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We describe flame propagation between two opposed reactive streams which may differ in their composition
and temperature. A two-dimensional counterflow configuration and an irreversible Arrhenius reaction are
adopted, along with the constant density approximation. Attention is focused on the influence of two
nondimensional parameters. The first one, denoted by g, represents the difference in the enthalpy of the feed
streams. The second one, e, quantifies the ratio between the characteristic chemical time and the strain time.
After a general formulation of the problem, we begin by an analysis of the one-dimensional case consisting of
two parallel planar flames of unequal strength. The flames behavior is described analytically and numerically.
In particular, two extinction regimes are identified: for values of g smaller than a critical value g*, the flames
extinguish by quenching against each other at the stagnation plane; for g . g* they extinguish while at a finite
distance from each other which increases with g. These behaviors are similar to those, known in the literature,
associated with the influence of Lewis numbers on the extinction of twin-flames. We then describe the
propagation of two-dimensional flame fronts along the stagnation line, in a direction perpendicular to the plane
of strain. The flame front is thus curved under the combined effects of the flow field and the transverse enthalpy
gradient in the frozen mixture ahead of it; far behind the state of the gas is that of the pair of flat flames
introduced above. The problem is studied numerically and complemented by an analytical description of the
fast-chemistry situations corresponding to small values of e. In particular we describe, for different fixed values
of g, the evolution of ignition fronts, characterized by a positive propagation speed, to extinction fronts,
characterized by negative speeds, as e is increased. In addition to the marked change in the flame shape, the
most noticeable effect of an increase in g is the decrease in the propagation speed of the flame front. These
effects are associated with the increased front curvature for higher values of g, along with a shift of the front
leading edge towards the stream with higher enthalpy. © 2000 by The Combustion Institute

INTRODUCTION

In combustion applications flames often propa-
gate in combustible mixtures in which the state
of the fresh reactive gas is nonuniform. An
important class of nonuniformities is one asso-
ciated with enthalpy gradients. Such gradients
result from variations in the composition of the
reactants and their temperature. Examples in-
clude flame spread over solid or liquid fuel
surfaces, flame propagation in mixing layers,
deflagration towards or along walls, and ignition
in mixtures with spatially changing equivalence
ratio. Because enthalpy variations directly affect
the flame temperature, their influence on the
rates of the thermally sensitive chemical reac-
tions is considerable, and can have significant

consequences on fuel consumption, flame
quenching, and emission of chemical pollutants.
Therefore, combustion in nonuniform mixtures
is an important problem, both from the funda-
mental and practical viewpoints. The problem,
in general, is complicated since enthalpy gradi-
ents may vary spatially and temporally across
the combustion field, and are typically coupled
to complex fluid flows. In addition, the scales
involved may span a wide spectrum in the
various situations of relevance.

When the compositions in the fresh mixture
vary from lean to rich conditions, such as in
mixing layers of initially nonpremixed reactants
or when holes are created in a diffusion flame, a
tribrachial or triple flame is formed. Such a
flame consists of three branches: a lean pre-
mixed branch, a rich premixed branch, and a
trailing diffusion flame. Early experimental ob-*Corresponding author. E-mail: matalon@nwu.edu
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servation of this structure was made by Phillips
[1], and an early analytical description appears
in Ohki and Tsuge [2]. Over the last 10 years
there has been a strong interest in triple flames
and substantial work on these structures and
their propagation regimes was undertaken by
Dold [3, 4], and others [5–10]. When the fresh
mixture is off-stoichiometric, we are dealing
with premixed systems. It has been shown re-
cently that triple flame like structures, termed
edge-flames by Buckmaster [11], are also possi-
ble in premixed systems [11–14]. In particular,
configurations in which the edge flame is sup-
ported by a counterflow of fresh/fresh or fresh/
inert gas mixture were investigated. Comple-
mentary aspects on premixed edge flames,
including nonunity Lewis number effects, have
been reported in [15]. On the experimental side,
interesting findings on edge-flames, both in
premixed and nonpremixed counterflow situa-
tions, have been presented by Ronney and
coworkers, [10, 16]. They describe, in particular,
stationary edges under spatially varying strain.

It should be noted that in studies of premixed
combustion the effects of nonuniformities in the
mixture’s composition and temperature have
been seldom taken into account. In fact, the
uniformity of the fresh reactive mixture appears
as a common basic assumption in theoretical
work on stretched flames; see, for example, [17,
18]. Investigations accounting for enthalpy gra-
dients exist, however; for example, enthalpy
variations in the direction of flame propagation
are considered in different works mainly related
to the stratified charge combustion engine [19,
20], or to flames approaching walls [21].

The specific problem under consideration is
concerned with the twin-flame counterflow con-
figuration but with the opposed combustible
streams differing in their temperature and com-
position. This provides a simple setting for our
numerical and analytical investigation of the
effects of enthalpy nonuniformities on flame
propagation. Two types of solutions are de-
scribed, corresponding respectively to two-di-
mensional flame-edges propagating in a direc-
tion perpendicular to the plane of strain, and to
the one-dimensional pair of planar flames of
unequal strength which constitute their trailing
branches. The study of the two-dimensional
fronts provides insight, in particular, into the

evolution of ignition fronts, characterized by a
positive propagation speed, and extinction
fronts, characterized by a negative propagation
speed, as argued in [15].

We shall begin by a general formulation in
the frame of the constant density approxima-
tion. The planar-flames case is then addressed,
for which analytical and numerical descriptions
are given. This is followed by the 2D case which
is studied numerically, and analytically in the
fast chemistry limit.

FORMULATION

The configuration under consideration is that of
two opposed streams of the same reactive mix-
ture, differing in their initial composition and
temperature and impinging against each other
as sketched in Fig. 1. We shall adopt the ther-
modiffusive model of constant density and con-
stant transport properties. The flow field is
described by vX 5 0, vY 5 2aY, and vZ 5 aZ,
where a is the strain rate; far to the right along
the X-direction the field supports a pair of

Fig. 1. (a) Twin flames (the thick lines parallel to the
Z-axis) in a counterflow configuration. The flow is two-
dimensional with the Y and Z components given by vY 5
2aY and vZ 5 aZ, where a is the strain rate. (b) A
two-dimensional edge flame; the flame shape is indepen-
dent of Z and the propagation is along the X-axis. The
trailing wings of the edge flame, for large positive X,
coincide with the twin flames depicted in (a).
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planar flames occupying different locations rel-
ative to the stagnation plane, provided that the
strain rate is below an extinction value; far to
the left the mixture is chemically frozen. An
edge flame, consisting of a curved front con-
necting the pair of planar flames, can either
spread by moving in the negative X-direction, or
retract moving in the positive X-direction. The
temperature and composition fields are sought
independent of the Z-coordinate so that a
sketch can be drawn in the (X, Y) plane as in
Fig. 1b. We shall use a frame of reference
attached to the flame so that the profiles are
also time-independent and the velocity field v is
given by v 5 (Ũ, 2aY, aZ), where Ũ is the
propagation speed of the flame front. Ũ will be
positive when the flame advances in the nega-
tive X-direction, corresponding to an ignition
front, and negative for retreating or extinction
fronts.

The combustion will be represented by a
one-step irreversible Arrhenius reaction which
consumes the fuel, considered to be deficient, at
a rate

ṽ 5 rYFB exp~2E/RT!,

where B, YF, E, R represent respectively the
preexponential factor, the mass fraction of fuel,
the activation energy, and the universal gas
constant.

The conservation equations are

Ũ
­YF

­X
2 aY

­YF

­Y
5 DFDYF 2

ṽ

r
(1)

Ũ
­T
­X

2 aY
­T
­Y

5 DTDT 1
q
cp

ṽ

r
,

where DF is the fuel diffusion coefficient, DT

and cp the thermal diffusivity and heat capacity,
and q the heat released per unit mass of fuel.

We shall use the conditions prevailing in the
upper stream, at Y 5 1`, to define a reference
flame speed SL

0 5 =2b22DTB exp(2E/RTad),
and to introduce normalized fuel mass fraction
and temperature by

yF 5
YF

Yu
and u 5

T 2 Tu

Tad 2 Tu

Here Tad [ Tu 1 qYu/cp is the adiabatic flame
temperature, and b [ E(Tad 2 Tu)/RTad

2 the

Zeldovich number. The expression of SL
0 corre-

sponds to the asymptotic approximation for
b .. 1 of the burning speed of a planar flame
with the Lewis number, Le 5 DT/DF, equal to
unity.

When SL
0 is selected as a unit speed, and the

convective-diffusive thickness L 5 =2DT/a as
a unit length, the governing equations can be
written as

U
­ yF

­ x
2 2ey

­ yF

­ y
5

e

LeF
DyF 2 e21v

(2)

U
­u

­ x
2 2ey

­u

­ y
5 eDu 1 e21v

Here

e ;
lFl
0

L
5

lFl
0

Î2DT/a
(3)

is the ratio of the premixed flame thickness,
lFl
0 5 DT/SL

0 , to the reference length L; it is
related to the Damköhler number, Da, by e22 5
Da if Da is defined as the ratio of the flow time,
2a21, to the chemical reaction time lFl

0 2/DT.
The scaled propagation speed U 5 Ũ/SL

0 is an
eigenvalue, and its determination is the goal of
the analysis. The nondimensional reaction rate
v is given by

v 5
b2

2
yF expH b~u 2 1!

1 1 ah~u 2 1!J , (4)

where ah [ (Tad 2 Tu)/Tad is the heat-release
parameter.

The boundary conditions are

u 5 0, yF 5 1 as y3 `
(5)

u 5 2DT, yF 5 1 2 DF as y3 2`

corresponding to the conditions in the feed
streams,

yF 5 1 2
DF

2
erfc~ yÎLeF!,

(6)

u 5 2
DT

2
erfc~ y! for x3 2`

corresponding to the frozen conditions, and

­ yF

­ x
5

­u

­ x
5 0 for x3 ` (7)
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since the profiles are expected to be x-indepen-
dent far downstream. The parameters DF and
DT are defined by

DF 5
Yu 2 Yu

2

Yu
and DT 5

Tu 2 Tu
2

qYu/cp
(8)

At this stage, the problem formulation is com-
plete and is suitable for a numerical treatment
in which b is finite, such as the one to be given
later.

Before addressing the propagating edge-
flame problem, which corresponds to solutions
of the two-dimensional problem we have just
formulated, we shall give an analytic description
of their trailing wings which far downstream
constitute a pair of flat flames independent of x.
The analytic predictions, valid in the asymptotic
limit b3 `, will be followed by the presentation
of numerical calculations with finite b. Of
course, the one-dimensional study under con-
sideration is interesting by itself, since it depicts
the interaction between two flat flames pushed
against each other by a counterflow with differ-
ent feed conditions.

THE PLANAR FLAME FRONTS

In this section we consider the limit

b3 ` while e, gF, gu , O~1! (9)

Here the parameters lF, gF and gu are defined
by

lF 5 b~LeF 2 1!, gF 5 bDF and gu 5 bDT

(10)

A reformulation of the problem in terms of the
leading order temperature, u0, and the excess
enthalpy h 5 u1 1 yF

1 is then possible [22],
where superscripts indicate orders of expan-
sions in terms of b21.

More precisely, since b 3 `, the reaction is
confined to a pair of infinitely thin sheets on
either side of which the equations

d2u0

d y2 1 2y
du0

d y
5 0

(11)
d2h
d y2 1 2y

dh
d y

5 2lF

d2u0

d y2 ,

must be satisfied along with the boundary con-
ditions

u0 5 0, h 5 0 as y3 `
(12)

u0 5 0, h 5 2g as y3 2`

Note that in the distinguished limit considered,
the differences in the composition and temper-
ature of the incoming streams are expressed by
a single parameter

g 5 gF 1 gu, (13)

which is positive, since we assume that the
enthalpy of the upper stream is larger than that
of the lower stream.

Finally at the reaction sheets, whose locations
are denoted by ym and yp with yp . ym, the
jump conditions to be satisfied are:

@u0# 5 @h# 5 0

(14)
2

1
lF
Fdh

d yG 5 Fdu0

d y G 5 2e21es/ 2

Here s stands for the perturbations in the
flames temperature, sm [ h( ym) and sp [
h( yp). The squared bracket applied to any
quantity denotes the jump; namely the value of
this quantity at the burnt-gas side of the sheet
minus its value at the unburnt side. The loca-
tions ym and yp are to be determined in terms of
e, g, and lF, along with the corresponding
burning rates per unit flame surface. The burn-
ing rates are given by mm 5 exp(sm/ 2) and
mp 5 exp(sp/ 2). Using the boundary condi-
tions (12) and the continuity of u0 and h across
the reaction zones, solutions in the different
regions delimited by the flames are given as
follows.

Upper region ( yp , y):

u0 5
erfc~ y!

erfc~ yp!

h 5 sp

erfc~ y!

erfc~ yp!

1 lF

ye2y2

erfc~ yp! 2 ype2yp
2

erfc~ y!

Îp erfc2~ yp!
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Intermediate region ( ym , y , yp):

u0 5 1

h 5
sp$erf~y! 2 erf~ym!% 2 sm$erf~y! 2 erf~yp!%

erf~yp! 2 erf~ym!

Lower region ( y , ym):

u0 5
1 1 erf~ y!

1 1 erf~ ym!

h 5 ~sm 1 g!
1 1 erf~y!

1 1 erf~ym!

1 lF
ym$1 1 erf~y!%e2ym

2

2 $1 1 erf~ym!%ye2y2

Îp $1 1 erf~ym!%2

The jump conditions then yield

sp 5 2
~sp 2 sm! erfc~ yp!

erf~ yp! 2 erf~ ym!

2
lF

2 H1 1 2yp
2 2

2ype2yp
2

Îp erfc~ yp!
J

e 5
Îp

2
erfc~ yp! exp~ yp

2 1 sp/ 2!

(15)

sm 5 2g 1
~sp 2 sm!~1 1 erf~ ym!

erf~ yp! 2 erf~ ym!

2
lF

2 H1 1 2ym
2 1

2yme2ym
2

Îp $1 1 erf~ ym!%
J

e 5
Îp

2
$1 1 erf~ ym!% exp~ ym

2 1 sm/ 2!

Solutions to the system of Equations 15 are
simply determined in the two special cases
corresponding to (i) g 5 0 and (ii) lF 5 0. In the
former case, Lewis number effects can be stud-
ied in the symmetrical situation of twin-flames
and could be found in the literature [22–24]. In
the latter case, with which we shall be con-
cerned, the role of unequal feed enthalpies can
be investigated in the absence of differential
diffusion.

The starting point for the discussion below is
the system of equations

sp 5 2
g

2
erfc~ yp!

e 5
Îp

2
erfc~ yp! exp~ yp

2 1 sp/ 2!

(16)

sm 5 2
g

2
erfc~ ym!

e 5
Îp

2
$1 1 erf~ ym!% exp~ ym

2 1 sm/ 2!,

obtained after simple manipulations from (15)
when lF 5 0. The first two equations in (16) can
be viewed as a parametric representation
{sp( yp), e( yp)} for the perturbation in the
upper flame temperature sp as a function of e.
This yields a plot of the burning rate mp 5
exp(sp/ 2) versus e. Similarly the last two equa-
tions provide a plot of sm and the burning rate
mm 5 exp(sm/ 2) of the lower flame versus e. In
these parametric plots, the domain of variation
of the parameters ym and yp, representing the
locations of the lower and upper flame, respec-
tively, is of course restricted by the obvious
requirement that ym # yp. The preceding in-
equality is strict, except if both yp and ym are
equal to zero. In other words, the only location
where the flames can touch, if any, is at the
stagnation plane. This follows from (16), since
the condition sm 5 sp, expressing the equality
of the flames temperatures, must be satisfied
along with the condition ym 5 yp if the flames
are to merge. It may be useful to point out that
the preceding conclusions are drawn in the limit
b3 `, for which the meaning and the locations
of the reaction sheets are well defined. Never-
theless, the results to be derived in this limit,
such as those concerning extinction given later,
will still provide good approximations in situa-
tions where b is finite but sufficiently large, as
we shall verify using numerical calculations. We
also note, for later reference, that as e 3 0 we
have

sp3 0 and yp ,
1
2e

(17)

sm3 0 and ym , 2
1
2e

e2g/ 2
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Our presentation of the results begins with
Figs. 2 and 3, where the burning rates (mm, mp),
and the flame locations, ( ym, yp), are plotted
versus e for three values of g. For g 5 0, the
twin-flames are located symmetrically as ex-
pected, that is ym 5 2yp. Their burning rates
are equal, mm 5 mp; in fact they are equal to
unity in this particular case where both g and lF

are zero. As e increases, the twin-flames ap-
proach each other until their reaction sheets
meet at the stagnation plane, y 5 0. This
happens at a value of e beyond which no
(burning) solution exists, and which may thus be
identified with extinction. The trend is similar
for g 5 2, except that the flames are now
asymmetrical; the upper flame being stronger
than the lower one. Despite this asymmetry the
flames eventually touch at y 5 0 as e is in-
creased. In contrast, for g larger than a critical
value g*, a turning point appears in the curve of
yp (or mp) vs. e, as illustrated for g 5 5. Beyond
the value of e corresponding to the turning
point, no burning solutions exist, so that this
value may be used to define extinction. The
critical conditions where turning points first
appear in the yp 2 e curve can be determined
from the conditions

de

d yp
5

d2e

d yp
2 5 0

Equations 16 imply that this happens for g 5 g*
with

g* 5 4/erfc~ y*p! 2 4Îp exp~ y*p
2!,

where y*p is the root of

~1 1 2y*p
2! erfc~ y*p

2! 2
2
p

exp~22y*p
2! 5 0.

The following numerical values are found: g* 5
3.6306, e* 5 0.3539, y*p 5 0.3003, and y*m 5
20.005.

At this point, the one-dimensional asymptotic
results may be summarized as follows:

1. For g , g*, initially distant flames will
approach each other as e (or the strain rate)
is increased, until they merge at the stagna-
tion plane. The condition yp 5 ym 5 0, when
substituted in (16), defines a value of e, eext

say, beyond which no (steady strongly burn-
ing) solution exists. This extinction value is
given by

eext 5
Îp

2
expS2g

4 D ~g , g*! (18)

Although, strictly speaking, the asymptotic
structure of the merged reaction zones need
to be reconsidered, it is clear that extinction

Fig. 2. The burning rates mm (dashed lines) and mp (solid
lines) corresponding to the lower and upper flames, respec-
tively, for three values of g.

Fig. 3. The reaction-sheet locations ym (dashed lines) and
yp (solid lines) corresponding to the lower and upper flame,
respectively, for three values of g, as in Fig. 2.
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is associated here with quenching by incom-
plete combustion.

2. For g . g*, similar behavior occurs as e is
increased, but steady strongly burning solu-
tions cease to exist while the flames are at a
finite distance from each other, and typically,
both in the upper side of the stagnation
plane, yp . ym . 0. The mechanism for
extinction here is associated with significant
heat being lost from the upper (stronger)
flame to sustain the lower flame. Extinction
corresponds to e 5 eext identified by the
turning point in the plot of yp vs. e, where
de/d yp 5 0. This condition, along with the
first two equations in (16) allows the deter-
mination of eext and its dependence on g.
This dependence is obtained in a parametric
form {eext( yp), g( yp)}, where the parameter
yp varies in the interval [ y*p, `).

Based on the preceding discussion, a plot of
eext vs. g is given in Fig. 4. There is a clear
distinction at g 5 g* between the two extinction
regimes; the rate of decrease of eext with respect
to g is much smaller when g . g*. This change
appears clearly in Fig. 5, where the location of
the upper flame, yp, and of the lower, ym, are
plotted vs. g just prior to extinction. Both
locations are equal to zero for g , g*, while the
distance between them is finite and increases
with g for g . g*.

The results thus far were obtained in the
asymptotic limit of large activation energy. We
now present results for finite values of b. To this
end, the one-dimensional equations obtained
from (2) by discarding partial derivatives with
respect to x are solved numerically with the
Arrhenius rate chemistry (4), subject to the
boundary conditions (5). In order to relate the
numerical results with the asymptotic ones, the
parameters LeF and DT are assigned the values
one and zero respectively, and results are pre-
sented in terms of e and g 5 gF 5 bDF. Shown
in Fig. 6 is a sequence of temperature and
reaction rate profiles, corresponding to b 5 8,
g 5 1, and to three values of e increasing from
top to bottom. It is seen that as the flames
approach each other, the stronger flame weak-
ens by supporting the other, initially weaker
flame. The two clearly distinguished reaction
zones merge near the stagnation plane, as e
approaches the value indicated on the bottom
subfigure, and extinguish for a slightly larger
value. Figure 7 is similar, except that here g 5 5.
Extinction now occurs for a value of e, slightly
larger than that of the last subfigure, but with-
out merging of the reaction zones at the stag-
nation plane. These conclusions are clearly in
agreement with the asymptotic results.

Extinction curves similar to the one presented

Fig. 4. The value of e at extinction, eext, versus g (solid line).
Fig. 5. Locations of the lower and upper flames, ym and yp,
respectively, versus g just prior to extinction. Both locations
are equal to zero for g , g*.
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in Fig. 4 for b 3 ` are plotted in Fig. 8 for
b 5 8 and b 5 20. The solid line in this figure
represents the infinite b predictions. It is seen
that the trend of the asymptotic results is well
reproduced by the numerical calculations, and
that the quantitative agreement is improved
as b is increased. An additional curve is
included in this figure, corresponding to the
calculations with b 5 20 but with eext normal-
ized by its value at g 5 0; the initial decrease
clearly reproduces the exponential law given
in (18).

THE EDGE-FLAME

In this section we describe the two-dimensional
edge-flame, whose flat trailing wings far down-
stream have been the object of the last section.
We shall begin by the general case where e is
allowed to vary from moderately small up to
the extinction values of the planar structure.

The corresponding study is carried out nu-
merically for an Arrhenius chemistry and ad-
dresses the influence of g and e on the
propagation speed, U, and on the flame shape.
This is followed by an analytical description of
the numerically difficult small-e cases where
the flame, consisting of the preheat and reac-
tion zones, could be considered thin, say on
the scale of its local radius of curvature.

The numerical results presented here are
based on Eqs. 2 and boundary conditions (6)
and (7). They describe two-dimensional flame
fronts which for U . 0 propagate in the
negative x-direction, with velocity U. The dis-
cretized steady equations are obtained by a
finite-volume approach and solved using a mul-
tigrid method [25]. The eigenvalue U is updated
iteratively so that the flame front remains fixed
at x 5 0. The numerical grid is rectangular with
typically 300 3 300 gridpoints distributed non-
uniformly over the computational domain. The
extent of the latter is 100e in the x-direction and

Fig. 6. Temperature (solid-line) and reaction rate profiles
(dashed-line), corresponding to b 5 8, g 5 1, and to three
values of e. The flames approach each other as e is in-
creased, until they merge near the stagnation plane. For a
value of e slightly larger than that of the bottom subfigure,
the flames extinguish.

Fig. 7. Similar to Fig. 6, except that g 5 5. Here, extinction
occurs, for a value of g slightly larger than that of the
bottom subfigure, with the reaction zones being away from
the stagnation plane.
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10 in the y-direction. Note that distances are
expressed in terms of the diffusion length L 5
=2DT/a. The results are presented for b 5 8,
Le 5 1, ah 5 0.85, and DT 5 0. The focus is
on the influence of the parameters g 5 bDF

and e. Nonunity Lewis number effects in the
symmetrical case, DF 5 DT 5 0, can be found
in [15].

The dependence of the flame shape on e and
g is summarized in Figs 9, 10, and 11, corre-
sponding respectively to g 5 0, 1.5, and 5. In
each figure, temperature contours are plotted
on the left corresponding to increasing values of
e from top to bottom; the corresponding reac-
tion rate contours are plotted on the right. We
observe that by increasing e the propagation
velocity U varies from a positive value close to
unity through zero and then becomes signifi-
cantly negative. The variation of U from positive
to negative, corresponding to flame fronts
changing from ignition waves propagating in the
negative x-direction to extinction waves propa-
gating in the positive x-direction, have been
found possible for all the values of g considered.
Similar conclusions have been drawn previously
in studies of edge flames [11, 14, 15], except
when the Lewis numbers were too small. In this
latter case, the possibility of having steadily

retreating extinction fronts is typically sup-
pressed. The figures also show that an increase
in the value of g changes the flame from a
symmetrical tongue-shaped to a hook-shaped
form. This is accompanied by (i) an increase of
the front curvature and (ii) a shift of the leading
edge away from the stagnation plane. These two
effects, leading to a decrease in propagation
speed will be also revealed in the asymptotic
small-e study given below. In Fig. 12 the prop-
agation speed U is plotted versus (the square
root of the strain rate) e for selected values of g.
The graph clearly identifies regions where the
edge flame advances (U . 0) from regions
where it retracts (U , 0). For small e, the flame

Fig. 8. The value of e at extinction, eext, versus g for the two
values b 5 8 and b 5 20. The solid line is the asymptotic
result of Fig. 4. An additional curve corresponding to b 5 20
is included but with eext normalized by it value at g 5 0.

Fig. 9. Temperature and reaction rate contours for the
three cases corresponding to g 5 0 and, from top to bottom,
to increasing values of e as indicated. Each of the left
subfigures represents three temperature isocontours distrib-
uted between zero and the maximum temperature, umax.
Each of the right subfigures represents four reaction-rate
isocontours distributed between zero and the maximum
value, vmax. Depending on e the front evolves from an
ignition front, U . 0, to an extinction front, U , 0 (from
top to bottom). The values of other parameters are lF 5 0,
b 5 8, and ah 5 0.85.
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always propagates forwards at a speed near the
laminar flame speed. As e increases the flame
slows down and eventually moves backwards
until it extinguishes at e 5 eext — the value of e
furthest to the right for each curve. The range of
e for which burning is possible reduces with
increasing g. For small g the extinction fronts
(U , 0) travel at significant speeds, of the
magnitude of the laminar flame speed, or
higher. For larger values of g extinction fronts
are also possible but their speed is relatively
low.1

For small e, it is possible to derive an analyt-
ical approximate solution for the shape and
speed of the edge flame. The methodology
follows that detailed in Matalon and Matkowsky
[18]. We start with the large activation energy
formulation in the limit expressed in (9), result-
ing in the equations

U
­u0

­ x
2 2ey

­u0

­ y
5 eDu0

(19)

U
­h
­ x

2 2ey
­h
­ y

5 eDh 1 elFDu0,

that must be satisfied on either side of the
reaction sheet. Here u0 is the leading order
temperature (in an expansion in terms of b21)
and h is the enthalpy perturbation defined in
this section as h 5 u1 1 yF

1 2 g

2 erfc ( y). Note
that h thus defined appears as the excess en-
thalpy u1 1 yF

1 from which we have subtracted
its (frozen) value at x 5 2`. The boundary
conditions are

u0 5 h 5 0 as x3 2` or uyu3 ` (20)

­u0

­ x
5

­h
­ x

5 0 as x3 ` (21)

Finally, the jump conditions that must be satis-
fied across the reaction sheet are

1Note that we have also included in the left of Fig. 12 three
plots of U vs. e according to the asymptotic expressions to be
derived below.

Fig. 10. Same as Fig. 9, but with g 5 1.5. Fig. 11. Same as Fig. 9, but with g 5 5.
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@u0# 5 @h# 5 0
(22)

2
1
lF
F­h

­nG 5 F­u0

­n G 5 2e21S0
2es/ 2

where S0 5 exp{2g/4 erfc( y)}, n a coordinate
along the normal to the reaction sheet increas-
ing from the unburnt side to the burnt side, and
s the value of h at the reaction sheet.

The asymptotic treatment for small e neces-
sitates analysis of the preceding problem both
on the scale L 5 =2DT/a, used as unit length
up to now, and on the scale L/e ; SL

0 /a which
represents the standoff distance between the
planar wings. However, as we shall see, the
results based on the latter scale, i.e., for order
unity values of the scaled coordinates x̃ 5 ex
and ỹ 5 ey, allow one to obtain a uniformly
valid description of the flame front. Hence, for
simplicity, the derivation below will be pre-
sented in terms of the coordinates ( x̃, ỹ). On
either scale, diffusion effects are small except in
a thin flame zone which coincides with the
reaction sheet x̃ 5 f( ỹ) as e 3 0. In the outer
regions, on both sides of the flame, we have

u0 5 H0
1 h 5 H 0 for x̃ , f~ ỹ!

s for x̃ . f~ ỹ! (23)

which are also the matching conditions for the
inner solutions that we shall construct next. We
note that a unit normal vector to the flame
(pointing to the burnt gas) is given by

n 5
i 2 f9~ ỹ!j

Î1 1 f9~ ỹ!2 ,

so that the flame speed, defined as usual relative
to the fresh mixture, is given by

Sf 5 ~Ui 2 2ỹj! z n 5
U 1 2ỹf9~ ỹ!

Î1 1 f9~ ỹ!2 (24)

We introduce a coordinate system attached to
the flame, stretched appropriately, by writing

z 5 $ x̃ 2 f~ ỹ!%e22, ỹ 5 ỹ,

so that z 5 0 represents the reaction sheet. We
then introduce expansions in the form

f 5 f0 1 e2f1 1 . . . ,

U 5 U0 1 e2U1 1 . . . ,

s 5 s0 1 e2s1 1 . . .

and similar expressions for u0 and h. Note that
S0 is regarded as an arbitrary O(1) function; its

Fig. 12. Propagation speed
U versus e for several values
of g. U has been normalized
by the planar (unstretched)
flame speed corresponding
to a uniform mixture, g 5 0.
For each g, the upper
bound for the existence of
the 2D fronts is eext, the
extinction value of the pair
of flat flames given in Fig. 8
(and corresponding to b 5
8). The curves for small e
(originating from the point
[e 5 0, U 5 1]) are based
on the asymptotic results.
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actual form will be reinstated after the final
expansions have been obtained. We proceed
now in solving for u0, h0, u1, and h1. To leading
order we have

~U0 1 2ỹf90!
­u0

­z
2 ~1 1 f90

2!
­2u0

­z2 5 0
(25)

~U0 1 2ỹf90!
­h0

­z
2 ~1 1 f90

2!
­2h0

­z2

5 lF~1 1 f90
2!

­2u0

­z2

Consequently, u0 and h0 are given by

u0 5 H exp~az! for z , 0
1 for z . 0

(26)

h0 5 H 2alFz exp~az! for z , 0
s0 5 0 for z . 0

with a 5 (U0 1 2ỹf90)/(1 1 f90
2), so as to be

continuous at z 5 0 and satisfy the matching
requirement (23) as uzu 3 `. The remaining
jump relations provide the flame speed as Sf 0 5
S0. Thus, to leading order, the flame speed is
locally the speed of a planar flame at the
conditions prevailing at ỹ.

In the next approximation we have to solve

~U0 1 2ỹf90!
­u1

­z
2 ~1 1 f90

2!
­2u1

­z2

5 +~u0! 2 ~U1 1 2ỹf91!
­u0

­z
1 2ỹ

­u0

­ ỹ
(27)

~U0 1 2ỹf90!
­h1

­z
2 ~1 1 f90

2!
­2h1

­z2

5 +~h0 1 lFu0! 2 ~U1 1 2ỹf91!
­h0

­z

1 lF~1 1 f90
2!

­2u1

­z2 1 2ỹ
­h0

­ ỹ

where the operator + is defined by

+ ; 2f90f91
­2

­z2 2 f 00
­

­z
2 2f90

­2

­ ỹ­z

For u1 and h1 to be bounded and match the
outer solution (23), we must have

u1 5 0 and h1 5 s1 for z $ 0 (28)

Integration of (27) from z 5 2` to z 5 02 yields

~1 1 f90
2!F­u1

­z G 5 Iu 2 ~U1 1 2ỹf91! 2 2ỹ
a9

a2

~U0 1 2ỹf90!s1 1 ~1 1 f90
2! F­h1

­z G (29)

5 2lF~1 1 f90
2! F­u1

­z G
1 Ih 1 lFIu 2 2ỹ

a9

a2 lF

Here a9 is the derivative of a with respect to ỹ
and the quantities Iu and Ih are given by

Iu 5 E
2`

0

+~u0! dz 5 2~U0 1 2ỹf90!
f90f91

1 1 f90
2 2 f00

Ih 5 E
2`

0

+~h0! dz 5 22lF~U0 1 2ỹf90!
f90f91

1 1 f90
2

When these expressions are substituted in Eqs.
29, and use is made of the jump conditions, we
obtain

~U0 1 2ỹf90!s1 5 2lFS f 00 1 2ỹ
a9

a2D
~U0 1 2ỹf90!

f90f91
1 1 f90

2 2 ~U1 1 2ỹf91! 5

S1 1
lF

2 DS f 00 1 2ỹ
a9

a2D , (30)

which determine s1 and Sf 1. Combining these
with the leading order results we obtain after
some manipulations

Sf , S0F1 2 S1 1
lF

2 DS U0f 00
1 1 f90

2 1 2ỹ
S90
S0
D e2

S0
2G

(31)
for the flame speed and

uF , 1 1
ln S0

2

b
2

lF

b
S U0f 00

1 1 f90
2 1 2ỹ

S90
S0
De2 (32)

for the flame temperature.
In the homogeneous case corresponding to

g 5 0 we have S0 5 1, so that (31) leads after
using (24) to
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U0 1 2ỹf90
Î1 1 f90

2 5 1.

By applying this relation at the leading edge,
located at ỹ 5 0 by symmetry, we obtain U0 5
1; hence

f90 5
4ỹ

1 2 4ỹ2 and f0 5 2
1
2

ln~1 2 4ỹ2!

(see Fig. 13). Then by reusing (31), the correc-
tion due to stretch can be computed yielding

Sf 5 1 2 4e2S1 1
lF

2 D /~1 1 4ỹ2! and

U 5 1 2 4e2S1 1
lF

2 D ,

as found in [20].
To determine the propagation speed U in the

nonhomogeneous case we analyze the relation
(31). We note that viewed on the ỹ-scale, S0 is a
piecewise constant function with a sharp transi-
tion near ỹ ' 0, more properly described on the
y-scale. It could be verified however that, when
expressed in terms of y, Eq. 33 provides a
uniformly valid description of the flame front.
To leading order we thus have

U0 1 2eyf90
Î1 1 f90

2 5 S0, S0 5 expH2
g

4
erfc~ y!J

(33)

which is an algebraic equation for the flame
slope f90,

~S0
2 2 4e2y2! f90

2 2 4eyU0f90 1 ~S0
2 2 U0

2! 5 0,

(34)
the roots of which are

f90 5
2eyU0 6 ÎD

S0
2 2 4e2y2 , (35)

D 5 ~U0
2 1 4e2y2 2 S0

2!S0
2

There are two locations where the slope be-
comes infinite and the flame front horizontal:

~1! as y3 yp ;
1
2e

f90 5
2eyU0 1 ÎD

S0
2 2 4e2y2 3 1`

~2! as y3 ym ; 2
e2g/ 2

2e

f90 5
2eyU0 2 ÎD

S0
2 2 4e2y2 3 2`

The edge-flame asymptotes far downstream to
the positions yp and ym identified previously as
the locations of the planar fronts in the limit
e3 0; see Eqs. 17. The flame front is therefore
described by one or the other root of (34)
connected smoothly at some location, say yS.
The requirement that f90 and f 00 are continuous
at yS implies that

U0
2 1 4e2yS

2 2 S0
2~ yS! 5 0 and

dS0
2

d y
U

y5yS

5 8e2yS

(36)

hence

e2 5
g

8Îp

exp~2yS
2!

yS
expH2

g

2
erfc~ yS!J

(37)

U0
2 5 expH2

g

2
erfc~ yS!J 2 4e2yS

2

These last two equations could be viewed, for
fixed g, as a parametric representation of the
form {e( yS), U0( yS)}. Thus, for any given g
and e, a unique solution (U0, yS) is found,
provided that e is sufficiently small. For illustra-
tion, Fig. 13 depicts the flame shape for e 5 0.1
and for three values of g. This is done by
integration of (35), after using (36) to deter-

Fig. 13. Flame shape for e 5 0.1 and for three values of g,
based on the asymptotic expression (35).
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mine U0 and yS. From (37) one obtains for e3
0

yS
2 ,

1
2

LS g2

32pe4D ,
(38)

U0
2 , 1 2 2e2LS g2

32pe4D for e3 0,

where L is a slowly increasing function defined
by L(u) exp(L(u)) 5 u. L(u) is often known as
the Lambert W function; it satisfies L(0) 5 0
and L(u) ; ln(u) as u 3 `. An important
quantity to be used below is the location of the
leading edge of the flame, say yN. In first
approximation, it is defined as the location
where f90 is zero, namely by S0( yN) 5 U0, so
that

yN 5 erfc21H24 ln~U0!

g J (39)

Note that the preceding equation implies
that for finite g the leading edge is located far
from the stagnation plane (more precisely, we
have yN 3 ` but ỹN 3 0 for e 3 0). Also, the
flame curvature at the leading edge is found
to be

f 00~ ỹN! 5
g

4Îp

exp~2yN
2 !

yN
U0 , LS g2

32pe4D
(40)

The propagation speed U could now be calcu-
lated using (31) leading to the approximation:

U , H1 2 2e2LS g2

32pe4DJ
1 S1 1

lF

2 De2LS g2

32pe4D
The deviation of U from one included in the
curly bracket translates the fact that the edge is
located in a region where the mixture enthalpy
is slightly less than its value at infinity. The
following term accounts for flame curvature and
differential diffusion. Thus, an increase in g
affects U by shifting the location of the flame
leading edge away from the stagnation plane
and by increasing flame curvature. For small e,
these two effects are of the same order of
magnitude.

CONCLUSION

We have studied in the counterflow configura-
tion the effect of unequal feed conditions on
flame propagation. The opposed fresh streams
consisted of an off-stoichiometric combustible
mixture with unequal enthalpies. In the result-
ing nonuniform mixture, we have addressed two
particular types of burning solutions. The first
type corresponds to a pair of flat flames of
unequal strength squeezed against each other
by the flow. Their coupled behavior has been
described analytically and numerically under
intense burning conditions up to near-extinction
conditions. Special attention has been devoted
to the dependence of the extinction regimes on
the difference in the feed conditions. The sec-
ond type corresponds to a (two-dimensional)
edge-flame propagating transversely to the
plane of the flow. These fronts have been de-
scribed numerically for different degrees of
nonuniformity in the enthalpy and under a wide
range of flow conditions. In particular, the
variation of their propagation speeds from pos-
itive to negative in terms of the strain rate has
been determined. For small values of the strain
rate an analytical description has been provided
which complements the numerical findings.

This work has been partially supported by the
National Science Foundation under Grants
CTS9521022 and DMS9703716.
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9. Daou, J., and Liñán, A., Combust. Theory Modelling
2:449–477 (1998).

10. Shay, M. L., and Ronney, P. D., Combust. Flame
112:171 (1998).

11. Buckmaster, J., Combust. Sci. Technol. 115:41 (1996).
12. Vedarajan, T. G., and Buckmaster, J. D., Combust.

Flame 114:267 (1998).
13. Vedarajan, T. G., Buckmaster, J. D., and Ronney, P.,

Twenty-Seventh Symposium (International) on Combus-
tion, The Combustion Institute, Pittsburgh, 1999.

14. Buckmaster, J., and Short, M., Combust. Theory Mod-
elling 3:199–214 (1999).
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