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Abstract 

We investigate the combined effects of thermal expansion and gravity on the initiation and evolution of 
triple flames. In particular, we provide a possible criterion for the thermal energy per unit depth required for 
triple flame ignition by a cylindrical ignition kernel. Further, we describe the transient evolution of triple 
flames after initiation. Steady, non-propagating, planar solutions representing “flame tubes” are determined. 
The flame tube solutions are unstable; in time-dependent simulations it is found that initial perturbations 
increasing the thermal energy of flame tubes lead to the propagation of a triple flame, while perturbations 
decreasing the thermal energy lead to extinction. Therefore it is concluded that the thermal energy of flame 
tubes may be used to define a possible ignition energy per unit depth for planar triple flames in the mixing 
layer, analogous to spherical flame balls for spherically expanding flames. This is the first paper to provide a 
detailed study of the ignition energy of planar triple flames. When gravity is not taken into account, flame 
tubes subject to thermal expansion are found not to induce a flow, so that the flame tube energy can be 
determined without having to solve the full Navier–Stokes equations. 

© 2016 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Understanding the transient dynamics of a
flame from initiation to steady propagation, and
in some cases instability, is a vital part of funda-
mental combustion research. In this paper we study
the problem of triple flame initiation in a mix-
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ing layer, taking the combined effects of thermal 
expansion and gravity into account. In particular, 
we provide a possible criterion for the ignition en- 
ergy per unit depth of a triple flame from a cylin- 
drical ignition kernel generated, for example, by a 
hot wire. Further, we study the transient evolution 

of triple flames after initiation. 
The problem of ignition in homogeneous mix- 

tures, which leads to the propagation of premixed 

flames, has been the focus of a large amount of 
research. In the particular case of spherically ex- 
panding premixed flames, a possible theoretical cri- 
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Fig. 1. An illustration of a pair of triple flames in a pla- 
nar channel of height L . Also illustrated on the diagram 

is the stationary, non-propagating “flame tube” solution 
that is used as initial condition in the transient triple flame 
simulations throughout the paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

erion for the energy required for ignition is pro-
ided by the thermal energy in the burnt gas of a
on-propagating, spherically symmetric solution
f the governing equations known as a Zeldovich
ame ball [1] . Flame balls have been found to
e typically unstable under adiabatic conditions,
nd small perturbations can lead to either an out-
ardly propagating flame or an inwardly propa-
ating flame and eventual extinction [1–4] . Fur-
her studies in the literature have investigated the
ransient dynamics of spherical premixed flames
rom an initial ignition kernel, depending on as-
ects such as heat loss and Lewis numbers (see
.g. [5–8] ). 

There has been considerably less focus on flame
gnition in situations where the reactants are non-
remixed. The work that has been done on both

aminar and turbulent non-premixed ignition is
ummarised in the detailed review paper [9] . Most
tudies on non-premixed flame ignition have been
oncerned with autoignition, sometimes referred to
s “self-ignition”. There are very few papers that
ave investigated the energy required for “forced ig-
ition” of non-premixed flames by an external heat
ource or spark. The transient dynamics of flames
n inhomogeneous mixtures from forced ignition
as been investigated using Direct Numerical Sim-
lations (DNS) in the laminar case in [10,11] , and
ore recently with the effects of turbulence in-

luded in [12–15] . These numerical studies do not,
owever, contain a detailed investigation of the en-
rgy required for ignition. To our knowledge there
ave been no dedicated investigations of the energy
equired for forced ignition of laminar planar triple
ames in mixing layers. 

Some recent papers have extended the concept
f Zeldovich flame balls to the inhomogeneous
ase, describing theoretically [16] and numerically
17] the existence and properties of flame balls in
eactive mixing layers. Similarly to Zeldovich flame
alls, these inhomogeneous flame balls may provide
 corresponding criterion for the minimum energy
or the successful ignition of axisymmetric flames
n the mixing layer. Here we extend the current un-
erstanding of flame ignition by providing a cri-
erion for the minimum ignition energy for triple
ames in the mixing layer, via a cylindrical ignition
ernel. This is achieved by first investigating steady,
lanar, non-propagating solutions of the governing
quations which we refer to as “flame tube” solu-
ions. Such solutions have been observed in previ-
us numerical simulations [18–21] where the planar
olutions are prone to cellular instabilities due to
ewis number effects [19] , but these studies were
ot concerned with ignition. More relevant to the

gnition problem are the papers [22] and [23] . These
tudies include investigations of “flame isolas” and
flame disks”, respectively, which are axisymmet-
ic, stationary solutions of the governing equations.
lthough [22] and [23] only partially address the ig-
ition problem, in the paper [23] , non-propagating
“flame disk” solutions are argued to indicate that
a minimum energy is required for ignition of 
axisymmetric flames in the mixing layer. To our un-
derstanding, no such study has yet been performed
for planar triple flames in the mixing layer, as inves-
tigated in this paper. 

In this paper, we also investigate the transient
evolution of propagating triple flames. Steadily
propagating triple flames are well studied. As-
pects of these structures that have been investigated
include preferential diffusion [24,25] , heat losses
[26–28] , reversibility of the chemical reaction
[29,30] , the presence of a parallel flow [31] and ther-
mal expansion [32,33] ; for further references see the
review papers [20] and [34] . Here we are specifically
interested in the combined effects of thermal ex-
pansion and gravity on the transient dynamics of 
triple flames, in situations where the planar diffu-
sion flame is stable [35] . 

The paper is structured as follows. In
Section 2 we formulate the problem and de-
scribe the numerical procedure. In Section 3 we
provide the results obtained from the numerical
solution of the governing equations. We end the
paper with conclusions and recommendations for
future work in Section 4 . 

2. Formulation 

We investigate triple flame propagation in an in-
finitely long channel of height L , where fuel is pro-
vided at the upper wall and oxidiser at the lower
wall ( Fig. 1 ). The walls are taken to be rigid, porous,
isothermal and of equal temperature. This configu-
ration has been used in several previous studies, by
ourselves and others (e.g. [22,31,33,35,36] ). We be-
lieve this configuration is difficult, but not necessar-
ily impossible, to achieve experimentally. From pre-
vious investigations, we expect the results obtained
in the current configuration to hold, at least quali-
tatively, in the 2D counterflow configuration. 

The governing equations for temperature, fuel
and oxidiser are coupled to the Navier–Stokes
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equations for the fluid velocity vector ˆ u to take
thermal expansion and gravity ˆ g into account. For
simplicity, the combustion is modelled as a single,
irreversible, one-step reaction of the form 

F + s O → (1 + s ) Products + q, 

where F denotes the fuel and O the oxidiser; s de-
notes the mass of oxidiser consumed and q the heat
released, both per unit mass of fuel. The overall re-
action rate ˆ ω is taken to follow an Arrhenius law of 
the form 

ˆ ω = ˆ ρB ̂

 Y F ˆ Y O 

exp 

(−E/R ̂

 T 

)
. 

Here ˆ ρ, ˆ Y F , ˆ Y O 

, R , ˆ T , B and E are the density,
the fuel mass fraction, the oxidiser mass fraction,
the universal gas constant, the temperature, the pre-
exponential factor and the activation energy of the
reaction, respectively. 

2.1. Governing equations and boundary conditions 

We adopt the low Mach number formulation
and assume that ˆ ρD T , ˆ ρD F and ˆ ρD O 

are constant,
where D T , D F and D O 

are the diffusion coefficients
of heat, fuel and oxidiser, respectively. We also as-
sume that the specific heat capacity c P , the ther-
mal conductivity λ and the dynamic viscosity μ are
constant. 

In this paper, we are concerned with the ini-
tiation of a pair of triple flames, which are ex-
pected to propagate in opposite directions [10,11] ;
we therefore impose symmetry conditions at the
centreline, which we take to be located at ˆ x = 0 ,
and solve the problem for ˆ x ≥ 0 . In the unburnt
gas at ˆ x = ±∞ we assume that the induced flow
is fully developed and the temperature and mass
fractions are “frozen”, denoted with a subscript u .
The walls are assumed to be rigid and to have equal
temperatures ˆ T = 

ˆ T u . The mass fractions are pre-
scribed by ˆ Y F = 

ˆ Y F u , ˆ Y O 

= 0 at the upper wall and
ˆ 
 F = 0 , ˆ Y O 

= 

ˆ Y Ou at the lower wall. 
Non-dimensional variables are defined by 

x = 

ˆ x 

L 

, y = 

ˆ y 
L 

, u = 

ˆ u 
S 

0 
L 

, v = 

ˆ v 
S 

0 
L 

, 

t = 

ˆ t 
L/S 

0 
L 

, θ = 

ˆ T − ˆ T u 

ˆ T ad − ˆ T u 

, y F = 

ˆ Y F 

ˆ Y F ,st 

, 

y O 

= 

ˆ Y O 

ˆ Y O,st 

, p = 

ˆ p 
ˆ ρ0 (S 

0 
L ) 2 

. 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(1)

The subscript “st” denotes values at the stoichio-
metric surface located at ˆ y = Y st , where in the un-
burnt gas 

Y st 

L 

= 

1 
1 + S 

. (2)

Here S ≡ s ̂  Y F u / ̂  Y Ou is a normalised stoichiometric
coefficient. The quantity ˆ T ad ≡ ˆ T u + q ̂  Y F ,st /c P is the
adiabatic flame temperature and S 

0 
L is the laminar

burning speed of the stoichiometric planar flame to
leading order for β � 1, 

S 

0 
L = 

(
4 Le F Le O 

β3 
Y O,st ( 1 −α) D T B exp ( −E/RT ad ) 

)1 / 2 

, 

where Le F = D T /D F and Le O 

= D T /D O 

are the 
fuel and oxidiser Lewis numbers, respectively, 
β ≡ E ( ̂  T ad − ˆ T u ) /R ̂

 T 

2 
ad is the Zeldovich num- 

ber or non-dimensional activation energy and 

α ≡ ( ̂  ρu − ˆ ρad ) / ̂  ρu is the thermal expansion coef- 
ficient. We set the Lewis numbers equal to unity 
in order to concentrate on the effects of thermal 
expansion and gravity on triple flames, without the 
complication of thermo-diffusive instabilities. Fol- 
lowing the method of [35] , we note that for unity 
Lewis numbers the mixture fraction Z , defined as 

Z = 

y F + θ

1 + S 

= 1 − S 

1 + S 

( y O 

+ θ ) (3) 

satisfies the reaction-free equation 

ρ
∂Z 

∂t 
+ ρu · ∇ Z = ε∇ 

2 Z. (4) 

We can therefore solve Eq. (4) and use Eq. (3) to 

find the fuel and oxidiser mass fractions if required. 
Thus the non-dimensional governing equations can 

be written 

∂ρ

∂t 
+ ∇ · ρu = 0 , (5) 

ρ
∂u 
∂t 

+ ρu · ∇u + ∇p = εPr 
(

∇ 

2 u + 

1 
3 
∇ ( ∇ · u ) 

)

+ 

ε2 PrRa 
α

( ρ − 1 ) 
ˆ g 

| ̂ g | , (6) 

ρ
∂θ

∂t 
+ ρu · ∇ θ = ε∇ 

2 θ + 

ε−1 ω 

1 − α
, (7) 

ρ
∂Z 

∂t 
+ ρu · ∇ Z = ε∇ 

2 Z, (8) 

ρ = 

(
1 + 

α

1 − α
θ

)−1 

, (9) 

which are subject to the boundary conditions 

θ = 0 , Z = y, u = v = 0 at y = 0 , y = 1 , 

(10) 

θ = 0 , Z = y, 
∂u 
∂x 

= 

∂v 
∂x 

= 0 at x = ∞ , 

(11) 

∂θ

∂x 

= 

∂Z 

∂x 

= u = 

∂v 
∂x 

= 0 at x = 0 , (12) 

and suitable initial conditions. 
Here 

ε = 

l F l = 

D T /S 

0 
L (13) 
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Fig. 2. Flame tube energy E versus ε for selected values 
of α and Ra . Also indicated on the figure for each case is 
the value of ε at which the triple flame propagation speed 
is zero, denoted εm 

. Flame tube solutions are not found 
for ε > εm 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s the flame-front thickness l Fl measured against the
nit length L . The remaining non-dimensional pa-
ameters are 

a = 

g ( ̂  ρu − ˆ ρad ) L 

3 

ν ˆ ρu D T 
, and Pr = 

ν

D T 
, 

hich are the Rayleigh number and the Prandtl
umber, respectively, where ν is the kinematic vis-
osity ν = μ/ ̃  ρu . Note that ε can be related to a
amköhler number (such as the one used in [35] )

y 

a = 

1 
ε2 (1 − α) 

. (14)

he non-dimensional reaction rate is 

 = 

β3 

4 
ρy F y O 

exp 

(
β(θ − 1) 

1 + α(θ − 1) 

)
, (15)

here y F and y O 

are given in terms of Z in
3) . We fix α = 0 . 85 for simplicity [33] . The non-
imensional problem is now fully formulated and

s given by Eqs. (5) –(15) . The non-dimensional pa-
ameters in this problem are α, β, Pr , Ra , ε and S .
n the next section we solve this problem numeri-
ally, with particular emphasis on the effect of ε,
and Ra for realistic values of Pr and β. We ne-

lect the effects of heat-loss, differential diffusion
nd the stoichiometric coefficient S ; these aspects
f the problem would be interesting to investigate

n future studies but are ignored here for the sake
f simplicity and clarity. 

.2. Numerical procedure 

Results are obtained by numerically solving
he problem (5) –(15) in the finite-element pack-
ge Comsol Multiphysics. This has been extensively
ested in combustion applications, including our
revious publications on diffusion flames [35] and
riple flames [33] , where more detailed descriptions
f the numerical procedure can be found. The do-
ain is covered by a grid of approximately 200,000

riangular elements, with local refinement around
he reaction zone. Solutions have been tested to be
ndependent of the mesh and the size of the do-

ain. Due to space limitations, only a fraction of 
he obtained solutions are given here; further solu-
ions can be found in [37] . In all simulations we fix
= 10 , Pr = 1 and S = 1 . 

. Results 

.1. Flame tubes 

To provide a criterion for the thermal energy re-
uired for initiation of triple flames, we first inves-
igate steady, planar, non-propagating solutions of 
qs. (5) –(15) , which we refer to as flame tubes . We
define the thermal energy E of a planar flame per
unit depth by 

E = 

∫ ∞ 

x = −∞ 

∫ 1 

y =0 
θ d y d x = 2 

∫ ∞ 

x =0 

∫ 1 

y =0 
θ d y d x. 

(16)

Flame tube solutions are found not to exist for
ε > εm 

, where εm 

is the value of ε above which pos-
itively propagating triple flames do not exist. The
critical Damköhler number, below which flame ig-
nition is not expected to be successful, can be found
by inserting εm 

into Eq. (14) . It should be noted that
technically flame tube solutions also do not exist
in the asymptotic limit ε → 0. This can be seen by
considering the problem (5) –(15) in the limit of infi-
nite activation energy and taking ε → 0. The prob-
lem reduces to finding stationary, two-dimensional
tubes in a homogeneous mixture; such a problem is
known to have no solution. This is because the lead-
ing order term for the temperature is governed by
the cylindrically symmetrical Laplace equation in
the unburnt gas, whose only solution that satisfies
the boundary conditions in the far field is θ = 0 .
This, of course, is a contradiction since the tem-
perature should be given by θ = 1 at the reaction
sheet. 

We plot the flame tube energy E versus ε for se-
lected values of α and Ra in Fig. 2 . It can be seen
that E monotonically increases with increasing ε in
all cases. When thermal expansion is present but
gravity is not taken into account, the flame tube en-
ergy for each value of ε is lower than in the constant
density case α = 0 , Ra = 0 . It can be seen that the
flame tube energy increases sharply as ε approaches
εm 

. 
Reaction rate contours of the flame tubes

can be seen by examining Figs. 3 and 4 (dis-
cussed in more detail in the next section),
which show the flame tubes used as initial
conditions for the unsteady calculations of 
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Fig. 3. Transient evolution of triple flames for α = 0 , 
Ra = 0 . Flame energy E is plotted for (a) ε = 0 . 05 and 
(b) ε = 0 . 12 , after a small energy-decreasing or energy- 
increasing perturbation is added to the unstable flame 
tube solution. Reaction rate contours (equally spaced 
up to ω max ) are plotted for triple flames with energy- 
increasing perturbations for (c) ε = 0 . 05 and (d) ε = 0 . 12 
(flame tube solutions shown at t = 0 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Transient evolution of triple flames subject to 
thermal expansion and gravity. Flame energy E is plot- 
ted for (a) ε = 0 . 12 , α = 0 . 85 , Ra = 0 and (b) ε = 0 . 1325 , 
α = 0 . 85 , Ra = 10 , 000 , after a small energy-decreasing 
or energy-increasing perturbation is added to the unsta- 
ble flame tube solution. Reaction rate contours (equally 
spaced up to ω max ) are plotted for triple flames with 
energy-increasing perturbations for (c) ε = 0 . 12 , α = 

0 . 85 , Ra = 0 and (d) ε = 0 . 1325 , α = 0 . 85 , Ra = 10 , 000 
(flame tube solutions shown at t = 0 ). 
triple flames. In situations where Ra = 0 ,
no flow is induced by the flame tubes, which
are symmetric about the line y = 0 . 5 . Therefore, in
this case the flame tube energy can be found with-
out solving the Navier–Stokes equations by solving
the steady form of Eqs. (7) –(15) with u = 0 . When
Ra > 0, flow is induced due to the temperature
gradient between the hot flame tube and the cold
fluid at x = ±∞ , causing a vortex which deforms
the flame tube ( Fig. 4 d). 

3.2. Triple flame evolution 

In this section, we perform time-dependent sim-
ulations of triple flames. As initial condition, we
use a flame tube with a small initial perturba-
tion that either increases or decreases the ther-
mal energy of the flame tube; the perturbations
are referred to as “energy-increasing” or “energy-
decreasing” perturbations, respectively, throughout
the rest of this section. The perturbations, which
have order of magnitude 10 −3 , are added to the sta-
tionary temperature field in a region surrounding
the midpoint of the domain, with size of the order
of magnitude of the stationary tube. For such per-
turbations, it has been checked that it is the sign
of the total perturbation energy that determines
flame evolution. It is worth noting that true tran-
sient ignition will be strongly dependent on initial 
conditions; for example, the growth time of time- 
dependent flame ball solutions after perturbations 
has been shown to be comparable to the growth rate 
of a linear stability analysis [3] . However, in this 
study we are concerned with testing the effect of 
adding or subtracting energy from flame tube so- 
lutions, to identify a possible criterion for the igni- 
tion energy of triple flames; instantaneous pertur- 
bations to the steady flame tube solutions are suffi- 
cient for this purpose. 

We begin with triple flame initiation and 

evolution in the constant density approximation 

α = Ra = 0 ( Fig. 3 ). Plotted in the figure are the 
flame energy E and reaction rate contours for flame 
tubes subject to either an energy-increasing or an 

energy-decreasing perturbation, for various val- 
ues of ε. These figures show that, if an energy- 
increasing perturbation is added, the flame tube so- 
lution will evolve in time into a steadily propagat- 
ing triple flame. This happens on a much shorter 
timescale for lower values of ε. If an energy- 
decreasing perturbation is added, the flame extin- 
guishes and the flame energy decays to zero. 
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Next we investigate the effects of thermal expan-
ion and gravity on triple flame initiation and evo-
ution ( Fig. 4 ). As in the constant density case, an
nergy-increasing perturbation to a flame tube so-
ution leads to the steady propagation of a triple
ame and an energy-decreasing perturbation leads
o extinction. Thermal expansion induces a shear
ow ahead of the flame due to the symmetry
oundary condition applied at x = 0 (not shown
ue to space limitations). The expanded gas pushes
he triple flame, increasing its propagation speed.
his is akin to the propagation of a 3D spheri-
ally expanding flame in the presence of thermal
xpansion. When gravity is present, a vortex is in-
uced ahead of the flame by the temperature gradi-
nt between the unburnt gas ahead of the flame and
he flame-front, causing the triple flame to curve
 Fig. 4 d); the shape of the triple flame in this case
grees with a previous study of steady triple flames
ubject to buoyancy effects [33] . 

In all cases it has been found that energy-
ncreasing perturbations to flame tubes lead to the
volution of triple flames, and energy-decreasing
erturbations lead to extinction. Therefore we con-
lude that the energy of these flame tube solutions
ay be used as a criterion for the ignition energy

er unit depth of a planar triple flame. In all simu-
ations, we have observed that the stationary flame
ube solutions are unstable irrespective of the am-
litude of the perturbation added. This is in line
ith physical expectations of the solutions to be lin-

arly unstable. 

. Conclusion 

In this paper, we have described steady, planar
olutions in the mixing layer which we have re-
erred to as “flame tubes”. The solutions are unsta-
le and we have shown that perturbations increas-

ng the thermal energy of flame tubes lead to triple
ame propagation, while perturbations decreasing
he thermal energy lead to extinction. Therefore we
ave concluded that the thermal energy of flame
ube solutions may provide a possible criterion for
he ignition energy per unit depth of planar triple
ames via a cylindrical ignition kernel, analogous
o spherical flame balls for spherically expanding
ames. A cylindrical ignition kernel could be gen-
rated, for example, by a hot wire. In particular, we
ave found that a criterion for the ignition energy
f triple flames can be given without solving the
avier–Stokes equations, if gravity is not present.
e have also shown how triple flames evolve after

nitiation from flame tubes, including the combined
ffects of thermal expansion and gravity. 

An extension of the present study would be to
nvestigate flame tubes in other mixing layers, such
s the counterflow configuration. Such structures
ould provide a corresponding criterion for the ig-
ition energy of triple flames in that configuration.
In particular, it would be interesting to examine
the effect of strain on such structures, given that
previous studies have found a critical strain rate
above which forced ignition is impossible [38] . Fu-
ture studies will also investigate the effect of dif-
ferent initial conditions on the energy required for
triple flame initiation and the transient dynamics
of triple flames in situations where the planar dif-
fusion flame is unstable due to gravitational effects.
It would also be of interest to study the stability
of flame tubes in more detail, including identifying
situations in which flame tubes are stable. 

Research Data 

All relevant research data is contained within
the figures in the publication. 
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