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Taylor dispersion and thermal expansion effects
on flame propagation in a narrow channel
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We investigate the propagation of a premixed flame subject to thermal expansion
through a narrow channel against a Poiseuille flow of large amplitude. This is
the first study to consider the effect of a large-amplitude flow, characterised by a
Péclet number of order one, Pe= O(1), on a variable-density premixed flame in the
asymptotic limit of a narrow channel. It is also the first study on Taylor dispersion
in the context of combustion. The relationship between the propagation speed and
Péclet number is investigated, with the effect of large flame-front thickness ε and
activation energy β studied asymptotically in an appropriate distinguished limit. The
premixed flame for ε→∞, with Pe=O(1), is found to be governed by the equation
for a planar premixed flame with an effective diffusion coefficient. In this case the
premixed flame can be considered to be in the Taylor regime of enhanced dispersion
due to a parallel flow. The infinite activation energy limit β→∞ is taken to provide
an analytical description of the propagation speed. Corresponding results are obtained
for a premixed flame in the constant-density approximation. The asymptotic results
are compared to numerical results obtained for selected values of ε and β and for
moderately large values of the Péclet number. Physical reasons for the differences
in propagation speed between constant- and variable-density flames are discussed.
Finally, the asymptotic results are shown to agree with those of previous studies
performed in the limit Pe→ 0.

Key words: combustion, flames, laminar reacting flows

1. Introduction
In this paper we provide the first theoretical study of a variable-density premixed

flame propagating through a narrow channel against a Poiseuille flow of large
amplitude. Under these conditions, the dependence of the propagation speed of
the premixed flame on the Péclet number is investigated. The essential governing
parameters are the flame-front thickness ε and the amplitude of the flow A (which
together define the Péclet number Pe = A/ε), as well as the activation energy of
the reaction β. The problem studied has relevance to several important areas of
research.

The first area concerns premixed flames propagating through narrow channels,
which have been the subject of considerable renewed interest in recent years.

† Email address for correspondence: philip.pearce@manchester.ac.uk

mailto:philip.pearce@manchester.ac.uk


162 P. Pearce and J. Daou

In addition to traditional applications such as fire safety in mine shafts (see e.g.
Kanury 1975, p. 271), recent applications are concerned with emerging technologies
that utilise microscale combustion (see Fernandez-Pello 2002). Related investigations
have addressed the development of a suitable analytical methodology, based on a
thick-flame asymptotic limit (Daou, Dold & Matalon 2002), the effect of heat loss
(Daou et al. 2002; Daou & Matalon 2002), the effect of non-unity Lewis numbers
(Kurdyumov & Fernandez-Tarrazo 2002; Cui et al. 2004; Kurdyumov 2011), the
influence of oscillatory flow (Daou & Sparks 2007) and the influence of thermal
expansion (Short & Kessler 2009; Kurdyumov & Matalon 2013) under different
distinguished limits of the governing parameters. The asymptotic results in the current
paper can be considered to be an extension of the results of Daou et al. (2002) and
Short & Kessler (2009), who studied the same configuration but in the limit of small
Péclet number in the constant-density and variable-density cases, respectively. A low
value of Pe is not the case, however, in many practical applications (see, for example,
the experimental results given in the review article by Bradley (1992) which were
obtained for a fixed value of Pe). For this reason the asymptotic analysis in the
current study is performed in the limit ε→∞ with Pe=O(1) and numerical results
are obtained for moderately large Péclet numbers.

The second area of research is related, albeit indirectly, to turbulent combustion.
At high values of Pe the flame could become turbulent, an aspect of the problem
not addressed here. Nevertheless, the results are still useful as a first step towards an
understanding of the effects of the small scales in the flow on a turbulent premixed
flame; at present there seems to be no analytical description of even laminar premixed
flames for arbitrary values of Pe in situations where the flame is thick compared to
the length scale of the flow. This latter situation is fundamental to a proper evaluation
of Damköhler’s second hypothesis (see Damköhler 1940) concerning the effect of
small-scale flow on turbulent premixed flames, which has received little attention in
the literature. Conversely, there have been many studies on turbulent premixed flames
in the flamelet regime of large flow scales compared to the flame thickness (see
e.g. Clavin & Williams 1979; Kerstein, Ashurst & Williams 1988; Sivashinsky 1988;
Yakhot 1988; Aldredge 1992), which was the subject of Damköhler’s first hypothesis.
A detailed discussion of the relevance of Damköhler’s second hypothesis to turbulent
premixed flames can be found in the paper by Daou et al. (2002). A thorough review
of turbulent combustion in general can be found in the monograph by Peters (2000).

The third area of relevant research is Taylor dispersion, a well-studied topic that
began with Taylor’s seminal paper discussing the enhanced dispersion of a solute due
to a parallel flow in a channel (see Taylor 1953). Taylor investigated a distinguished
limit characterised by a small diffusion time in comparison to the advective time; in
this limit the depth-averaged concentration of the solute was shown to be governed
by a one-dimensional equation with an effective diffusion coefficient Deff , which was
found to be larger than the diffusion coefficient D and dependent upon the profile
of the parallel flow. Specifically, in the case of a cylindrical channel of radius a and
an imposed Poiseuille flow of cross-sectional average w̄, Taylor found the effective
diffusion coefficient to be given by

Deff =D
(

1+ a2w̄2

48D2

)
, (1.1)

for a solute with diffusion coefficient D.
A comprehensive review of the subject of Taylor dispersion can be found in the

book by Brenner & Edwards (1993). Here we simply note that there seem to be
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relatively few analytical studies in the literature that investigate Taylor dispersion with
a variable-density flow (see Felder et al. 2004; Oltean et al. 2004; Dentz et al. 2006).
In these studies the effective diffusion coefficient has been found to be a function of
the density. Although there has been a small number of studies on Taylor dispersion
in reaction–diffusion equations (e.g. Leconte et al. 2008), this paper is the first to
discuss Taylor dispersion in the context of combustion. One of the limits taken in the
current paper can be considered to characterise the Taylor regime of a premixed flame,
whereby the flame is described by the one-dimensional planar premixed flame equation
with an effective diffusion coefficient. The determination of the propagation speed (an
eigenvalue representing the speed of the travelling premixed flame) is intimately linked
to the effective diffusion coefficient in the limit of infinite activation energy. It is
surprising that despite this direct link, Taylor dispersion does not yet seem to have
been investigated in the context of premixed (laminar or turbulent) combustion.

The main aims of the investigation are: (a) to quantify the effect of a small-scale
parallel (Poiseuille) flow on the propagation speed of a premixed flame for fixed
values of the Péclet number, taking gas expansion into account (see formula (4.14)
later); (b) to demonstrate that the enhancement of the propagation speed coincides
exactly with the Taylor dispersion formula (1.1); (c) to provide an analytical
confirmation of Damköhler’s second hypothesis in our particular case corresponding
to a laminar flow with a single scale which is small compared to the flame thickness
(see the discussion in the Conclusion). We believe that achieving these aims, albeit in
a simplified adiabatic context (such as in Daou & Matalon 2001), as is carried out in
this paper, is a contribution of a fundamental nature that will provide a solid basis for
future studies accounting for additional realistic effects. These include more complex
multi-scale flows and the influence of heat losses, which are not accounted for here
to concentrate on the pure interaction between the flow and the flame and to ensure
that the analysis is tractable. The practical aspects of heat losses are known to be
important in real microcombustion applications; indeed, to minimise the influence of
such heat losses, it is well known that thermal management is required experimentally,
such as external wall heating (see e.g. Fan et al. 2007) or heat recirculation (see e.g.
Sitzki et al. 2001; Ahn et al. 2005); see also the review by Fernandez-Pello (2002).

The paper is structured as follows. In § 2 we formulate the problem. Section 3
consists of an asymptotic analysis in the limit ε → ∞, with Pe = O(1). In § 4
we consider the limit of infinite activation energy, β →∞, in order to provide an
analytical description of the propagation speed in terms of Pe. In § 5 we expand and
discuss the results of the preceding asymptotic analyses and compare with numerical
solutions of the governing equations, with particular emphasis on describing the
relationship between the effective propagation speed UT and Péclet number Pe for
several values of the flame-front thickness ε and activation energy β. Finally, a
summary of the main findings is given in § 6.

2. Formulation
Consider a premixed flame propagating through a channel of height 2L. Far

upstream of the flame a fully developed Poiseuille flow, defined by

ũ= Ã
(

1− ỹ2

L2

)
, (2.1)

is prescribed (see figure 1). The governing equations at low Mach number are given by
the Navier–Stokes equations coupled to equations for temperature and mass fractions,
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Burnt gas 2L
Unburnt gas

FIGURE 1. An illustration of a premixed flame propagating against a Poiseuille flow in
a channel of height 2L.

along with the ideal gas equation of state. The fluid velocity is given by (ũ, ṽ). The
combustion is modelled as a single irreversible one-step reaction of the form

F→ Products+ q, (2.2)

where F (assumed to be the deficient reactant) denotes the fuel and q the heat released
per unit mass of fuel.

The overall reaction rate ω̃ is taken to follow an Arrhenius law of the form

ω̃= ρ̃BYF exp (−E/RT̃). (2.3)

Here ρ̃, YF, R, T̃ , B and E are the density, the fuel mass fraction, the universal gas
constant, the temperature, the pre-exponential factor and the activation energy of the
reaction, respectively. The flame propagates through the channel in the x̃-direction with
velocity −Ũi, where U is an eigenvalue to be determined as part of the solution to the
problem. With tilda denoting dimensional quantities, scaled non-dimensional variables
are introduced using

x= x̃
L
, y= ỹ

L
, u= ũ

S0
L
, v = ṽ

S0
L
, (2.4a–d)

t= t̃
L/S0

L
, θ = T̃ − T̃u

T̃ad − T̃u
, yF = YF

YF,u
, p= p̃

ρ̃u
(
S0

L

)2 . (2.5a–d)

The unit speed is taken to be

S0
L = (2LeFβ

−2(1− α)DTB exp(E/RT̃ad))
1/2, (2.6)

which is the laminar burning speed of the planar flame for β � 1. Here
T̃ad ≡ T̃u + qYFu/cP is the adiabatic flame temperature, β ≡ E(T̃ad − T̃u)/RT̃2

ad is
the Zeldovich number or non-dimensional activation energy and α ≡ (T̃ad − T̃u)/T̃ad

is the thermal expansion coefficient. The quantities T̃u, YFu, and ρ̃u denote the values
of the temperature, fuel mass fraction and density in the unburnt gas as x̃→−∞,
respectively, while cP represents the specific heat capacity, which is assumed constant.

In non-dimensional form the governing equations in a coordinate system attached
to the flame front, which is travelling in the negative x-direction at speed U = Ũ/S0

L,
are given by

∂ρ

∂t
+∇ · ρû= 0, (2.7)
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ρ
∂u
∂t
+ ρû · ∇u+∇p= εPr

(
∇2u+ 1

3
∇ (∇ · u)

)
, (2.8)

ρ
∂θ

∂t
+ ρû · ∇θ = ε∇2θ + ε−1ω

1− α , (2.9)

ρ
∂yF

∂t
+ ρû · ∇yF = ε

LeF
∇2yF − ε−1ω

1− α , (2.10)

ρ =
(

1+ α

1− αθ
)−1

, (2.11)

assuming that the thermal diffusivity DT and the fuel mass diffusion coefficient DF
satisfy ρ̃DT = ρ̃DF = constant. Here û= u+Ui and p is the hydrodynamic pressure.

The walls located at y = −1 and y = 1 are considered to be rigid and adiabatic.
Symmetry conditions are applied at y = 0. The boundary conditions are therefore
given by

∂θ

∂y
= ∂yF

∂y
= ∂u
∂y
= v = ∂p

∂y
= 0 at y= 0, (2.12)

∂θ

∂y
= ∂yF

∂y
= u= v = 0 at y= 1, (2.13)

θ = 0, yF = 1, u= A(1− y2)= εPe(1− y2), v = 0 at x=−∞, (2.14a–d)

∂θ

∂x
= ∂yF

∂x
= ∂u
∂x
= ∂v
∂x
= p= 0 at x=+∞, (2.15)

along with suitable initial conditions. The non-dimensional parameters are defined as

ε = δL

L
= DT/S0

L

L
, Pe= A

ε
, (2.16a,b)

LeF = DT

DF
, Pr= ν

DT
, (2.17a,b)

which are the non-dimensional flame-front thickness, the Péclet number, the fuel
Lewis number and the Prandtl number, respectively. Note that δL is the dimensional
flame-front thickness given by δL=DT/S0

L and A is the non-dimensional amplitude of
the imposed Poiseuille flow, A = Ã/S0

L. Finally, the non-dimensional reaction rate ω
is defined as

ω= β2

2LeF
ρyF exp

(
β(θ − 1)

1+ α(θ − 1)

)
. (2.18)

The problem is now fully formulated and is given by (2.7)–(2.11), with boundary
conditions (2.12)–(2.15). The non-dimensional parameters in this problem are Pe, ε,
β, α, Pr and LeF.

Note that by integrating the steady form of (2.9) over the whole domain, using
the continuity equation (2.7) with the boundary conditions (2.12)–(2.15) and assuming
total fuel consumption downstream, we find

U + ū=
∫ 1

0

∫ ∞
−∞

ε−1ω

1− α dxdy, (2.19)
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where ū is the mean speed of the parallel inflow at x=−∞. Therefore

UT ≡U + ū (2.20)

appears as an effective propagation speed, as commonly defined in turbulent
combustion. In the current study of a Poiseuille flow in a rectangular channel,
using the boundary condition (2.14), the effective propagation speed is given by

UT ≡U + 2
3εPe. (2.21)

3. Asymptotic analysis in the limit ε→∞
To simplify the problem we consider the steady equations with LeF = 1. In this

case only the equation for temperature needs to be considered, since yF = 1− θ . This
follows from adding (2.9) and (2.10) and using boundary conditions (2.14).

We now consider the limit ε→∞ with Pe= O(1), Pr = O(1) and β = O(1). The
flow amplitude A=O(ε) for Pe=O(1). We introduce a rescaled coordinate

ξ = x
ε
, (3.1)

so that the governing equations (2.7)–(2.11) become

∂

∂ξ
(ρ(u+U))+ ε ∂

∂y
(ρv)= 0, (3.2)

ρ(u+U)
∂u
∂ξ
+ ερv ∂u

∂y
+ ∂p
∂ξ
= Pr

(
4
3
∂2u
∂ξ 2
+ ε2 ∂

2u
∂y2
+ ε

3
∂2v

∂ξ∂y

)
, (3.3)

ρ(u+U)
∂v

∂ξ
+ ερv ∂v

∂y
+ ε ∂p

∂y
= Pr

(
∂2v

∂ξ 2
+ 4ε2

3
∂2v

∂y2
+ ε

3
∂2u
∂ξ∂y

)
, (3.4)

ρ(u+U)
∂θ

∂ξ
+ ερv ∂θ

∂y
= ∂

2θ

∂ξ 2
+ ε2 ∂

2θ

∂y2
+ ω

1− α , (3.5)

ρ =
(

1+ α

1− αθ
)−1

, (3.6)

where

ω= β
2

2
ρ(1− θ) exp

(
β(θ − 1)

1+ α(θ − 1)

)
. (3.7)

These equations are subject to the boundary conditions (2.12) and (2.13), with

θ = 0, u= A(1− y2)= εPe(1− y2), v = 0 at ξ =−∞, (3.8a–c)

∂θ

∂ξ
= ∂u
∂ξ
= ∂v
∂ξ
= p= 0 at ξ =+∞. (3.9)

We now introduce expansions for ε→∞ in the form

U =− 2
3εPe+U0 + ε−1U1 + · · · ,

u= εu0 + u1 + · · · , v = v0 + ε−1v1 + · · · ,
θ = θ0 + ε−1θ1 + · · · , p= ε3p0 + ε2p1 + · · · .

 (3.10)
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Note that here U0 is the leading-order approximation to the effective flame speed UT ,
defined in (2.20). Note also that the horizontal velocity component u is O(ε), due to
the imposed Poiseuille flow at ξ =−∞ given by (3.8), while the vertical component
of the velocity v is taken to be O(1) to balance the two terms in the continuity
equation (3.2).

Substituting (3.10) into (3.2)–(3.5), we obtain to leading order

∂

∂ξ

(
ρ0

(
u0 − 2

3
Pe
))
+ ∂

∂y
(ρ0v0)= 0, (3.11)

∂p0

∂ξ
= Pr

∂2u0

∂y2
, (3.12)

∂p0

∂y
= 0, (3.13)

∂2θ0

∂y2
= 0. (3.14)

Equations (3.13) and (3.14) can be integrated with respect to y to give p0 = p0(ξ)

and θ0 = θ0(ξ), after using the boundary condition (2.12) on θ0, so that ρ0 = ρ0(ξ)

from (3.6).
Now, using a similar method to Short & Kessler (2009), we look for a separable

solution for u0(ξ , y) in the form

u0(ξ , y)= û0(y)ǔ0(ξ). (3.15)

Substitution of (3.15) into (3.12) gives

∂2û0

∂y2
= 1

ǔ0Pr
∂p0

∂ξ
=−2C, (3.16)

where C is a constant. Equation (3.16) can be integrated twice with respect to y, using
the boundary conditions (2.12) and (2.13), to yield

û0(y)=C(1− y2), (3.17)

so that
u0(ξ , y)= ǔ0(ξ)(1− y2), (3.18)

where C has been absorbed into ǔ0(ξ).
Integrating equation (3.11) with respect to y from y= 0 to y= 1, we obtain

∂

∂ξ

(
ρ0(ξ)

(
2
3

ǔ0(ξ)− 2
3

Pe
))
= 0, (3.19)

after using boundary conditions (2.12) and (2.13) on v0. Equation (3.19) implies that

2
3ρ0(ξ)(ǔ0(ξ)− Pe)= 2

3(ǔ0(ξ→−∞)− Pe)= 0, (3.20)

using the fact that ρ0(ξ →−∞) = 1 from (3.6) and boundary condition (3.8). Thus
ǔ0(ξ)= Pe, so that

u0 = Pe(1− y2). (3.21)
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Equation (3.11) can then integrated with respect to y, using (3.21) and condition
(2.12), to yield

v0 =− 1
ρ0

∂ρ0

∂ξ

Pe
3
(y− y3). (3.22)

Now, at O(ε) in (3.5) we have

ρ0

(
u0 − 2

3
Pe
)
∂θ0

∂ξ
= ∂

2θ1

∂y2
, (3.23)

which, after using (3.21) and condition (2.12), can be integrated twice with respect to
y to give

θ1 = ρ0
∂θ0

∂ξ
Pe
(

y2

6
− y4

12

)
+ θ̌1(ξ). (3.24)

Next we look to O(1) in (3.2) to find

∂

∂ξ

(
ρ1

(
u0 − 2

3
Pe
))
+ ∂

∂ξ
(ρ0 (u1 +U0))+ ∂

∂y
(ρ0v1)+ ∂

∂y
(ρ1v0)= 0. (3.25)

Equation (3.25) can be integrated first with respect to y from y= 0 to y= 1, utilising
the boundary conditions (2.12) and (2.13) on v0, and then with respect to ξ to give∫ 1

0

(
ρ1

(
u0 − 2

3
Pe
))

dy+
∫ 1

0
(ρ0 (u1 +U0)) dy=K. (3.26)

To evaluate K, we use boundary conditions (3.8) to obtain

K =
∫ 1

0

(
ρ1(ξ→−∞)

(
u0(ξ→−∞)− 2

3
Pe
))

dy

+
∫ 1

0
(ρ0(ξ→−∞) (u1(ξ→−∞)+U0)) dy=U0. (3.27)

Finally, at O(1) of (3.5) we have

ρ0 (u1 +U0)
∂θ0

∂ξ
+ ρ1

(
u0 − 2

3
Pe
)
∂θ0

∂ξ
+ ρ0

(
u0 − 2

3
Pe
)
∂θ1

∂ξ
+ ρ0v0

∂θ1

∂y

= ∂
2θ0

∂ξ 2
+ ∂

2θ2

∂y2
+ ω0

1− α , (3.28)

where ω0(ξ) = ω(θ0, ρ0). Integrating (3.28) with respect to y from y = 0 to y = 1,
taking into account the boundary conditions (2.12) and (2.13) on θ and substituting
(3.21), (3.22), (3.24), (3.26) and (3.27), we obtain

U0
∂θ0

∂ξ
− ∂

∂ξ

((
1+ 8

945
Pe2ρ2

0

)
∂θ0

∂ξ

)
= ω0

1− α , (3.29)

with

ρ0 =
(

1+ α

1− αθ0

)−1

,

ω0 = β
2

2
ρ0 (1− θ0) exp

(
β (θ0 − 1)

1+ α (θ0 − 1)

)
,

 (3.30)
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subject to the boundary conditions

θ0(−∞)= 0, θ0ξ (+∞)= 0. (3.31a,b)

This shows that in the limit ε→∞, with Pe=O(1), the problem of a variable-density
premixed flame in a two-dimensional channel can be reduced to a one-dimensional
boundary value problem. Equation (3.29) is the equation that would describe a
premixed flame propagating through a one-dimensional channel with an effective
diffusion coefficient

Deff =DT

(
1+ 8

945
Pe2 ρ̃

2

ρ̃2
u

)
. (3.32)

This is an important result because it corresponds to a generalised form (accounting
for variable density effects) of the effective diffusion coefficient found when studying
the effect of a Poiseuille flow on mixing in the non-reactive Taylor dispersion problem,
originally investigated by Taylor (1953). A premixed flame in the limit ε→∞, with
Pe=O(1) can be therefore considered to be in the Taylor dispersion regime.

The boundary value problem (3.29)–(3.31) will be solved numerically in § 5 to
provide a description of the relationship between UT and Pe. These results will also
be compared to those of numerical solutions of the full problem. Firstly, however, we
will proceed to study the limit β→∞ in order to find an analytical solution for UT .

4. Explicit solution for large activation energy β→∞
Here we consider the solution to the problem (3.29)–(3.31) in the limit of infinite

activation energy β→∞. Following a well-known approach in this limit, the reaction
is confined to a thin layer of thickness O(β−1). The domain can therefore be split into
two outer zones (which we refer to as the preheat zone and the burnt gas) and an inner
zone (the reaction zone). We use the condition θ0(ξ →∞)= 1, which follows from
the total completion of the reaction far downstream.

In the outer zones the reaction rate is set to zero so that, from (3.29),

U0
dθ0

dξ
− d

dξ

((
1+ 8

945
Pe2ρ2

0

)
dθ0

dξ

)
= 0, (4.1)

where ρ0 = ρ(θ0). The solution to this equation in the burnt gas is found to be

θ0 = 1, (4.2)

while in the preheat zone we have, denoting P= 8Pe2/945 and α̃ = α/(1− α),
(U0θ0)

(P+1)/U0

(1+ α̃θ0)P/U0
exp

(
P

U0 (1+ α̃θ0)

)
=C1 exp (ξ) , (4.3)

on using the condition (3.8). The constant C1 can be determined by choosing the
origin where the outer profiles intersect, since the problem is translationally invariant
in the ξ -direction. This gives

C1 = (1+ α̃)−P/U0 exp
(

P
(1+ α̃)U0

)
U(1+P)/U0

0 . (4.4)

The propagation speed U0 can now be determined by matching with the inner solution.
Since the reaction layer is of thickness O(β−1), in the inner region we let

X = ξ

β−1
, θ inner

0 =Θ(X)= 1+ β−1Θ1 +O(β−2). (4.5a,b)
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Then to leading order we have

Θ1
XX −ΛΘ1 exp(Θ1)= 0, (4.6)

where

Λ=
(

2 (1+ α̃)
(

1+ P

(1+ α̃)2
)√

1− α
)−1

. (4.7)

The boundary conditions to (4.6) are found by matching with the outer solutions using
the formula

θ inner
0 (X→±∞)= θ outer

0 (ξ→ 0±). (4.8)

Matching with the solution in the burnt gas, given by (4.2), yields

Θ1 (X→+∞)= 0. (4.9)

Now, noting from (4.5) and (4.8) that

θ0(ξ→ 0−)= 1+ β−1Θ1 (X→−∞)+O(β−2), (4.10)

we expand (4.3) for the temperature in the unburnt gas as ξ→ 0 to find

Θ1 (X→−∞)= (1+ α̃)2 U0

(1+ α̃)2 + P
X. (4.11)

Now U0 can be found by integrating (4.6) subject to the boundary conditions
(4.9) and (4.11). Multiplying (4.6) by Θ1

X and integrating with respect to X from
X =−∞ to X =+∞ yields[(

Θ1
X

)2

2

]X=+∞

X=−∞
=
∫ Θ1(+∞)

Θ1(−∞)
ΛΘ1 exp

(
Θ1
)

dΘ1. (4.12)

Thus, using (4.9) and (4.11), (
(1+ α̃)2 U0

(1+ α̃)2 + P

)2

= 2Λ, (4.13)

so that

U0 =
√

1+ 8
945

Pe2 (1− α)2. (4.14)

This equation gives the leading-order approximation U0 to the effective flame speed
UT for a given value of Pe in the limit ε→∞, β→∞, with Pe=O(1).

4.1. Constant-density results
The asymptotic results found for a variable-density premixed flame can be similarly
derived in the simpler case of a constant-density premixed flame. The boundary value
problem corresponding to (3.29)–(3.31), corresponding to ε→∞ with Pe= O(1), is

U0
∂θ0

∂ξ
−
(

1+ 8
945

Pe2

)
∂2θ0

∂ξ 2
=ω0, (4.15)

with

ω0 = β
2

2
(1− θ0) exp

(
β (θ0 − 1)

1+ α (θ0 − 1)

)
, (4.16)
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subject to the boundary conditions

θ0(−∞)= 0, θ0ξ (+∞)= 0. (4.17a,b)

In the limit β→∞, this problem has the solution

U0 =
√

1+ 8
945

Pe2. (4.18)

4.2. Cylindrical channel results
A similar asymptotic analysis to the one above can be performed (see the appendix A)
for a premixed flame propagating through a cylindrical channel of diameter 2L with
an imposed Poiseuille flow. As in the case of a rectangular channel it is found that
the flame is governed by the equation for a planar premixed flame with an effective
diffusion coefficient, in this case given by

Deff =DT

(
1+ 1

192
Pe2 ρ̃

2

ρ̃2
u

)
(4.19)

in the variable-density case, and

Deff =DT

(
1+ 1

192
Pe2

)
(4.20)

in the constant-density case. Using the definition of the Péclet number the constant-
density result can be written in dimensional form as

Deff =DT

(
1+ L2ū2

48D2
T

)
, (4.21)

where ū= Ã/2 is the cross-sectional average of the imposed Poiseuille flow. The result
(4.21) is exactly the result (1.1) found by Taylor (1953) in his original paper.

5. Further results and discussion
In this section we compare the results of the asymptotic analyses undertaken in

previous sections with the results of numerical computations. The main aim is to
examine the relationship between the effective propagation speed UT , defined in
(2.20), and the Péclet number Pe for several values of the flame-front thickness ε
and activation energy β, in both the variable-density and constant-density cases.

5.1. Numerical procedure
The numerical results are obtained by solving the steady form of (2.7)–(2.11) with
boundary conditions (2.12)–(2.15) using the software package Comsol Multiphysics.
This software has been extensively tested in combustion applications including our
previous publications (see Pearce & Daou 2013a,b). The problem is entered into the
partial differential equation (PDE) interface in Comsol, which uses a finite element
discretisation to transform the set of nonlinear PDEs into a set of nonlinear algebraic
equations in which the propagation speed UT appears as an additional unknown
(eigenvalue). These equations, augmented by the requirement that the temperature is
prescribed at the origin (an additional equation needed to determine the eigenvalue
UT), are then solved using an affine invariant form of the damped Newton method,
as described by Deuflhard (1974). In the constant-density case we solve (2.9) with
u = εPe(1 − y2), v = 0, ρ = 1 and the reaction term replaced by ε−1ω. The domain
is covered by a non-uniform grid of approximately 200 000 triangular elements, with
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local refinement around the reaction zone. Various tests are performed to ensure
the results are independent of the mesh. A channel of length x = 30ε is taken to
approximate an infinitely long channel. Throughout this section we let LeF= 1, Pr= 1
and α= 0.85 unless otherwise stated. The numerical calculations are performed for a
fixed value of the activation energy, β = 10. For each Pe the value of UT is scaled
by the value of U calculated numerically for Pe = 0. Finally the boundary value
problems (3.29)–(3.31) and (4.15)–(4.17), derived in the limit ε → ∞, are solved
using the BVP4C solver in Matlab, which uses a Lobatto IIIa method (see Shampine,
Kierzenka & Reichelt 2000).

5.2. Comparison of the asymptotic and numerical results
Figures 2(a) and 2(b) summarise both the asymptotic and numerical results in the
constant-density case and variable-density case, respectively. Plotted are: (i) the
solutions to the boundary value problems (3.29)–(3.31) and (4.15)–(4.17), derived
in the limit ε→∞, Pe = O(1), for several values of β; (ii) the asymptotic results
(4.14) and (4.18), derived in the limit ε→∞, β→∞, Pe = O(1); (iii) the results
of numerical solutions of the full problem, given by (2.7)–(2.11) and boundary
conditions (2.12)–(2.15), for large values of both ε and β.

It can be seen that in both the constant- and variable-density cases there is
strong agreement between the numerical results calculated for high values of ε with
β = 10 and the asymptotic results derived in the limit ε→∞ for β = 10. It can also
be seen that in both cases the asymptotic results derived in the limit ε→∞ (for a
chosen value of β) approach the results derived in the limit ε→∞, β→∞ when
β is increased, as expected. Comparing the figures shows that a finite value of the
activation energy β has a larger effect on the propagation speed in the variable-density
case than in the constant-density case.

A further comparison of figures 2(a) and 2(b) shows that Pe has a significantly
larger effect on the propagation speed in the constant-density case than when thermal
expansion is taken into account. This can be explained by considering the perturbation
to the flame shape using the method of Daou & Matalon (2002) and Short & Kessler
(2009). Using the fact that θ0 = θ0(ξ) and (3.24) we have

θ = θ0 (ξ)+ ε−1

(
ρ0
∂θ0

∂ξ
Pe
(

y2

6
− y4

12

)
+ θ̌1(ξ)

)
+O(ε−2). (5.1)

Now, let ξ ∗ be the location at which the leading-order temperature takes the constant
value θ∗0 . Defining the perturbation ξ = ξ ∗ + ε−1ξ ′, and letting ∗ denote the value of
a variable at ξ ∗, so that

θ(ξ ∗ + ε−1ξ ′)= θ∗0 + ε−1

(
θ∗1 (y)+ ξ ′

∂θ∗0
∂ξ

)
+O(ε−2), (5.2)

we obtain the value of ξ ′ for which θ(ξ ∗ + ε−1ξ ′)= θ∗0 as

ξ ′ =−ρ∗0 Pe
(

y2

6
− y4

12

)
− θ̌∗1
θ∗0ξ
. (5.3)

Finally, the relative distance between the temperature reaching θ∗0 at y=0 and reaching
the same value at y= 1 is given by

ξ ′r =
ρ∗0 Pe
12

, (5.4)
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FIGURE 2. (Colour online) Summary of asymptotic and numerical results in (a) constant-
density case and (b) variable-density case. Numerical simulations of the full system
(2.7)–(2.15) are performed for α = 0.85, β = 10 and Pr = 1. Numerical solutions of the
boundary value problem (BVP) (3.29)–(3.31) are calculated for α = 0.85 and selected
values of β.

which gives a measure of the deformation to the flame due to the flow. The equivalent
of (5.4) in the constant-density case is given by

ξ ′r,const =
Pe
12
. (5.5)

Thus since ρ0 < 1, we have ξ ′r < ξ ′r,const from (5.4) and (5.5) and therefore the
deformation to the flame shape is smaller in the variable-density case. This means
that the effective propagation speed UT , which gives a measure of the burning rate of
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FIGURE 3. Flame shape (represented by the line θ = 0.5) for ε = 10, β = 10 and (a)
Pe = 10, (b) Pe = 20 in the constant-density (thin line) and variable-density (thick line)
cases.

the flame, is expected to be less in the variable-density case. Note that in the Pe→ 0
analysis of Short & Kessler (2009), the flame deformation was found to be larger
in the variable-density case than the constant-density case for values of Pe giving a
propagation speed U> 0, and smaller in the variable-density case when U< 0. Since
U=UT − (2/3)εPe, where UT =O(1) and ε→∞, the propagation speed U is always
expected to be negative in our study and so the results (5.4) and (5.5) agree with
those of Short & Kessler (2009).

An illustration of the numerically calculated flame shape for selected values of
the Péclet number in both the constant-density and variable-density cases is given in
figure 3, which shows that the deformation to the flame shape is indeed larger in the
variable-density case, as found in (5.4) and (5.5).

The flame behaviour and its interaction with the flow is further illustrated in
figures 4 and 5, corresponding to numerical simulations. Figure 4(a) shows a contour
plot of the temperature θ ; also shown is the velocity field induced by thermal
expansion, namely (u − εPe(1 − y2), v). This is plotted rather than the full velocity
field (u, v) for clarity since the imposed Poiseuille flow is large compared to the
induced flow, which is consistent with the asymptotic findings (see (3.21)). Figures
4(b) and 4(c) provide contour plots of the horizontal and vertical components of the
induced flow, respectively. It is seen that for a fixed value of x, the maximum of
the horizontal component of the induced flow is located at the centreline y= 0, and
the maximum of the vertical component is located around y= 0.5. Figures 5(c) and
5(d) plot these horizontal and vertical components at y= 0 and y= 0.5, respectively
for selected values of Pe. Corresponding plots of the temperature θ and the reaction
rate ω along the centreline y = 0 are shown in figures 5(a) and 5(b). Figure 5



Taylor dispersion and thermal expansion effects on flame propagation 175

y

y

y

–100 –50 0 50
0

0.5

1.0
0.1 0.3 0.5 0.7 0.9

–100 –50 0 50
0

0.5

1.0
0.1

1.0
2.0 4.0 6.0

8.0

x
–100 –50 0 50
0

0.5

1.0
0.1

0.3

0.5 0.7 0.9

(a)

(b)

(c)

FIGURE 4. Contour plots of: (a) the temperature θ , with the velocity field induced by
thermal expansion, which is given by (u − εPe(1 − y2), v); (b) the horizontal velocity
component due to thermal expansion, which is given by u− εPe(1− y2); (c) the vertical
velocity component v. The values of the quantities along each contour are indicated.
The plots correspond to ε = 50, Pe = 10 and β = 10, and are plotted in the unscaled
coordinates (x, y).

illustrates the gas expansion through the flame. Furthermore the figure demonstrates
that the effective flame thickness increases with increasing Pe; this is in line with the
asymptotic results (see the asymptotic formula (3.32) and also the discussion in the
Conclusion section related to (6.3)).

Returning now to the effect of the Péclet number on the propagation speed,
comparing the asymptotic result (4.18), derived in the constant-density approximation,
with (4.14), derived in the variable-density case, provides a further reason for the
larger effect of Pe on UT in the constant-density case. The constant-density results
are the same as the variable-density results, but with the term Pe(1 − α) replaced
by Pe in the leading-order term for the effective propagation speed. (Note that the
constant-density asymptotic results (4.15)–(4.17) are not recovered by simply setting
α= 0 in (3.29)–(3.31) due to the presence of α in the reaction term, which throughout
this paper is set to α = 0.85 in both cases.) This suggests that replacing the Péclet
number in the variable-density case by a scaled Péclet number, given by

Pescaled = Pe(1− α), (5.6)

would lead to strong agreement between the variable-density and constant-density
numerical results.
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FIGURE 5. Plots of (a) temperature θ along y = 0; (b) reaction rate ω along y = 0;
(c) increase in horizontal velocity u along y= 0 due to thermal expansion, which is given
by u(y= 0)−A; (d) vertical velocity component v along y= 0.5. The plots correspond to
selected values of the Péclet number Pe, with ε = 50 and β = 10, and are plotted in the
unscaled coordinates (x, y).

A plot of the numerically calculated value of UT versus Pescaled in the constant-
density and variable-density cases is given in figure 6. As expected, the relationship
between UT and Pe in the two cases is much more similar than in figure 2(a,b), but
there is still a quantitative difference. This can be attributed to the fact that the finite
activation energy has a more significant effect in the variable-density case than in
the constant-density case, as described above. It is therefore expected that for larger
values of β the agreement between the numerically calculated value of UT and Pescaled

would be closer between the two cases. To illustrate this, included in figure 6 is a
comparison of UT versus Pescaled from the numerical solution to (4.15)–(4.17) and
(3.29)–(3.31), valid as ε→∞, with β = 30. The figure shows that in this case the
values of UT in the constant- and variable-density cases are indeed closer together.
However, performing numerical calculations of the full system with a larger value of
β involves a significant amount of extra computation and is beyond the scope of this
study.

Finally, it should be noted that the asymptotic results found in this paper agree with
results obtained previously in the limit Pe→ 0. Expanding the constant-density result
(4.18) as Pe→ 0 gives

UT = 1+ 4
945 Pe2 +O(Pe3), (5.7)

which agrees with Daou et al. (2002). Expanding the variable-density result (4.14) as
Pe→ 0 gives

UT = 1+ 4
945 Pe2(1− α)2 +O(Pe3). (5.8)
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FIGURE 6. (Colour online) Comparison of numerical results for the effective propagation
speed UT versus the scaled Péclet number Pescaled in the variable-density and constant-
density cases. Numerical simulations of the full system (2.7)–(2.15) are performed for the
parameter values Pr = 1, α = 0.85 and β = 10. Also included are numerical results of
the solutions to (4.15)–(4.17) and (3.29)–(3.31) for α= 0.85 and β = 30, to illustrate that
for higher values of β the lines of UT versus Pescaled in the constant-density and variable-
density cases collapse onto the theoretical asymptotic curve.

This agrees with the results found by Short & Kessler (2009), which found UT ∼ 1 to
leading order.

6. Conclusion

In this study we have investigated the propagation of a premixed flame through
a narrow channel against a flow of large amplitude, taking the effect of the flame
on the flow into account through the action of thermal expansion. This is the first
study to consider a variable-density premixed flame in a narrow channel with Péclet
number Pe = O(1), which characterises the large-amplitude flow. It is also the first
to investigate Taylor dispersion in the context of combustion. The problem has been
studied analytically to determine the effective propagation speed UT for Pe=O(1), in
the limit ε→∞ with both finite and infinite values of the activation energy β. The
asymptotic studies are complemented by a numerical study whose results have been
compared to the analytical results to test their effectiveness.

It has been found that, in the limit ε → ∞, a two-dimensional premixed flame
propagating through a rectangular channel against a Poiseuille flow can be described
by a boundary value problem that corresponds to a one-dimensional premixed flame
with an effective diffusion coefficient, given by

Deff =DT

(
1+ 8

945
Pe2

)
(6.1)
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in the constant-density case, and

Deff =DT

(
1+ 8

945
Pe2 ρ̃

2

ρ̃2
u

)
(6.2)

in the variable-density case. These values correspond to those found in studies of
enhanced dispersion due to a Poiseuille flow in non-reactive fluids, known as Taylor
dispersion. A premixed flame propagating through a channel in the limit ε→∞, with
Pe=O(1) can therefore be considered to be in the Taylor regime.

Further, analytical solutions to the derived one-dimensional boundary value
problems have been obtained in the limit β → ∞ in both the constant-density
and variable-density cases. The asymptotic results have been found to show strong
agreement with the numerical results in both cases, as well as with results derived
in previous studies in the limit Pe→ 0. Physical reasons for the differences between
the constant- and variable-density cases in the relationship between the propagation
speed and the Péclet number have been discussed.

The analytical results (4.14) and (4.18) can provide some insight towards
understanding the effect of small-scale eddies on the propagation of a turbulent
premixed flame, when the flow amplitude A in our study is identified with the
turbulence intensity and the channel height L is identified with the turbulent flow
(integral) scale. The situation where the flame is thick compared to the scale of
the flow is described by Damköhler’s second hypothesis, which may be stated in
the form of a relationship between the dimensional effective propagation speed and
the effective thermal diffusivity, given by Ũeff =

√
Deff /τ . Here τ is the chemical

time related to the planar premixed flame speed S0
L (used in this paper as unit speed

to non-dimensionalise velocities) by S0
L =
√

DT/τ . Therefore on dividing these two
equations, Damköhler’s second hypothesis is recovered, to leading order, in (4.18), as
can be seen by noting that

UT ≡ Ũeff

S0
L
=
√

1+ 8
945

Pe2 ≡
√

Deff

DT
. (6.3)

The results (4.14) and (4.18) may also be used to provide a possible explanation
of the so-called bending effect of the turbulent premixed flame speed when plotted
in terms of the turbulence intensity for fixed values of the Reynolds number (see
e.g. Bradley 1992; Ronney 1995). Therefore our distinguished limit, namely ε→∞
with Pe fixed (note that the Reynolds number and Péclet number are equal if Pr= 1),
mimics the experimental conditions of Bradley (1992) and can be used to shed some
light on the experimental findings. However, we leave a full discussion of this specific
turbulent combustion topic for future investigations given its unresolved and as yet
controversial issues.

Finally, it has been shown that, in the limit ε →∞, β →∞, the graphs of UT

in the constant- and variable-density cases are identical when plotted against a scaled
Péclet number

Pescaled = Pe(1− α), (6.4)

and graphs of the numerically calculated propagation speed against this scaled Péclet
number have also been provided.
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Appendix A. Cylindrical channel: asymptotic analysis in the limit ε→∞
As in § 3, we consider the steady equations with LeF = 1, so that only the

temperature equation needs to be considered, since yF = 1 − θ . We consider the
cylindrical coordinate system (r, z), with fluid velocity (ur, uz). In the limit ε→∞,
we introduce a rescaled coordinate

ξ = z
ε
, (A 1)

so that the governing equations (2.7)–(2.11) become

∂

∂ξ
(ρ(uz +U))+ ε 1

r
∂

∂r
(ρrur) = 0, (A 2)

ρ(uz +U)
∂uz

∂ξ
+ ερur

∂uz

∂r
+ ∂p
∂ξ
= Pr

(
4
3
∂2uz

∂ξ 2
+ ∂

2uz

∂r2
+ ε

2

r
∂

∂r

(
r
∂uz

∂r

)
+ ε

3

(
∂2ur

∂ξ∂r
+ 1

r
∂ur

∂ξ

))
, (A 3)

ρ(uz +U)
∂ur

∂ξ
+ ερur

∂ur

∂r
+ ε ∂p

∂r
= Pr

(
∂2ur

∂ξ 2
+ 4ε2

3r
∂

∂r

(
r
∂ur

∂r

)
+ ε

3r
∂uz

∂ξ

)
, (A 4)

ρ(uz +U)
∂θ

∂ξ
+ ερur

∂θ

∂r
= ∂2θ

∂ξ 2
+ ε

2

r
∂

∂r

(
r
∂θ

∂r

)
+ ω

1− α , (A 5)

ρ =
(

1+ α

1− αθ
)−1

, (A 6)

where

ω= β
2

2
ρ (1− θ) exp

(
β (θ − 1)

1+ α (θ − 1)

)
. (A 7)

These equations are subject to the boundary conditions

∂θ

∂r
= ∂yF

∂r
= ∂u
∂r
= v = ∂p

∂r
= 0 at r= 0, (A 8)

∂θ

∂r
= ∂yF

∂r
= u= v = 0 at r= 1, (A 9)

θ = 0, uz = A(1− r2)= εPe(1− r2), ur = 0 at ξ =−∞, (A 10a–c)

∂θ

∂ξ
= ∂u
∂ξ
= ∂v
∂ξ
= p= 0 at ξ =+∞. (A 11)

As in § 3, we now introduce expansions for ε→∞ in the form

U =− 1
2εPe+U0 + ε−1U1 + · · · ,

uz = εu0 + u1 + · · · , ur = v0 + ε−1v1 + · · · ,
θ = θ0 + ε−1θ1 + · · · , p= ε3p0 + ε2p1 + · · · ,

 (A 12)

where U0 is the leading-order approximation to the effective flame speed UT defined
in (2.20), which in this case is given by

UT ≡U + 1
2εPe. (A 13)
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Substituting (A 12) into (A 2)–(A 5), to leading order we obtain

∂

∂ξ

(
ρ0

(
u0 − 1

2
Pe
))
+ 1

r
∂

∂r
(ρ0rv0)= 0, (A 14)

∂p0

∂ξ
= Pr

r
∂

∂r

(
r
∂u0

∂r

)
, (A 15)

∂p0

∂r
= 0, (A 16)

1
r
∂

∂r

(
r
∂θ0

∂r

)
= 0. (A 17)

Equations (A 16) and (A 17) can be integrated with respect to r to give p0 = p0(ξ)

and θ0 = θ0(ξ), after considering the boundary conditions (A 8) and (A 9) on θ0, so
that ρ0 = ρ0(ξ) from (A 6).

Now we look for a separable solution for u0(ξ , y) in the form

u0(ξ , r)= û0(r)ǔ0(ξ). (A 18)

Substituting (A 18) into (A 15) gives

1
r
∂

∂r

(
r
∂ û0

∂r

)
= 1

ǔ0Pr
∂p0

∂ξ
, (A 19)

where C is a constant. Equation (A 19) can be integrated twice with respect to r, using
the boundary conditions (A 8) and (A 9), to yield

û0(r)=C(1− r2), (A 20)

so that
u0(ξ , r)= ǔ0(ξ)(1− r2), (A 21)

where C has been absorbed into ǔ0(ξ).
Integrating (3.11) with respect to r from r= 0 to r= 1, we obtain

∂

∂ξ

(
ρ0(ξ)

(
1
4

ǔ(ξ)− 1
4

Pe
))
= 0, (A 22)

after using boundary conditions (A 8) and (A 9) on v0. Equation (A 22) implies that

1
4ρ0(ξ)

(
ǔ0(ξ)− Pe

)= 1
4

(
ǔ0 (ξ→−∞)− Pe

)= 0, (A 23)

using the fact that ρ0(ξ→−∞)= 1 from (A 6) and boundary condition (A 10). Thus
ǔ0(ξ)= Pe, so that

u0 = Pe(1− r2). (A 24)

Equation (A 14) can then integrated with respect to r, using (A 24) and condition (A 8),
to yield

v0 =− 1
rρ0

∂ρ0

∂ξ
Pe
(

r2

4
− r4

4

)
. (A 25)
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Now, at O(ε) in (A 5) we have

ρ0

(
u0 − 1

2
Pe
)
∂θ0

∂ξ
= 1

r
∂

∂r

(
r
∂θ1

∂r

)
, (A 26)

which, after using (A 24) and condition (A 8), can be integrated twice with respect to
r to give

θ1 = ρ0
∂θ0

∂ξ
Pe
(

r2

8
− r4

16

)
+ θ̌1(ξ). (A 27)

Next we look to O(1) in (A 2) to find

∂

∂ξ

(
ρ1

(
u0 − 1

2
Pe
))
+ ∂

∂ξ
(ρ0 (u1 +U0))+ 1

r
∂

∂r
(ρ0v1)+ 1

r
∂

∂r
(ρ1v0)= 0. (A 28)

Equation (A 28) can be integrated first with respect to r from r= 0 to r= 1, utilising
the boundary conditions (A 8) and (A 9) on v0, and then with respect to ξ to give∫ 1

0
r
(
ρ1

(
u0 − 1

2
Pe
))

dr+
∫ 1

0
r (ρ0 (u1 +U0)) dr=K. (A 29)

To evaluate K, we use boundary conditions (A 10) to obtain

K =
∫ 1

0
r
(
ρ1(ξ→−∞)

(
u0(ξ→−∞)− 1

2
Pe
))

dr

+
∫ 1

0
r (ρ0(ξ→−∞) (u1(ξ→−∞)+U0)) dr= U0

2
. (A 30)

Finally, at O(1) of (A 5) we have

ρ0 (u1 +U0)
∂θ0

∂ξ
+ ρ1

(
u0 − 1

2
Pe
)
∂θ0

∂ξ
+ ρ0

(
u0 − 1

2
Pe
)
∂θ1

∂ξ
+ ρ0v0

∂θ1

∂r

= ∂
2θ0

∂ξ 2
+ 1

r
∂

∂r

(
r
∂θ2

∂r

)
+ ω0

1− α , (A 31)

where ω0(ξ) = ω(θ0, ρ0). Integrating (A 31) with respect to r from r = 0 to r = 1,
noting the boundary conditions (A 8) and (A 9) on θ and substituting (A 24), (A 25),
(A 27), (A 29) and (A 30) leads to

U0
∂θ0

∂ξ
− ∂

∂ξ

((
1+ 1

192
Pe2ρ2

0

)
∂θ0

∂ξ

)
= ω0

1− α , (A 32)

with

ρ0 =
(

1+ α

1− αθ0

)−1

,

ω0 = β
2

2
ρ0 (1− θ0) exp

(
β (θ0 − 1)

1+ α (θ0 − 1)

)
,

 (A 33)

subject to the boundary conditions

θ0(−∞)= 0, θ0ξ (+∞)= 0. (A 34a,b)
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