III, and IV) decrease in size in the parameter
space κ̄-ε as l̄ is increased; simultaneously the peak of the cusp (κ̄c, εc) moves downwards
and to the left, as does the tip of the quenching curve.

4.3. Large Lewis number cases

In this section, we briefly consider cases corresponding to values of the reduced Lewis
number l̄ larger than the critical value l̄c ≈ 3.04 introduced in (47), for which κ̄max = κ0;
here, as elsewhere in the text, κ̄max designates the maximum of κ̄ on the quenching curve
given by (46). For l̄ ≥ l̄c, the maximum value of κ allowing burning planar solutions to
exist, κ̂max say, is equal to the unstrained planar flame value κ0 rather than κ̄max which is
then smaller. In other words, we have

κ̂max = max

[
2.27 exp

(
−1 − l̄

2

)
, κ0

]
, (48)

an expression valid for all l̄ which may be used to define a flammability limit.
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Combustion Theory and Modelling 451

Figure 4. The burning rate per unit flame area, µ, versus κ̄ for selected values of ε, and three values
of l̄.

Figure 4 shows the dependence of the burning rate µ on κ̄ and ε, for three selected
values of l̄, increasing from top to bottom. The top subfigure corresponding to l̄ = l̄c shows
a behaviour similar to that observed in Figure 2; namely µ versus κ is a multivalued
inverse-S shaped curve for small ε, and a single-valued monotonically decreasing function
for larger values. For larger values of l̄, such as those in the middle and bottom subfigures,
additional inverse-C shaped curves appear for intermediate values of ε. Thus, one may
expect a qualitative change in the bifurcation diagram. This is confirmed in Figure 5 which
is to be compared to Figure 3. The regions labelled I, II, III, and IV, contain one, two, three,
and four solutions, respectively, including the frozen solution. We note that the diagram
consists of four such regions in the top subfigure; this is found to be the case for l̄ < 4.03. For
4.03 < l̄ < 5.15, an additional region with three solutions, including the frozen solution,
exists. This region is labelled III′ in the middle subfigure, and does not appear to have been
identified in the literature. For l̄ > 5.15, as in the lower subfigure, regions III and III′ merge;
in this subfigure region IV, close to the lower part of the quenching curve, is too small to
be observable.
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452 J. Daou

Figure 5. The regions of solutions in the κ̄-ε plane for three values of l̄. The regions labelled I, II,
III, and IV contain one, two, three, and four solutions, respectively, including the frozen solution. The
region labelled III′ contains three solutions, and exists for 4.03 < l̄ < 5.15.

4.4. Comparison with flammability limit studies and final remarks

The results presented above are useful in the context of flammability limit studies, although
not restricted to it. We have in mind more specifically studies carried out in the counterflow
configuration, as in [1–5]. We refer the reader to these publications and the references therein
for a detailed discussion. It should be emphasized here, however, that substantial difficulties
in the interpretation of such results (experimental and numerical) seem to be associated with
the crossing of the various regions of multiplicity of solutions as the physical parameters are
varied. Our bifurcation diagrams presented in Figures 3 and 5 can be helpful in clarifying
these difficulties. They are in fact consistent with those obtained numerically in [2, 4, 5],
where equivalent diagrams have been constructed in a strain-rate versus equivalence-ratio
plane.4 Furthermore, fairly good agreement is found when comparing Figures 6, 8 and 9
of [2], carried out numerically within a one-step irreversible reaction, to our Figure 3, for
example with respect to the dependence of the size of the burning regions and the location
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Combustion Theory and Modelling 453

of the cusp on the Lewis number. Similarly, Figure 9 of [4], and Figures 4, 5, 8, 11 and
16 of [5], obtained numerically within detailed chemistry models, are in good agreement5

with our bifurcation diagrams 3 and 5. Our findings provide, however, additional analytical
understanding, and convenient formulas such as 44 and 45 for the quenching curve, and 48
for the determination of κ̂max, the maximum value of κ allowing burning planar solutions to
exist. These complement the analytical results of [1], which does not contain a classification
and bifurcation diagrams such as those of Figures 3 and 5.

Finally, we remind the reader that the effective parameters l̄ and κ̄ allow the reversibility
of the reaction and the Lewis number of the product to be accounted for, if needed, by using
the simple analytic expressions (38). For example, if lP = 0, which is usually true in the
case of combustion product(s) of typical mixtures such as hydrocarbons, it is seen from
Equation (38) that an increase in the reversibility parameter r decreases the modulus of
the effective Lewis number, whether positive or negative. Thus in a strongly reversible
reaction, l̄ is close to zero, i.e. preferential diffusion effects become negligible. In all cases
reversibility decreases the effective heat-loss coefficient as prescribed by Equation (38).
Other scenarios can be explained in a similar fashion.

5. Conclusions

We have conducted an analytical investigation of the twin planar flames in a counterflow
configuration, accounting for non-adiabatic and non-equidiffusional conditions and the
reversibility of the chemical reaction. The latter has been modelled by a single reversible
reaction whose forward and backward rates are assumed to follow an Arrhenius law. The
study has allowed for non-unit values of the Lewis numbers for both the (deficient) reactant
and the product of combustion. Two main contributions have been made.

As a first contribution, we have identified fundamental differences in the asymptotic
description of the flame between the reversible and irreversible cases, with the main diffi-
culty identified being that the reaction rate ω is O(β−1), rather than exponentially small,
in the burnt gas, when the reversibility parameter r and heat-loss coefficient κ are both
non-zero. The difficulty has been overcome by a suitable generalization of the so-called
near-equidiffusion flame approximation [18, p. 33] to the reversible case, including the
derivation of appropriate jump conditions at the reaction sheet. As a result, we were able
to reduce the analysis of the reversible case to that of the irreversible case by defining an
effective reduced Lewis number and an effective heat-loss parameter l̄ and κ̄ given by (38).
This demonstrates analytically, in this particular important configuration at least, that the
results of the classical one-step irreversible chemistry model extend to one-step reversible
chemistry.

As a second contribution, we have provided a full analytical treatment of planar non-
adiabatic strained flames, complementing the results of [1]. In particular, convenient for-
mulas such as 44 and 45 for the quenching curve, and 48 for the determination of κ̂max, the
maximum value of κ allowing burning planar solutions to exist, have been given. Further-
more, the existence and multiplicity of the solutions encountered has been systematically
discussed by delimiting several regions in two-dimensional strain-rate versus effective heat-
loss diagrams for selected values of the effective reduced Lewis number l̄. For l̄ < 4.03,
the diagram consists of four regions with one, two, three, and four solutions, respectively,
including the frozen solution. For 4.03 < l̄ < 5.15, an additional region with three solu-
tions exists, which does not seem to have been identified in other studies. For larger values
of l̄, the two regions with three solutions merge, and the region with four solutions is of
insignificant size. Our (bifurcation) diagrams were found to be in good agreement with, and
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454 J. Daou

complementary to, numerically determined diagrams in flammability limit studies [2, 4, 5]
based on one-step and detailed chemistry models. Finally, we note that our analytical study
did not address the stability of the stationary solutions described, which will be the sub-
ject of a future investigation; numerical stability studies have, however, been conducted,
e.g. in [4].

Notes
1. See Equation (39) below.
2. To avoid possible confusion, we note that superscripts on the variables yF , yP , θ or any function

of these, such as φ in (11), indicates orders of expansion in terms of the small parameter β−1.
3. The reader who is not interested in reversibility needs only set l̄ = lF and κ̄ = κ .
4. A decreasing equivalence ratio in these references corresponds to an increasing non-dimensional

heat-loss κ̄ in the present paper.
5. Compare in particular the large Lewis number case of Figure 16 of [5] to the bottom subfigure of

Figure 5 of the present paper.
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