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ABSTRACT

This paper investigates the theoretical implications of applying Darcy’s law to premixed flames, a topic of growing interest in research on
flame propagation in porous media and confined geometries. A multiple-scale analysis is carried out treating the flame as a hydrodynamic
discontinuity in density, viscosity, and permeability. The analysis accounts in particular for the inner structure of the flame. A simple model
is derived allowing the original conservation equations to be replaced by Laplace’s equation for pressure, applicable on both sides of the flame
front, subject to specific conditions across the front. Such model is useful for investigating general problems under confinement including
flame instabilities in porous media or Hele-Shaw channels. In this context, two Markstein numbers are identified, for which explicit expres-
sions are provided. In particular, our analysis reveals novel contributions to the local propagation speed arising from discontinuities in the
tangential components of velocity and gravitational force, which are permissible in Darcy’s flows to leading order, but not in flows obeying
Euler or Navier–Stokes equations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0248749

I. INTRODUCTION

The study of flame propagation in porous media and narrow con-
fined geometries, such as Hele-Shaw cells, is an active research area.1–5

One key distinction between normal flames and flames in strongly con-
fined media lies in their hydrodynamic behavior. In porous media, fluid
dynamics is primarily governed by Darcy’s law and so is the case in
slender Hele-Shaw cells. Several recent numerical investigations have
successfully employed Darcy’s law to characterize flame propagation in
Hele-Shaw cells, under the assumption of near-adiabatic walls.3,6–8

A fundamental question remains however: What are the theoreti-
cal implications of applying Darcy’s law to premixed flames? A recent
study by Daou and Rajamanickam9 addressed this question by treating
the flame as a hydrodynamic discontinuity and investigating its insta-
bilities. The study builds upon earlier research by Joulin and
Sivashinsky10 and Miroshnichenko et al.,11 which utilized the so-called
Euler–Darcy model. Despite these advancements, a comprehensive
theoretical description of premixed flames under Darcy’s law, account-
ing for their internal structure, remains an open problem. This paper
is dedicated to addressing this challenging problem.

The classical hydrodynamic theory of premixed flames, based on
the Navier–Stokes equations, was developed in pioneering

contributions by Sivashinsky,12 Clavin and Williams,13 Pelce and
Clavin,14 Matalon and Matkowsky,15 and Clavin and Joulin.16

Notably, the latter two studies presented comprehensive theories that
accounted for finite-amplitude flame wrinkling. Subsequent research
has extended this theory to various contexts.16–24

In this paper, we embark on a theoretical analysis of premixed
flames assumed to be governed by Darcy’s law, an assumption which
is motivated by asymptotic analyses in the narrow channel limit.3,7,9

One of our main aims is to understand the hydrodynamic aspects of
confinement on flame propagation, which are poorly understood. To
isolate and highlight these aspects, intimately related to Darcy’s law,
we consider a simplified configuration involving an equidiffusive react-
ing mixture (unity Lewis number) and neglect heat-loss effects. As we
shall see, our study will result in the derivation of a simplified hydrody-
namic model for flame propagation, involving specific jump condi-
tions across the flame front and explicit formulas for the so-called
Markstein numbers, characterizing the local propagation speed. The
study will also reveal novel contributions to the local propagation
speed arising from leading-order tangential discontinuities in the
velocity and the gravitational force, which are not present in conven-
tional flame theory.

Phys. Fluids 36, 123620 (2024); doi: 10.1063/5.0248749 36, 123620-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 10 January 2025 09:44:46

https://doi.org/10.1063/5.0248749
https://doi.org/10.1063/5.0248749
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0248749
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0248749&domain=pdf&date_stamp=2024-12-12
https://orcid.org/0000-0003-1240-0362
https://orcid.org/0000-0002-7793-1765
mailto:joel.daou@manchester.ac.uk
https://doi.org/10.1063/5.0248749
pubs.aip.org/aip/phf


II. PROBLEM FORMULATION

Consider a premixed flame propagating through an unburnt gas
mixture containing a deficient reactant. This mixture possesses con-
stant values of density qu, viscosity lu, permeability ju, and thermal
diffusivity Du. Similarly, the burnt gas mixture behind the flame is
characterized by constant properties, qb, lb, jb, and Db. For Hele-
Shaw channels, ju ¼ jb ¼ h2=12, where h is the channel width. We
assume that the characteristic length scale, L, of flame wrinkling is sig-
nificantly larger than the flame thickness dL ¼ Du=SL, where SL repre-
sents the planar, laminar flame speed with respect to the unburnt gas.
Our theoretical framework is based on a small expansion parameter, e,
defined as

e ¼ dL
L

� 1: (1)

For convenience, we non-dimensionalize physical quantities using
L as the length scale, L=SL as the time scale, SL as the velocity scale,
and luDu=eju as the pressure scale. As previously mentioned, the
Lewis number of the reacting mixture will be assumed equal to one,
and heat-loss effects will be ignored. Under these conditions, the
mass fraction Y of the reactant is related to the temperature T by
Y=Yu ¼ 1� ðT=Tu � 1Þ=q, where q defines the flame temperature
by the relation Tb ¼ Tuð1þ qÞ. All physical properties of the fluid are
non-dimensionalized using their respective values on the unburnt gas
mixture, and the non-dimensional temperature h is defined by
h ¼ ðT � TuÞ=qTu such that it approaches zero in the unburnt gas
and unity in the burnt gas. A schematic illustration of the premixed
flame, in non-dimensional units, is depicted in Fig. 1.

Let us introduce the familiar G-equation25

q
@G
@t

þ v � rG

� �
¼ _mjrGj; (2)

which involves _mðx; tÞ, the normal mass flux crossing a given level set
Gðx; tÞ ¼ const. The function Gðx; tÞ defines for a given level set the
local normal unit vector n ¼ rG=jrGj pointing toward the burnt
gas. We identify the level G¼ 0 to be the flame-front location from the
viewpoint of the outer hydrodynamic zone. Furthermore, the reaction-

sheet location will be identified with the level G ¼ ea, where a is some
constant.

On each side of the reaction sheet G 6¼ ea, the following govern-
ing equations are assumed to hold:

@q
@t

þr � ðqvÞ ¼ 0; (3)

�lv ¼ rp� qg; (4)

q
@h
@t

þ qv � rh ¼ er � ðkrhÞ; (5)

q ¼ qðhÞ; l ¼ lðhÞ; k ¼ kðhÞ; (6)

where g is the non-dimensional gravity vector, whose magnitude,
jgj ¼ qugju=luSL, measures the strength of the gravitational force.
The function l ¼ lðhÞ is assumed to incorporate both fluid viscosity
and permeability.

Across the reaction sheet (not the flame front), all physical varia-
bles satisfy certain jump conditions, which are well established and are
expressed readily in terms of a small-scale flame coordinate f, which is
defined by

f ¼ 1
e
ðG� eaÞ: (7)

At the reaction sheet, f¼ 0, we have

v½ �½ � ¼ p½ �½ � ¼ h½ �½ � ¼ kjrGj @h
@f

� �� �
þ 1 ¼ 0; (8)

where ½½u�� � ujf¼0þ � ujf¼0� . In summary, G¼ 0 (or f ¼ �a) cor-
responds to the flame front, i.e., the front location seen from the view-
point of the outer hydrodynamic zone and G ¼ ea (or f¼ 0)
corresponds to the reaction sheet. Traditionally, one usually sets a¼ 0,
although it is important to recognize that the end results of the analysis
will depend on a as can be inferred from the analysis by Bechtold and
Matalon26 and as such we will not discard the constant parameter a.

III. MULTIPLE-SCALE ANALYSIS

The asymptotic solution to the problem described above in the
limit e ! 0 is carried out now using multiple-scale analysis, following
closely Keller and Peters.20,27 In our multiple-scale analysis, all physical
variables, except G (and therefore n), are assumed to depend on both
the large-scale hydrodynamic coordinates ðx; tÞ and the small-scale
flame coordinate, f. Any physical variable u is expanded in a power
series in e

u ¼ u0ðf; x; tÞ þ eu1ðf; x; tÞ þ � � � : (9)

It is important to note that G cannot be a function of f, as G itself
defines f (7). Moreover, we shall assume from the outset that the func-
tion Gðx; tÞ is described with arbitrary accuracy in powers of e, and as a
result, we do not expand the function G, following Clavin and Gra~na-
Otero23 and Clavin and Searby.28 This assumption does affect the inter-
mediate steps of the analysis, but not the final uniformly valid solution.

For physical variables depending also on the coordinate f, the
transformation rules for derivatives with respect to large-scale coordi-
nates ðxi; tÞ are given by

@

@xi
7! 1

e
@G
@xi

@

@f
þ @

@xi
;

@

@t
7! 1

e
@G
@t

@

@f
þ @

@t
: (10)

FIG. 1. Schematic illustration of a curved premixed flame propagating into a fresh
mixture. The location of the flame front corresponds to a level set G¼ 0 of the field
Gðx; tÞ; the location of the reaction sheet corresponds to the level set G ¼ ea.
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Any function, which is independent of f, can be regarded as variables
corresponding to outer hydrodynamic zone. Furthermore, the conti-
nuity equation can be rewritten, when combined with the G-equation,
as

@q
@t

þr � ðqvÞ ¼ � jrGj
e

@ _m
@f

: (11)

This has a simple interpretation: the continuity equation based on the
outer coordinates ðx; tÞ has a non-zero source term whenever the nor-
mal mass flux _m varies with the inner coordinate f.

A. Structure of the locally planar flame

At the leading order, we obtain

@ _m0

@f
¼ @p0

@f
¼ 0;

_m0

jrGj
@h0
@f

¼ @

@f
k0

@h0
@f

� �
: (12)

The solution, subject to the jump conditions (8), is given by

p0 ¼ P0ðx; ; tÞ; _m0 ¼ _M0ðx; tÞ ¼ 1; h0 ¼ ef̂=jrGj; f< 0;

1; f> 0;

(
(13)

where f̂ ¼ Ð f
0 df=k0. The outer functions _M0ðx; tÞ and P0ðx; tÞ are

continuous across G¼ 0. The continuity of P0ðx; tÞ, which is specific
to Darcy’s law, will be shown later.

B. Leading-order flow field

At the first order, the momentum equation yields

�l0v0 ¼ rP0 � q0gþrG
@p1
@f

: (14)

The pressure gradient @p1=@f can be eliminated by multiplying the
equation vectorially with n to result in �l0v0 � n ¼ rP0 � n
�q0g� n. Another cross product with n from the left yields the tan-
gential component of v0, i.e., Pv0 ¼ n� ðv0 � nÞ, where P
¼ I� nn is the projection (matrix) operation of a vector onto the tan-
gent surface. On the other hand, the normal component v0 � n can be
determined from the leading-order G-equation q0ð@G=@t þ v0 � rGÞ
¼ jrGj. Combining the two components, we obtain

v0 ¼ 1
q0

� 1
jrGj

@G
@t

� �
n� P

l0
ðrP0 � q0gÞ: (15)

It is convenient to introduce an auxiliary outer function V0ðx; tÞ
defined for G 6¼ 0 by

r � V0 ¼ 0; ��l V0 ¼ rP0 � �qg; (16)

�q
~DG
~Dt

� �q
@G
@t

þ V0 � rG

� �
¼ jrGj; (17)

and involving the (outer) constants �q and �l given by

�q ¼ 1; G < 0;

qf � qð1Þ; G > 0;
�l ¼ 1; G < 0;

lf � lð1Þ; G > 0:

((
(18)

From the last two equations in (16) and (17), it follows as in the deriva-
tion of (15) that

V0 ¼ 1
�q
� 1
jrGj

@G
@t

� �
n� P

�l
ðrP0 � �qgÞ; (19)

and therefore, on combining (15) and (19), that

v0 � V0 ¼ �q � q0
�qq0

n� P l0 � �l
l0

V0 þ �q � q0
l0

g
� �

: (20)

This equation implies that v0 � V0 vanishes exponentially as
f ! �1 and is identically zero for f > 0. Thus, the flow field
ðV0; P0Þ, which is incompressible and obeys Darcy’s law for G 6¼ 0
according to (16) and (17), is indeed the outer flow to leading order.

C. First correction to normal mass flux

The continuity equation (11) at the first order implies

jrGj @ _m1

@f
¼ � @q0

@t
�r � ðq0v0Þ; (21)

¼
~D
~Dt

ð�q � q0Þ � r � q0ðv0 � V0Þ½ �; (22)

where the last expression follows from the previous one, upon adding
and subtracting r � ðq0V0Þ and using the condition r � V0 ¼ 0 and
the notation of (17). We now integrate this equation from f ¼ �1
to an arbitrary location f in the preheat zone, noting that the integra-
tion can be commuted with the (outer) differential operators on the
right side. The integration is conveniently performed by changing the
integration variable to h0 ¼ ef̂=jrGj, as given by (13), so that df
¼ dh0 jrGjk0=h0. Carrying out the integration and using (20), we
find

jrGj _m1 � _M1ðx; tÞ
� �

¼
~D
~Dt

ðÎ 1 jrGjÞ � 1
�q
r � ðÎ 1rGÞ

þr � jrGjPðÎ 2V0 þ Î 3gÞ
h i

; (23)

for f < 0, where _M1ðx; tÞ is the integration constant and

Î 1ðh0Þ ¼
ðh0
0

k0
h0

ð�q � q0Þdh0;

Î 2ðh0Þ ¼
ðh0
0

q0k0
l0h0

ðl0 � �lÞdh0;

Î 3ðh0Þ ¼
ðh0
0

q0k0
l0h0

ð�q � q0Þdh0:

The function _m1 � _M1 is seen to vanish exponentially as f ! �1
(since h0 ! 0 in the integrals) and identically for f > 0 (since the rhs
of (22) is then zero). Thus, _M1ðx; tÞ corresponds to the first-order cor-
rection to the normal mass flux _m in the outer region. Evaluated at the
location of the reaction sheet, f¼ 0 where h0 ¼ 1, the integrals
ðÎ 1 ; Î 2 ; Î 3Þ become ðI 1;I 2;I 3Þ � ðÎ 1ð1Þ; Î 2ð1Þ; Î 3ð1ÞÞ
and come out of the derivatives in (23). Dividing by jrGj and simpli-
fying using a few vector identities,29 we obtain for _m1 � _M1 evaluated
at f¼ 0 the expression

_m1� _M1¼� I 1

�q
þðI 2V0þI 3gÞ �n

� �
r�n�ðI 1þI 2Þnn :rV0 :

(24)
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We next examine the temperature equation at the first order
which implies that

jrGj2 @

@f
k0

@h1
@f

þ k1
@h0
@f

� �
� _m0jrGj @h1

@f

¼ jrGj @ð _m1h0Þ
@f

þ @ðq0h0Þ
@t

þr � ðq0v0h0Þ

� r2Gk0
@h0
@f

�rG � @

@f
k0rh0ð Þ þ r k0

@h0
@f

� �� �
: (25)

In the burnt gas, f > 0, the solution for h1 is simply h1 ¼ 0. In the
unburnt gas, it is sufficient to integrate Eq. (25) from f ¼ �1 to
f ¼ 0� to determine _M1. The integration is subject to the requirement
that h1 and its gradient vanish as f ! �1 and the conditions (8) at
the reaction sheet which imply that

h1 ¼ 0 ; jrGj k0
@h1
@f

þ k1
@h0
@f

� �
¼ 0 at f ¼ 0� : (26)

Performing the integration, we obtain after some simplifications30 the
expression

_M1 ¼
J1

�q
þ ðJ2V0 þJ3gÞ � n

� �
r � nþ ðJ1 þJ2Þnn : rV0;

(27)

where

J1 ¼
ð1
0

k0
h0

�q � q0ð1� h0Þ½ �dh0; (28)

J2 ¼
ð1
0

q0k0
l0h0

ðl0 � �lÞð1� h0Þdh0; (29)

J3 ¼
ð1
0

q0k0
l0h0

ð�q � q0Þð1� h0Þdh0: (30)

It is worth pointing out at this stage that the influence of the constant
parameter a appearing in Eq. (7) and in Fig. 1 is buried in these inte-
grals. This is so since �q and �l have jumps at f ¼ �a or G¼ 0, which
corresponds to an isotherm contour h0 ¼ h� where h� � ef̂�=jrGj with
f̂� ¼ � Ð 0

�a df=k0. For illustration, the expression forJ1 is given by

J1 ¼
ðh�
0

k0
h0

1� q0ð1� h0Þ½ �dh0 þ
ð1
h�

k0
h0

qf � q0ð1� h0Þ
� �

dh0;

(31)

and similar expressions can be written for J2 and J3. To summa-
rize, it is convenient to view h� as a prescribed parameter, determining
a and allowing to define the flame front as the iso-temperature surface
h ¼ h�. This observation has been emphasized in the recent works by
Giannakopoulos et al.31,32

D. Continuity of the pressure field

The continuity of the pressure field follows directly from the
Darcy’s law rp ¼ �lv þ qg. Provided the terms on the right-hand
side experience at most finite jumps across the flame, as it is the case,
integration of this equation across the flame front shows that p is con-
tinuous across the flame. This statement holds true at all orders of e.

IV. SUMMARY OF RESULTS

At this stage, we are able to describe the flame in a Darcy’s flow
as a hydrodynamic interface across which specific jump conditions,
correct to order e, must be satisfied. To this end, let us write
V ¼ V0 þ eV1; P ¼ P0 þ eP1; _M ¼ _M0 þ e _M1 and drop the over-
bars for �q and �l. Then, the problem is governed on each side of the
flame front, G 6¼ 0, by the equations

r � V ¼ 0; �lV ¼ rP � qg ) r2P ¼ 0: (32)

The corresponding jump conditions to be satisfied at the flame front,
G¼ 0, are

qðV� UÞ � n½ �½ � ¼ 0; P½ �½ � ¼ 0; (33)

where ½½u�� � ujG¼0þ � ujG¼0� , and U � n ¼ �ð@G=@tÞ=jrGj is the
normal frame-front velocity. In addition, the problem is constrained
by the kinematic condition

q
@G
@t

þ V � rG

� �
¼ _M jrGj; (34)

characterizing the propagation of the flame front. This condition is to
be applied either at G ¼ 0� (unburnt gas side where q¼ 1) or at
G ¼ 0þ (burnt gas side where q ¼ qf ). It involves the normal mass
flux _M given by

_M ¼ 1þ eðM cr � nþM snn : rVÞ; (35)

and the two Markstein numbers

M c ¼
J1

q
þ ðJ2VþJ3gÞ � n ; M s ¼ J1 þJ2: (36)

The integrals J1; J2, andJ3 appearing in the Markstein numbers
depend on the choice for the flame-front location within the inner
zone. As mentioned earlier, the location of the flame front can be
specified by selecting an iso-temperature surface h ¼ h� with
0 < h� < 1. It is worth nothing here that the selection of the optimal
h� when comparing quantitatively with numerical or experimental
data seems to be a delicate matter, as discussed by Giannakopoulos
et al.31 within the common framework of Navier–Stokes flows. In the
present framework of Darcy’s flows, similar dedicated numerical stud-
ies in prototypical configurations are needed in future investigations to
assess the quantitative influence of the choice of h�.

In summary, the original problem governed by the equations of
Sec. II has been reduced to the simpler problem of solving Laplace’s
equationr2P ¼ 0 for G 6¼ 0 subject to the conditions (33) and (34).

A key novel result of this study corresponds to the formulas (36)
for the Markstein numbers which contain new terms that are specific
to Darcy’s law. These formulas should be compared with the corre-
sponding formulas28 based on Navier–Stokes equations which, when
applied under the same assumptions used here, imply that

M c ¼
J1

q
; M s ¼ J1: (37)

It is worth noting that the new terms in (36) can be attributed to the
Darcy’s law allowing the presence of discontinuities to leading order
in the tangential velocity across the flame. Such discontinuities arise
either due to viscosity jumps, ½½l�� 6¼ 0, or to jumps in the gravitation
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term, ½½qgt�� 6¼ 0 where the subscript t denotes tangential compo-
nents. This can be seen from the jump condition ½½lVt�� ¼ ½½qgt ��
which follows readily from an integration of the tangential compo-
nent of Darcy’s equation across the flame and use of the continuity
of pressure, ½½P�� ¼ 0. Such discontinuities of the tangential compo-
nent of velocity across the flame do not occur (at least to leading
order) for flames in a flow obeying Euler or Navier–Stokes equations,
see, e.g., Matalon and Matkowsky.15 Interestingly, the curvature
Markstein number M c in (36) depends not only on the fluid
physio-chemical properties but also on the normal components of
the flow velocity and gravity.

Equations (32)–(34) are versatile, applicable to various problems
of interest, involving both numerical and theoretical analysis. In par-
ticular, they include explicit expressions for the Markstein numbers,
which were to date unavailable, but which are valuable when study-
ing flame propagation and stability under confinement. Such expres-
sions are useful, e.g., to complement our recent work9 which
explored the stability of a planar premixed flame propagating against
a uniformly moving fresh mixture, accounting for the presence of
gravity, represented by vector g pointing in the direction of flame
propagation. We derived in this case a dispersion relation linking the
perturbation growth rate (s) to the transverse wavenumber magni-
tude (k), given by

s ¼ ak� bk2

1þ ck
;

where

a ¼ r � 1
1þm

þ 1�m
1þm

V � r � 1
1þm

m
r
jgj; b ¼ r þm

1þm
M c þ aM s;

c ¼ r � 1
1þm

M s:

Here, k and s are measured in units of d�1
L and SL=dL; r ¼ 1=qf is

the unburnt-to-burnt gas density ratio, m ¼ 1=lf is the viscosity
ratio, and V is the speed of the oncoming flow of fresh mixture,
measured with SL. The three terms in the expression for a corre-
spond, respectively, to Darrieus–Landau, Saffman–Taylor, and
Rayleigh–Taylor instabilities. The oncoming flow opposes flame
propagation when V > 0 and aids flame propagation when V < 0.
Similarly, jgj > 0 corresponds to downward flame propagation and
jgj < 0 to upward flame propagation. More detailed analyses and
implications of the dispersion relation can be found in Daou and
Rajamanickam.9

To close this paper, we mention worthwhile extensions of this
work in future investigations. The first natural extension is to account
for non-unit values of the Lewis numbers, as typically encountered in
applications. In principle, this is straightforward to carry out despite
the lengthy algebraic manipulations involved, as classically done within
the so-called near-equidiffusive approximation.12 Another important
issue to address is the influence of heat losses, which is a significant
aspect to consider when describing the effect of confinement on
flames. This complicating factor has been purposely sidelined in this
paper in order to clarify the poorly understood hydrodynamic aspect
associated with flame propagation in a Darcy’s flow. The effect of
including heat losses in our model is definitely worth investigating,
since it is anticipated to modify the Markstein numbers, as can be
inferred from similar studies.19,20,22
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