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Rayleigh–Bénard instability generated by a
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We investigate the Rayleigh–Bénard convection problem within the context of
a diffusion flame formed in a horizontal channel where the fuel and oxidizer
concentrations are prescribed at the porous walls. This problem seems to have received
no attention in the literature. When formulated in the low-Mach-number approximation
the model depends on two main non-dimensional parameters, the Rayleigh number
and the Damköhler number, which govern gravitational strength and reaction speed
respectively. In the steady state the system admits a planar diffusion flame solution;
the aim is to find the critical Rayleigh number at which this solution becomes unstable
to infinitesimal perturbations. In the Boussinesq approximation, a linear stability
analysis reduces the system to a matrix equation with a solution comparable to that
of the well-studied non-reactive case of Rayleigh–Bénard convection with a hot lower
boundary. The planar Burke–Schumann diffusion flame, which has been previously
considered unconditionally stable in studies disregarding gravity, is shown to become
unstable when the Rayleigh number exceeds a critical value. A numerical treatment
is performed to test the effects of compressibility and finite chemistry on the stability
of the system. For weak values of the thermal expansion coefficient α, the numerical
results show strong agreement with those of the linear stability analysis. It is found
that as α increases to a more realistic value the system becomes considerably more
stable, and also exhibits hysteresis at the onset of instability. Finally, a reduction in the
Damköhler number is found to decrease the stability of the system.
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1. Introduction
The presence of flames in chemically reacting systems, whether premixed or non-

premixed, naturally generates temperature gradients. Such systems are therefore prone
to buoyancy-driven instabilities which have a paradigm in Rayleigh–Bénard convection.
In this paper we revisit the Rayleigh–Bénard problem in the specific context of a
diffusion or non-premixed flame, a fundamental problem which seems to have received
no attention in the literature. The aim of the work is to complement the available
knowledge on flame stability by determining the critical conditions which define the
threshold of instability of a planar diffusion flame under gravitational effects.

The Rayleigh–Bénard problem itself has been important in work on the stability
of physical systems since the early studies at the beginning of the 20th century by
Bénard (1900) and Rayleigh (1916) on the natural convection of a fluid layer heated
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from below. The temperature gradient in the system causes the fluid at the bottom
of the layer to be lighter than the fluid at the top, an arrangement which becomes
unstable if the temperature gradient is strong enough. The instability is opposed by
the viscous forces of the fluid. It was in Lord Rayleigh’s seminal paper that it was
first demonstrated that a non-dimensional parameter which later became known as
the Rayleigh number must exceed a critical value in order for the aforementioned
instability to manifest itself. This parameter was defined in terms of the gravitational
acceleration g, the height of the fluid layer L, the temperature gradient β̂, and the
coefficients of thermal expansion α̂, thermal diffusivity κ and kinematic viscosity ν as

Ra= gα̂β̂L4

κν
. (1.1)

If the Rayleigh number exceeds its critical value, which may be denoted Rac, the
resulting instability resolves itself into a steady state of ‘convection rolls’, observed
by Bénard in his original experiments as a regular structure of hexagonal cells. The
problem of determining the critical Rayleigh number and characterizing the resulting
instabilities has been studied experimentally, numerically and analytically in a huge
amount of research, which we do not review here. For a complete overview of
the canonical problem see Chandrasekhar (1961, pp. 1–75) and literature reviews
by Getling (1998, pp. 1–26) and Bodenschatz, Pesch & Ahlers (2000); more recent
reviews concerning turbulence in Rayleigh–Bénard convection have been performed by
Ahlers, Grossmann & Lohse (2009) and Lohse & Xia (2010).

The stability of steady states has also formed a crucial aspect of the study of
both premixed and non-premixed flames. A thorough review of recent literature
concerning flame instabilities has been performed by Matalon (2009). A further review
concentrating on instabilities in premixed flames can be found in Bychkov et al.
(2007); here we concentrate on instabilities in non-premixed combustion.

There have been a large number of studies on the diffusive-thermal instability of
planar diffusion flames. Early studies focused on oscillatory instabilities of diffusion
flames for fuel and oxidizer Lewis numbers greater than 1 (Kirkbey & Schmitz 1966;
Cheatham & Matalon 1996a,b) before further studies including cellular instabilities
for values of the Lewis number below 1 (Kim, Williams & Ronney 1996; Kim
1997; Cheatham & Matalon 2000; Kukuck & Matalon 2001; Vance, Miklavcic &
Wichman 2001; Miklavčič, Moore & Wichman 2005; Metzener & Matalon 2006). The
common factor in these studies is the use of the ‘constant density approximation’
which simplifies the study of combustion phenomena by separating the hydrodynamics
from the equations for temperature and mass fractions. Recently this approximation
was dispensed with by Matalon & Metzener (2010) to investigate the effect of thermal
expansion on the stability of diffusion flames, again using the planar diffusion flame
as the unperturbed state. It was found that, although thermal expansion does not play
as crucial a role as it does for premixed flames, it influences the regions of parameter
space for which the diffusive-thermal instability occurs.

A key point in the stability analyses previously performed on the planar diffusion
flame in the absence of gravity is that of the unconditional stability of the
Burke–Schumann diffusion flame, which arises in the limit of infinite reaction rate.
Our study is motivated by the idea that the mechanism for the Rayleigh–Bénard
instability described above could be expected to have a similar effect on a layer of
fluid heated from below by a horizontal diffusion flame if buoyancy is taken into
account, leading to instabilities of a system previously considered unconditionally



466 P. Pearce and J. Daou

stable. There seems to our knowledge to be very little work addressing the effect of
gravity on planar diffusion flames in the literature. Stability studies that have taken
gravity into account have been focused on the flickering motion of diffusion flames
(Buckmaster & Peters 1988; Arai, Sato & Amagai 1999; Jiang & Luo 2000), diffusion
flames over a solid fuel (Wu & Chen 2003) or triple flames aligned with the gravity
vector (Echekki, Chen & Hegde 2004).

In the present study we consider the stability of a horizontal planar diffusion flame
in an infinitely long channel of given height under the effects of gravity. The main
aim is to find the critical conditions for instability in the form of the critical value
of a suitably defined Rayleigh number which defines the threshold of instability. An
investigation into the instabilities in this problem will provide a crucial step towards
a full understanding of the interaction between diffusion flames and hydrodynamics.
Further areas that could benefit include studies into triple flames (which leave a
trailing diffusion flame behind them) under gravitational effects.

We formulate the problem in the low-Mach-number approximation to filter out
acoustic instabilities; a derivation of this formulation in the context of combustion
was presented by Rehm & Baum (1978) and Majda & Sethian (1985). Further, in
order to treat the problem analytically as far as possible we employ the Boussinesq
approximation commonly used to study non-reactive Rayleigh–Bénard convection,
which was derived by Boussinesq (1903). A rigorous derivation of this model from
the general equations of combustion theory has been performed by Matkowsky &
Sivashinsky (1979). The results of a linear stability analysis in this formulation can be
compared to a numerical treatment of the non-Boussinesq equations in order to test the
effect of compressibility on the system.

The paper is structured as follows. We begin in § 2 with a dimensional formulation
of the low-Mach-number model, which we then non-dimensionalize and simplify in
the Boussinesq approximation. We proceed in § 3 with an asymptotic analysis in the
Burke–Schumann limit of infinite Damköhler number, followed by a linear stability
analysis in § 4 using the planar Burke–Schumann flame as the base state. In § 5
we solve the linear stability problem for the growth rate eigenvalue numerically and
analytically as far as possible to investigate the Rayleigh number at which the planar
Burke–Schumann flame becomes unstable. In § 6 we present the results of the linear
stability analysis, including how the critical Rayleigh number depends on the position
of the flame in the channel. Finally, we compare these results in § 7 with a full
numerical treatment to investigate the accuracy of the Boussinesq approximation and
the effects of compressibility upon the stability of the system, followed by a short
investigation of the effect of finite chemistry. The paper is closed with a discussion of
the main findings and recommendations for future related studies.

2. Formulation
We investigate the problem of the stability of a planar diffusion flame in an

infinitely long channel of height L. The channel walls are assumed to be porous
with the fuel being provided at the upper wall and the oxidizer provided at the lower
wall (see figure 1); for simplicity, the temperatures of the walls are assumed to be
equal. Although this setup may be difficult to achieve experimentally, it is adopted
here as a simple theoretical model to aid understanding of the effect of gravity on the
planar diffusion flame. A similar setup has been used in several previous theoretical
investigations (see e.g. Sohn, Chung & Kim 1999; Buckmaster & Jackson 2000; Daou
& Al-Malki 2010). Since we are taking the effects of density changes and gravity into
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FIGURE 1. An illustration of a planar diffusion flame in a channel of height L with the fuel
provided at the upper wall where ŶF = ŶF0, ŶO = 0 and the oxidizer provided at the lower wall
where ŶF = 0, ŶO = ŶO0. Both walls are assumed to be rigid and to have equal temperatures
T̂ = T̂0.

account, the governing equations will consist of the Navier–Stokes equations, coupled
to equations for temperature and mass fractions of fuel and oxidizer. The combustion
is modelled as a single irreversible one-step reaction of the form

F + sO→ (1+ s)Products+ q, (2.1)

where F denotes the fuel and O the oxidizer. The quantity s denotes the mass of
oxidizer consumed and q the heat released, both per unit mass of fuel.

The overall reaction rate ω̂ is taken to follow an Arrhenius law of the form

ω̂ = ρ̂BŶFŶO exp(−E/RT̂). (2.2)

Here ρ̂, ŶF, ŶO, R, T̂ , B and E are the density, the fuel mass fraction, the oxidizer
mass fraction, the universal gas constant, the temperature, the pre-exponential factor
and the activation energy of the reaction, respectively.

2.1. Governing equations and boundary conditions
To formulate the problem we adopt the low-Mach-number, common in flame theory
and more rigorously justified using asymptotic analyses in several studies, such
as those by Rehm & Baum (1978) and Majda & Sethian (1985). Under this
approximation, the governing equations are

∂ρ̂

∂ t̂
+∇ · (ρ̂û)= 0, (2.3)

ρ̂
∂û
∂ t̂
+ ρ̂û ·∇û+∇P̂= µ (∇2û+ 1

3∇
(
∇ · û

))+ ρ̂ĝ, (2.4)

ρ̂
∂T̂

∂ t̂
+ ρ̂û ·∇T̂ − ∂P̂

∂ t̂
= ρ̂DT∇2T̂ + q

cP
ω̂, (2.5)

ρ̂
∂ŶF

∂ t̂
+ ρ̂û ·∇ŶF = ρ̂DF∇2ŶF − ω̂, (2.6)

ρ̂
∂ŶO

∂ t̂
+ ρ̂û ·∇ŶO = ρ̂DO∇2ŶO − sω̂, (2.7)

P̂= ρ̂RT̂, (2.8)
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where ˆ denotes dimensional terms and DT , DF, and DO denote the diffusion
coefficients of heat, fuel and oxidizer respectively. Here ρ̂DT , ρ̂DF and ρ̂DO are
all assumed constant, as are the specific heat capacity cP, thermal conductivity λ and
dynamic viscosity µ.

As shown in figure 1 the walls are assumed to be rigid, porous and at the same
temperature, giving the boundary conditions

T̂ = T̂0, ŶF = 0, ŶO = ŶO0, û= v̂ = 0, at ŷ= 0, (2.9)
T̂ = T̂0, ŶF = ŶF0, ŶO = 0, û= v̂ = 0, at ŷ= L. (2.10)

Owing to the assumption of low Mach number, the spatial variations in pressure are
small. The total pressure can therefore be split into a background term consisting of
thermodynamic pressure and a perturbational term consisting of hydrostatic pressure
and hydrodynamic pressure (see Rehm & Baum 1978). We define the hydrodynamic
pressure as

p̂
(
x̂, t̂
)= P̂

(
x̂, t̂
)− P̂0 − P̂s

(
x̂
)
, (2.11)

where P̂0 is the thermodynamic pressure, which we assume to be constant (see
Buckmaster & Ludford 1983, p. 14) and given by the equation of state (2.8) as

P̂0 = ρ̂0RT̂0. (2.12)

Here ρ̂0 is the density in the absence of combustion. P̂s(x̂) is the hydrostatic pressure
which satisfies the equation

∇P̂s = ρ̂0ĝ. (2.13)

This is found by considering (2.4) in the frozen limit with no flow (i.e. in hydrostatic
equilibrium) and noting that, following from (2.12), the ambient atmosphere in the
absence of heating must be taken to have constant density ρ̂0. Subtracting (2.13) from
(2.4) then gives

ρ̂
∂û
∂ t̂
+ ρ̂û ·∇û+∇p̂= µ (∇2û+ 1

3∇
(
∇ · û

))+ (ρ̂ − ρ̂0

)
ĝ. (2.14)

Now, since

p̂
(
x̂, t̂
)+ P̂s

(
x̂
)

P̂0

= O(M2), (2.15)

where M is the Mach number (see Paillere et al. 2000), the perturbational pressure
term can be neglected in the ideal gas equation (2.8), which can then be written
P̂0 = ρ̂RT̂ or, after considering (2.12),

ρ̂T̂ = ρ̂0T̂0. (2.16)

Before continuing we note that (2.5)–(2.7) have a steady, one-dimensional solution
with no flow which, for large activation energy E, as typically encountered in
combustion, is very close to the frozen solution (with zero reaction rate ω̂) given by

T̂ = T̂0, (2.17)

ŶF = ŶF0
ŷ

L
, (2.18)

ŶO = ŶO0

(
1− ŷ

L

)
. (2.19)
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Equations (2.17)–(2.19) determine the location of the stoichiometric surface ŷ = ŷst,
where ŶO = sŶF, and the values of the mass fractions there in the absence of
combustion as

ŷst

L
= 1

1+ S
, ŶF,st = ŶF0

1+ S
, ŶO,st = SŶO0

1+ S
, (2.20)

where S≡ sŶF0/ŶO0 is a normalized stoichiometric coefficient.
We now introduce the non-dimensional variables

x= x̂

L
, y= ŷ

L
, u= û

DT/L
, v = v̂

DT/L
,

t = t̂

L2
/

DT
, θ = T̂ − T̂0

T̂ad − T̂0

, yF = ŶF

ŶF,st

,

yO = ŶO

ŶO,st

, p= p̂

p̂0
;


(2.21)

note that p is the small variation in pressure with reference unit p̂0 = (DT/L)
2ρ̂0.

Here the reference length L is the height of the channel. T̂ad is the adiabatic flame
temperature given by T̂ad = T̂0 + qŶF,st/cP. The non-dimensional governing equations
are then

∂ρ

∂t
+∇ · (ρu)= 0, (2.22)

ρ
∂u
∂t
+ ρu ·∇u+∇P∗ = Pr∇2u+ PrRa

α
(ρ − 1)

g
|g| , (2.23)

ρ
∂θ

∂t
+ ρu ·∇θ =∇2θ + Daω, (2.24)

ρ
∂yF

∂t
+ ρu ·∇yF = 1

LeF
∇2yF − Daω, (2.25)

ρ
∂yO

∂t
+ ρu ·∇yO = 1

LeO
∇2yO − Daω, (2.26)

where α is the thermal expansion coefficient α = (T̂ad − T̂0)/T̂ad. Note that P∗ is a
modified pressure given by P∗ = p − (Pr/3)(∇ · u). The non-dimensional parameters
are

Ra= g(T̂ad − T̂0)L3

νT̂adDT

, Da= 4L2

β3DT
LeFLeOBŶO,st exp(−E/RT̂ad),

Pr = µcP

λ
, LeF = DT

DF
, LeO = DT

DO
,

 (2.27)

which are the Rayleigh number, the Damköhler number, the Prandtl number and
the fuel and oxidizer Lewis numbers, respectively. Here, β is the Zeldovich
number or non-dimensional activation energy defined as β = E(T̂ad − T̂0)/RT̂2

ad. It
is worth mentioning that we have defined the Rayleigh number to be of the form
Ra = g1TL3

/
νTrDT , where 1T measures the temperature difference and Tr is a

reference temperature taken here to be T̂ad. This form has been adopted previously in
the literature, for example in Fröhlich, Laure & Peyret (1992), where the reference
temperature was taken to be an average value.
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The non-dimensional reaction rate is given by

ω = β3

4LeFLeO
ρyFyO exp

(
β(θ − 1)

1+ α(θ − 1)

)
(2.28)

and the ideal gas equation (2.16) takes the non-dimensional form

ρ =
(

1+ α

1− α θ
)−1

. (2.29)

Finally, (2.9)–(2.10) and (2.20) imply that the boundary conditions are

θ = 0, yF = 0, yO = S+ 1
S

, u= v = 0, at y= 0, (2.30)

θ = 0, yF = 1+ S, yO = 0, u= v = 0, at y= 1. (2.31)

The non-dimensional problem is now fully formulated and is given by (2.22)–(2.29)
with boundary conditions (2.30) and (2.31). The non-dimensional parameters in this
problem are α, β, Pr, Ra, Da, S, LeF and LeO.

2.2. Mixture fraction formulation
2.2.1. Formulation

We can simplify the problem by making the assumption that LeF = LeO = 1. In this
case we note that, from (2.24)–(2.26) and the boundary conditions (2.30)–(2.31), the
quantity

Φ = yF + SyO + (S+ 1)(θ − 1) (2.32)

satisfies the equation

ρ
∂Φ

∂t
+ ρu ·∇Φ =∇2Φ, (2.33)

subject to the boundary conditions

Φ = 0 at y= 0 and y= 1. (2.34)

Clearly Φ = 0 is a stationary solution of (2.33)–(2.34). This will be the only solution
we retain, in view of the focus of our linear stability analysis on the base state with no
flow and Φ = 0. A justification for retaining only this solution is presented below.

For solutions that are periodic in x of period L, define the L2 scalar product

〈Φ,Ψ 〉 =
∫ L

x=0

∫ 1

y=0
ΦΨ dx dy, (2.35)

with ‖Φ‖2 = 〈Φ,Φ〉. Then (2.33) leads to〈
ρ
∂Φ

∂t
, Φ

〉
+ 〈ρu ·∇Φ,Φ〉 = 〈∇2Φ,Φ

〉
. (2.36)

Using integration by parts and (2.22), this can be written

1
2

d
dt
〈ρΦ,Φ〉 = − (‖Φx‖2 + ‖Φy‖2

)
, (2.37)

or, using the Poincaré inequality and the fact that 0< ρ 6 1,

1
2

d
dt
〈ρΦ,Φ〉6−c2‖Φ‖2 6−c2 〈ρΦ,Φ〉 , (2.38)
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for some constant c. Hence,

〈ρΦ,Φ〉6Φ0 exp(−2c2t), (2.39)

where Φ0 = 〈ρΦ,Φ〉 (t = 0). We therefore conclude that

lim
t→∞

Φ = 0, (2.40)

which justifies retaining only the stationary solution Φ = 0.
It follows on using (2.32) that

yF + SyO + (S+ 1)θ = S+ 1. (2.41)

We now observe, by adding (2.24) and (2.25), that the quantity yF + θ satisfies the
equation

ρ
∂ (yF + θ)

∂t
+ ρu ·∇ (yF + θ)=∇2 (yF + θ) , (2.42)

subject to the boundary conditions

yF + θ = 0 at y= 0, (2.43)
yF + θ = 1+ S at y= 1. (2.44)

This suggests defining the ‘mixture fraction’ Z by

yF + θ = (1+ S)Z, (2.45)

which implies that

yO + θ = S+ 1
S

(1− Z). (2.46)

The governing equations (2.22)–(2.26) then become

∂ρ

∂t
+∇ · (ρu)= 0, (2.47)

ρ
∂u
∂t
+ ρu ·∇u+∇P∗ = Pr∇2u+ PrRa

α
(ρ − 1)

g
|g| , (2.48)

ρ
∂θ

∂t
+ ρu ·∇θ =∇2θ + Daω, (2.49)

ρ
∂Z

∂t
+ ρu ·∇Z =∇2Z, (2.50)

where

ω = β
3

4
ρ ((1+ S)Z − θ)

(
1+ S

S
(1− Z)− θ

)
exp

(
β(θ − 1)

1+ α(θ − 1)

)
, (2.51)

and ρ is given by (2.29). These equations are subject to the boundary conditions

θ = 0, Z = 0, u= v = 0, at y= 0, (2.52)
θ = 0, Z = 1, u= v = 0, at y= 1. (2.53)

2.2.2. Stationary planar diffusion flame
The problem defined by (2.47)–(2.53) admits a stationary planar solution with no

flow given by Z = y. The temperature can then be determined, using (2.49), by the
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FIGURE 2. S-shaped curve generated by plotting the maximum temperature of the planar
diffusion flame against the Damköhler number with labelled extinction (E) and ignition (I)
points.

numerical solution to the equation

d2θ

dy2
+ Da

β3

4

(
1+ α

1− α θ
)−1

((1+ S)y− θ)
(

1+ S

S
(1− y)− θ

)
× exp

(
β(θ − 1)

1+ α(θ − 1)

)
= 0, (2.54)

with

θ = 0 at y= 0, (2.55)
θ = 0 at y= 1. (2.56)

Note that the Rayleigh number merely affects the pressure (as dictated by (2.48)) in
the one-dimensional stationary system and does not affect the solution for temperature.

We now let β, α and S take typical values of 10, 0.85 and 1 respectively and solve
(2.54) with conditions (2.55) and (2.56) for selected values of the Damköhler number
Da. We use the boundary value problem solver BVP4C, a finite difference code that
implements the three-stage Lobatto IIIa formula in Matlab (see Shampine, Kierzenka
& Reichelt 2000). We then plot the maximum temperature of the solution against
Da. Figure 2 shows the S-shaped curve that is generated; this is a classical curve
characterizing diffusion flames and has been comprehensively studied in the context of
the constant-density approximation (see Liñán 1974). The upper and lower branches
are known as the strongly burning and weakly burning branches respectively, and
both have been shown to be stable in the context of constant-density diffusion flames,
while the middle branch has been shown to be unstable (see Buckmaster, Nachman &
Taliaferro 1983).

Notable in figure 2 is the presence of an extinction and an ignition value of the
Damköhler number represented by points E and I respectively; for values of Da below
the extinction value the strongly burning solution cannot exist and for Da above the
ignition value there is no weakly burning solution.
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We are interested in instabilities caused by the effect of the hydrodynamics on the
upper branch of the S-shaped curve, in particular in the Burke–Schumann limit of
infinite Damköhler number. In § 7, we will numerically solve the governing equations
in the mixture fraction formulation to investigate these instabilities; however, in
order to treat the problem analytically as far as possible we now proceed with a
reformulation of the problem in the Boussinesq approximation.

2.3. Boussinesq approximation
For a detailed derivation of the governing equations of combustion theory in the
Boussinesq approximation in the context of a premixed flame see Sivashinsky (1977).
Here we use a similar approach and assume that the thermal expansion parameter α is
small. Thus we expand (2.29) as α→ 0 to obtain

ρ = 1− αθ + O
(
α2
)
. (2.57)

Using this result, and expanding all variables in successive powers of α in
(2.47)–(2.53), yields to leading order

∇ ·u= 0, (2.58)
∂u
∂t
+ u ·∇u+∇p= Pr∇2u− PrRaθ

g
|g| , (2.59)

∂θ

∂t
+ u ·∇θ = ∇2θ + Da

β3

4
((1+ S)Z − θ)

(
1+ S

S
(1− Z)− θ

)
× exp (β(θ − 1)) , (2.60)

∂Z

∂t
+ u ·∇Z =∇2Z, (2.61)

which are subject to the boundary conditions (2.52)–(2.53).
We have thus reduced the number of equations in the unity-Lewis-number case so

that the problem is now given by (2.58)–(2.61) with boundary conditions (2.52)–(2.53).
We proceed with an asymptotic analysis of the problem in the infinitely fast chemistry
limit Da→∞, which will reduce the problem to a form comparable to the classic
non-reactive case studied by Chandrasekhar (1961) and others.

3. Asymptotic analysis
We now study the problem of the Burke–Schumann diffusion flame, which arises in

the limit of infinite Damköhler number. In this case yFyO = 0 throughout the domain to
prevent an unbounded reaction rate, except at an (infinitely thin) reaction sheet located
at y= yst(t, x), say, where the temperature is equal to its adiabatic value. Hence, using
(2.45)–(2.46),

yF = (1+ S)Z − θ = 0, y< yst, (3.1)

yO = 1+ S

S
(1− Z)− θ = 0, y> yst, (3.2)

lim
y→y±st

θ = 1. (3.3)

Thus the domain is split into two parts: the region above the reaction sheet and the
region below it, with

Z = 1
S+ 1

θ, y< yst, (3.4)

Z = 1− S

S+ 1
θ, y> yst. (3.5)
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Note that (3.3) and (3.4)–(3.5) imply that

lim
y→y±st

Z = 1
S+ 1

= Zst, (3.6)

which defines the stoichiometric mixture fraction Zst.
We expand all variables outside the thin reaction zone, as Da→∞, in terms of the

thickness of the reaction zone δ, where

δ ∼ Da−1/3� 1. (3.7)

This scaling follows from a reactive–diffusive balance in the reaction sheet. Indeed,
writing yF ∼ δy′F, yO ∼ δy′O and θ ∼ 1+ δθ ′ with n= δn′ inside the reaction sheet gives,
from the leading order of (2.24),

∂2θ ′

∂n′2
= Daδ3ω′, (3.8)

where ω′ = O(1). Thus, since the diffusion term and the reaction term (which are
given by the left-hand side and the right-hand side of the equation above, respectively)
must balance, we have the required scaling. We therefore write the outer expansions as

u= u0 + u1

Da1/3
+ · · ·, p= p0 + p1

Da1/3
+ · · ·,

θ = θ 0 + θ 1

Da1/3
+ · · ·, Z = Z0 + Z1

Da1/3
+ · · ·.

 (3.9)

We now substitute into the governing equations (2.58)–(2.61) which become, to
leading order

∂u0

∂x
+ ∂v

0

∂y
= 0, (3.10)

∂u0

∂t
+ u0 ∂u0

∂x
+ v0 ∂u0

∂y
+ ∂p0

∂x
= Pr

(
∂2u0

∂x2
+ ∂

2u0

∂y2

)
, (3.11)

∂v0

∂t
+ u0 ∂v

0

∂x
+ v0 ∂v

0

∂y
+ ∂p0

∂y
= Pr

(
∂2v0

∂x2
+ ∂

2v0

∂y2

)
+ PrRaθ 0, (3.12)

∂θ 0

∂t
+ u0 ∂θ

0

∂x
+ v0 ∂θ

0

∂y
= ∂

2θ 0

∂x2
+ ∂

2θ 0

∂y2
, (3.13)

where we have

θ 0 = (1+ S)Z0 for y< yst and θ 0 = 1+ S

S

(
1− Z0

)
for y> yst (3.14)

from (3.4)–(3.5), so that the equation for Z0 is not necessary. These equations are
subject to the boundary conditions

u0 = v0 = θ 0 = 0 at y= 0, (3.15)
u0 = v0 = θ 0 = 0 at y= 1, (3.16)

from (2.52)–(2.53). To close the problem we need to provide jump conditions across
the reaction sheet located at y= yst(t, x). These are given by[

θ 0
]= [u0

]= [v0
]= 0, (3.17)



Rayleigh–Bénard instability generated by a diffusion flame 475

P

n

Reaction
sheet

FIGURE 3. A point P on the reaction sheet and its normal coordinate.

[
∂u0

∂n

]
= [p0

]− Pr

[
∂v0

∂n

]
= 0, (3.18)

lim
y→y±st

θ 0 = 1,
∂θ 0

(
y−st

)
∂n

+ S
∂θ 0

(
y+st

)
∂n

= 0, (3.19)

where [f ] = f
(
y+st

) − f
(
y−st

)
and n is a coordinate normal to the reaction sheet. A

derivation of these in a general context has been presented by Cheatham & Matalon
(2000), who assumed a large activation energy parameter β � 1, leading to leakages
of the components through the reaction sheet. Since this is not the case here, for
the convenience of the reader a short explanation of the derivation of conditions
(3.17)–(3.19) is given in the remainder of this section, which can be skipped by those
familiar with such an approach.

Consider a small neighbourhood of a point P on the reaction sheet, which has
normal n as shown in figure 3. We temporarily consider a coordinate system with
origin P and the y-axis directed along n. Thus in a small neighbourhood of P the
reaction sheet is located at y = 0. We begin by assuming all state variables are
continuous across the reaction sheet:[

θ 0
]= [Z0

]= 0, (3.20)

with the notation [f ]= f
(
y= 0+

)− f
(
y= 0−

)
.

Now we introduce a stretched variable η given by

y= η

Da1/3
(3.21)

and inner expansions in the thin reaction layer for all variables in terms of the
thickness of the reaction sheet δ ∼ Da−1/3,

u= u0 + u1

Da1/3
+ · · ·, p= p0 + p1

Da1/3
+ · · ·,

θ = θ0 + θ1

Da1/3
+ · · ·, Z = Z0 + Z1

Da1/3
+ · · ·.

 (3.22)

Note that a subscript denotes successive terms in the inner expansion and a superscript
denotes successive terms in the outer expansion of a variable. The inner and outer
variables must satisfy matching conditions given by

uinner (η→±∞)= uouter

(
y→ 0±

)
, (3.23)

for the velocity (and similar conditions on the other variables). Note that by expanding
the outer solution around y= 0 we find

u0 (η→±∞)= u0
(
y→ 0±

)
, (3.24)

u1 (η→±∞)= η∂u
0
(
y→ 0±

)
∂y

+ u1
(
y→ 0±

)
(3.25)
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for velocity (and similar conditions on the other variables). We substitute the inner
variables into (2.58)–(2.61) and apply the matching conditions in order to derive jump
conditions for the outer variables across the reaction sheet located at y= 0.

To leading order in (2.58)–(2.59), after substituting in the inner expansions (3.22),
we find

∂2u0

∂η2
= ∂v0

∂η
= 0, (3.26)

which can be integrated, using matching condition (3.24), to find

u0 = const, v0 = const, (3.27)

so that [
u0
]= [v0

]= 0. (3.28)

At O
(
Da1/3

)
in the u momentum equation (2.59), after noting (3.27), we have

∂2u1

∂η2
= 0. (3.29)

Differentiating matching condition (3.25) with respect to η and applying to an
integration of (3.29) then leads to [

∂u0

∂y

]
= 0. (3.30)

Similarly, we look to O
(
Da1/3

)
in the v momentum equation (2.59) and apply the

differentiated form of matching condition (3.25) to find[
p0
]− Pr

[
∂v0

∂y

]
= 0. (3.31)

Since the temperature is adiabatic at the flame we already have condition (3.3) on
the outer temperature profile, which gives

lim
y→0±

θ 0 = 1. (3.32)

Finally, we have the jump condition on the mixture fraction, given by[
∂Z0

∂y

]
= 0, (3.33)

which is found by substituting (3.22) into (2.61) and integrating across the reaction
sheet. From the relations (3.14) between θ 0 and Z0, this gives the final condition

∂θ 0
(
y= 0−

)
∂y

+ S
∂θ 0

(
y= 0+

)
∂y

= 0. (3.34)

The jump conditions above are valid at y = 0 in the coordinate system chosen. We
can now generalize this to all points lying on the reaction sheet instead of just a
neighbourhood of P (since P is arbitrary) and thus, by substitution of y with the
normal coordinate n, the conditions at the reaction sheet are given by conditions
(3.17)–(3.19) across y= yst.



Rayleigh–Bénard instability generated by a diffusion flame 477

4. Linear stability analysis
Dropping the superscript notation from (3.10)–(3.14) gives the governing equations

as
∂u

∂x
+ ∂v
∂y
= 0, (4.1)

∂u

∂t
+ u

∂u

∂x
+ v ∂u

∂y
+ ∂p

∂x
= Pr

(
∂2u

∂x2
+ ∂

2u

∂y2

)
, (4.2)

∂v

∂t
+ u

∂v

∂x
+ v ∂v

∂y
+ ∂p

∂y
= Pr

(
∂2v

∂x2
+ ∂

2v

∂y2

)
+ PrRaθ, (4.3)

∂θ

∂t
+ u

∂θ

∂x
+ v ∂θ

∂y
= ∂

2θ

∂x2
+ ∂

2θ

∂y2
, (4.4)

θ = (1+ S)Z for y< yst, θ = 1+ S

S
(1− Z) for y> yst. (4.5)

These are to be solved on both sides of the reaction sheet located at y = yst, with the
boundary conditions

θ = u= v = 0 at y= 0, (4.6)
θ = u= v = 0 at y= 1, (4.7)

and the jump conditions

[θ ]= [u]= [v]= 0, (4.8)[
∂u

∂n

]
= [p]− Pr

[
∂v

∂n

]
= 0, (4.9)

lim
y→y±st

θ = 1,
∂θ
(
y−st

)
∂n

+ S
∂θ
(
y+st

)
∂n

= 0 (4.10)

across y= yst (where n denotes a coordinate normal to the reaction sheet).

4.1. Base state
Equations (4.1)–(4.4) admit a stationary planar solution with no flow given by, using
bars to denote the base state,

dp̄

dy
= PrRaθ̄ ,

d2θ̄

dy2
= 0, (4.11)

subject to boundary conditions (4.6) and (4.7). Jump conditions (4.8)–(4.10) become[
θ̄
]= [p̄]= 0, (4.12)

lim
y→ȳ±st

θ̄ = 1,
dθ̄
(
ȳ−st

)
dy

+ S
dθ̄
(
ȳ+st

)
dy

= 0, (4.13)

where [f ] = f
(
ȳ+st

) − f
(
ȳ−st

)
. It follows from (4.11)–(4.13) and conditions (4.6) and

(4.7) that

θ̄ = y

ȳst
, y< ȳst, (4.14)

θ̄ = 1− y

1− ȳst
, y> ȳst. (4.15)
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Thus, using the condition on the right of (4.13),

ȳst = 1
1+ S

, (4.16)

so that

θ̄ = (1+ S)y, y< ȳst, (4.17)

θ̄ = 1+ S

S
(1− y), y> ȳst. (4.18)

Finally, the base-state pressure profile p̄ can be found by integrating the equation on
the left of (4.11) with respect to y.

4.2. Linear stability problem
We now perturb the base state by writing

u= εũ, v = εṽ, p= p̄+ εp̃, θ = θ̄ + εθ̃ , yst = ȳst + εỹst, (4.19)

where ε � 1 is a small parameter measuring the magnitude of the perturbations
(denoted by tilde). To O(ε) in (4.1)–(4.4) we find

∂ ũ

∂x
+ ∂ṽ
∂y
= 0, (4.20)

∂ ũ

∂t
+ ∂ p̃

∂x
= Pr∇2ũ, (4.21)

∂ṽ

∂t
+ ∂ p̃

∂y
= Pr∇2ṽ + PrRaθ̃ , (4.22)

∂θ̃

∂t
+ ṽ dθ̄

dy
=∇2θ̃ . (4.23)

The wall boundary conditions on the perturbed variables are given by, using
(4.6)–(4.7),

θ̃ = ũ= ṽ = 0 at y= 0, (4.24)

θ̃ = ũ= ṽ = 0 at y= 1. (4.25)

Finally, we transfer the conditions (4.8)–(4.10) at the reaction sheet y = yst(t, x) to
y= ȳst by using a Taylor expansion around yst = ȳst + εỹst. For example,

θ(yst)= θ(ȳst + εỹst)= θ (ȳst)+ (yst − ȳst)
(
θy (ȳst)

)+ · · · (4.26)

which, using the perturbation to θ in (4.19), becomes

θ(yst)= θ̄ (ȳst)+ εθ̃(ȳst)+ · · · + εỹstθ̄y(ȳst)+ · · · (4.27)

and therefore, at O (ε) of the condition to the left of (4.10),

θ̃ =−ỹstθ̄y at y= ȳ±st . (4.28)

Hence, using the base-state solution (4.17)–(4.18),

θ̃ =−ỹst(1+ S) at y= ȳ−st , (4.29)

θ̃ = ỹst
1+ S

S
at y= ȳ+st . (4.30)
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The other reaction sheet conditions can be derived similarly, noting that u, v, their
derivatives and p are continuous across the reaction sheet in the base state. This leads
to [

ũ
]= [ṽ]= [∂ ũ

∂n

]
= [p̃]− Pr

[
∂ṽ

∂n

]
= 0 across y= ȳst, (4.31)

θ̃
(
y= ȳ−st

)=−ỹst(1+ S), θ̃
(
y= ȳ+st

)= ỹst
1+ S

S
,

Sθ̃y

(
y= ȳ+st

)+ θ̃y

(
y= ȳ−st

)= 0.

 (4.32)

The linear stability problem has now been derived and is given by (4.20)–(4.23)
for y 6= ȳst, subject to the boundary conditions (4.24)–(4.25) and the jump conditions
(4.31)–(4.32). It is worth noting that dθ̄/dy takes different values below and above the
reaction sheet, given by (4.17) and (4.18), respectively.

Before continuing, it can be noted that (4.20)–(4.23), which are four equations in
four variables, can be simplified into two equations in two variables. To this end, we
first take (∂/∂x)(4.21) + (∂/∂y)(4.22), which with the use of (4.20) gives

∇2p̃= PrRa
∂θ̃

∂y
. (4.33)

We then take ∇2(4.22) to find

∂

∂t
∇2ṽ + ∂

∂y
∇2p̃= Pr∇4ṽ + PrRa∇2θ̃ . (4.34)

Finally, substitution of (4.33) into (4.34) yields

∂

∂t
∇2ṽ = Pr∇4ṽ + PrRa

∂2θ̃

∂x2
. (4.35)

Thus the perturbations ṽ and θ̃ are governed by (4.23) and (4.35).

4.3. Fourier analysis
We consider normal-mode solutions by setting

ũ= U(y)eσ t+iax, ṽ = V(y)eσ t+iax, p̃= P̃(y)eσ t+iax,

θ̃ = φ(y)eσ t+iax, ỹst = eσ t+iax.

}
(4.36)

At this point it should be noted that three-dimensional perturbations of the form
ũ = U(y) exp (σ t + i (a1x+ a2z)), say, do not need to be considered because they lead
to exactly the same problem, as derived below, if the substitution a2 = a2

1 + a2
2 is made

(known as Squire’s transformation).

4.3.1. Governing equations
Note that for the derivation of the governing equations of the linear stability

problem we do not need to consider ũ or p̃, but we shall here nevertheless write
the continuity equation and the momentum equations in terms of the Fourier variables,
which follows from substituting (4.36) into (4.20)–(4.22), for future use:

iaU + V ′ = 0, (4.37)
σU + iaP̃= Pr(−a2U + U′′), (4.38)

σV + P̃′ = Pr(−a2V + V ′′)+ PrRaφ. (4.39)
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Continuing with the equations for V(y) and φ(y), which follow from substituting
(4.36) into (4.23) and (4.35), we have(

D2 − a2 − σ)φ = V
dθ̄
dy
, (4.40)

σ
(
D2 − a2

)
V = Pr

(
D2 − a2

)2
V − a2PrRaφ, (4.41)

where D≡ d/dy.
Substitution of (4.40) into (4.41) gives a single equation for V in each region

(
D2 − a2 − σ) (D2 − a2

) (
D2 − a2 − σ

Pr

)
V = a2Ra

dθ̄
dy

V. (4.42)

In other words, we have derived equations in the regions above and below the reaction
sheet, which depend on the derivative of the base temperature in the respective region,
given by (4.17) for y< ȳst and (4.18) for y> ȳst.

Finally note that (4.41) implies that(
D2 − a2

) (
D2 − a2 − σ

Pr

)
V = a2Raφ, (4.43)

which will be useful when deriving the boundary conditions in the next section.

4.3.2. Boundary conditions
On using (4.37) and (4.43), which give V in terms of U and φ respectively,

boundary conditions (4.24)–(4.25) become, after substituting in (4.36),

V = DV = (D2 − a2
) (

D2 − a2 − σ

Pr

)
V = 0 at y= 0, 1. (4.44)

4.3.3. Jump conditions
Conditions (4.32) can be written, after substituting in (4.36),

φ
(
y= ȳ−st

)=−(1+ S), φ
(
y= ȳ+st

)= 1+ S

S
, Sφy

(
y= ȳ+st

)+ φy

(
y= ȳ−st

)= 0.

(4.45)

The velocity jump conditions (4.31) convert to

[V]= [U]= [DU]= 0 across y= ȳst. (4.46)

Also on using (4.31) we have[
P̃
]= Pr [DV] across y= ȳst. (4.47)

Now, considering (4.37) and its successive differentiations we can convert (4.46) to
conditions on V , namely,

[V]= [DV]= [D2V
]= 0 across y= ȳst, (4.48)

and thus, using (4.47), [
P̃
]= 0 across y= ȳst. (4.49)

Finally, substitution of (4.37) into (4.38) gives

−a2P̃= σDV + Pr
(
a2V − D3V

)
(4.50)
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and hence (4.49) implies that [
D3V

]= 0 across y= ȳst. (4.51)

Thus the linear stability problem for the system is fully formulated. It is given by(
D2 − a2 − σ) (D2 − a2

) (
D2 − a2 − σ

Pr

)
V = a2Ra(1+ S)V, y< ȳst, (4.52)(

D2 − a2 − σ) (D2 − a2
) (

D2 − a2 − σ

Pr

)
V =−a2Ra

(1+ S)

S
V, y> ȳst, (4.53)

with the wall boundary conditions

V = DV = (D2 − a2
) (

D2 − a2 − σ

Pr

)
V = 0 at y= 0, 1, (4.54)

the mass/momentum jump conditions

[V] = [DV] = [D2V] = [D3V] = 0 across y= ȳst (4.55)

and the reaction sheet conditions(
D2 − a2

) (
D2 − a2 − σ

Pr

)
V =−a2Ra(1+ S) at y= ȳ−st , (4.56)(

D2 − a2
) (

D2 − a2 − σ

Pr

)
V = a2Ra

1+ S

S
at y= ȳ+st , (4.57)

S
(

D
(
D2 − a2

) (
D2 − a2 − σ

Pr

)
V
(
ȳ+st

))+ D
(
D2 − a2

) (
D2 − a2 − σ

Pr

)
V
(
ȳ−st

)= 0,

(4.58)

where the averaged flame position is given by ȳst = 1/(1+ S).
We now have a sixth-order ordinary differential equation for the velocity

perturbation V in each region, with 13 auxiliary conditions (six boundary conditions
at the wall and seven conditions at the averaged reaction sheet). These conditions
are sufficient to determine V along with the eigenvalue σ = σ(a;Ra, S), which will
determine the linear stability of the Burke–Schumann diffusion flame. For given values
of Ra and S, if the real part of the growth rate σ is greater than zero for any value
of the wavenumber a, the system is unstable. If the real part of σ is negative for all
values of a the system is stable.

5. Solution of the linear stability problem
It is worth noting at this point that in the non-reactive case it can be shown that

the growth rate σ is real and the marginal state is characterized by σ = 0; this is
called the principle of the exchange of stabilities (see Chandrasekhar 1961, pp. 24–26).
Since this is not straightforward in our case, we instead begin by solving the linear
stability problem numerically using the BVP4C solver in Matlab to find the eigenvalue
σ and investigate whether its imaginary part is zero at marginal stability. If so, we
can characterize the marginal state as the state where σ = 0 and proceed to solve the
problem in a similar approach to the non-reactive case.

5.1. Numerical solution for σ
In this section, we numerically solve (4.52) and (4.53) with conditions (4.54)–(4.58).
We use the eigen-boundary-value-problem Matlab solver BVP4C (see Shampine et al.
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FIGURE 4. Graphs of real and imaginary parts of the growth rate σ versus the Rayleigh
number Ra for two selected values of the stoichiometric coefficient S (with Pr = 1): (a) S = 1
with wavenumber a = 3.95; (b) S = 5 with wavenumber a = 3.13. Note that the imaginary
part of the growth rate is found to be zero for all values of Ra.

2000) to find the value of the growth rate σ for given values of the wavenumber a, the
Rayleigh number Ra and the stoichiometric coefficient S. The key result is that σ is
always found to be real. Figure 4 shows that as Ra increases for selected values of a
and S, σ passes from negative values to positive values and there is a marginal value
of Ra at which the system changes from stability to instability and σ = 0. We also plot
the effect of the wavenumber on the growth rate for several values of the Rayleigh
number in figure 5, which clearly shows the existence of a critical Rayleigh number.
If the Rayleigh number takes a value higher than its critical value, there is a band of
wavenumbers for which σ > 0 and the system is unstable.

At this point we could produce many more plots investigating the stability of the
system; however to avoid repetition we merely note that the growth rate is always
found to be real and thus σ = 0 characterizes the marginal state. We can therefore
simplify the problem by setting σ = 0 in the governing equations and then solve to
find the marginal Rayleigh number. In the next section we will solve the marginal
problem and then discuss the stability of the system in more detail.
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FIGURE 5. Growth rate versus wavenumber for selected values of the Rayleigh number,
with S = 1 and Pr = 1. Note that in this case the critical Rayleigh number is found to be
Rac = 3596.

5.2. Marginal state
Motivated by the conclusions of the previous section, here we set σ = 0 in (4.52) and
(4.53) with conditions (4.54)–(4.58), characterizing the marginal state. This is the state
at which the system passes from being stable to being unstable, and thus the Rayleigh
number for which this state exists for a given wavenumber a is the marginal Rayleigh
number at that wavenumber. Hence(

D2 − a2
)3

V = a2Ra(1+ S)V, y< ȳst, (5.1)(
D2 − a2

)3
V =−a2Ra

(1+ S)

S
V, y> ȳst, (5.2)

with the wall boundary conditions

V = DV = (D2 − a2
)2

V = 0 at y= 0, 1, (5.3)

the mass/momentum jump conditions

[V]= [DV]= [D2V
]= [D3V

]= 0 across y= ȳst (5.4)

and the reaction sheet conditions(
D2 − a2

)2
V =−a2Ra(1+ S) at y= ȳ−st , (5.5)(

D2 − a2
)2

V = a2Ra
1+ S

S
at y= ȳ+st , (5.6)

S
(

D
(
D2 − a2

)2
V
(
ȳ+st

))+ D
(
D2 − a2

)2
V
(
ȳ−st

)= 0, (5.7)

where the averaged flame position is given by ȳst = 1/(1+ S).
Following a similar approach to that of Chandrasekhar (1961, pp. 36–42), we let the

velocity perturbation V take the form

V = e±py, y< ȳst, (5.8)
V = e±qy, y> ȳst. (5.9)
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Then we have (
p2 − a2

)3 = a2Ra(1+ S), y< ȳst, (5.10)(
q2 − a2

)3 =−a2Ra
(1+ S)

S
, y> ȳst. (5.11)

If we let

1+ S

S
a2Ra= τ 3a6 (5.12)

we find that the roots of these equations are given by

p2 = a2
(
S1/3τ + 1

)
and p2 = a2

[
1+ S1/3 τ

2

(
−1± i

√
3
)]
, (5.13)

q2 =−a2 (τ − 1) and q2 = a2
[
1+ τ

2

(
1± i
√

3
)]
. (5.14)

Thus we have six roots for the solution below the reaction sheet and six roots for the
solution above it, given by

±p0, ±p and ± p∗, (5.15)
±iq0, ±q and ± q∗, (5.16)

where * denotes the complex conjugate. Here

p0 = a
√(

S1/3τ + 1
)
, (5.17)

Re(p)= a

[
1
2

(√
1− S1/3τ + S2/3τ 2 +

(
1− S1/3 τ

2

))]1/2

, (5.18)

Im(p)= a

[
1
2

(√
1− S1/3τ + S2/3τ 2 −

(
1− S1/3 τ

2

))]1/2

, (5.19)

and

q0 = a
√
(τ − 1), (5.20)

Re(q)= a

[
1
2

(√
1+ τ + τ 2 +

(
1+ τ

2

))]1/2

, (5.21)

Im(q)= a

[
1
2

(√
1+ τ + τ 2 −

(
1+ τ

2

))]1/2

. (5.22)

Thus the solution for the velocity perturbation can be written as

V− = A0 cosh p0y+ A cosh py+ A∗ cosh p∗y+ B0 sinh p0y+ B sinh py+ B∗ sinh p∗y,
y< ȳst, (5.23)

V+ = C0 cos q0y+ C cosh qy+ C∗ cosh q∗y+ D0 sin q0y+ D sinh qy+ D∗ sinh q∗y,
y> ȳst. (5.24)

The problem has 13 auxiliary conditions while the general solution has 12 constants
of integration. We therefore need to apply 12 conditions in order to determine V± for
a specified value of a and use the 13th condition to determine τ , from which we can
find the marginal Rayleigh number using the formula

Ra= τ 3a4 S

1+ S
. (5.25)
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To write the boundary conditions on V in matrix form, we begin by noting, using
(5.23)–(5.24), that(

D2 − a2
)2

V− = S2/3a4τ 2
[
A0 cosh p0y− 1

2

(
i
√

3+ 1
)

A cosh py

− 1
2

(
−i
√

3+ 1
)

A∗ cosh p∗y+ B0 sinh p0y

− 1
2

(
i
√

3+ 1
)

B sinh py− 1
2

(
−i
√

3+ 1
)

B∗ sinh p∗y
]
, (5.26)

and

(D2 − a2)
2
V+ = a4τ 2

[
C0 cos q0y+ 1

2

(
i
√

3− 1
)

C cosh qy

− 1
2

(
i
√

3+ 1
)

C∗ cosh q∗y+ D0 sin q0y

+ 1
2

(
i
√

3− 1
)

D sinh qy− 1
2

(
i
√

3+ 1
)

D∗ sinh q∗y
]
. (5.27)

The conditions (5.3)–(5.6) can then be written in the matrix form Ax= b for the vector
of constants x, which can be solved using

x= A−1b. (5.28)

We then write the final condition (5.7), say, as

cTx= 0, (5.29)

where c is a vector. A solution that satisfies all of the auxiliary conditions can
therefore be found by solving the matrix (5.28) for given values of a and S in Matlab
to find x and then using Matlab’s fzero function with cTx as the input. This will lead
to a solution for V± and τ , from which the marginal Rayleigh number can be found
using (5.25). Note that the temperature perturbation profile can be recovered from the
velocity perturbation profile using the equations

φ± = (1+ S)

Sτ 3a6

(
D2 − a2

)
V±. (5.30)

6. Discussion of results
In this section we present the results found by solving the problem in the marginal

state using the method described at the end of the previous section. The aim is to
calculate the critical Rayleigh number Rac, which characterizes the conditions at the
threshold of instability, and its dependence upon the stoichiometric coefficient S.

We begin with plots of how the Rayleigh number in the marginal state varies with
the wavenumber a for two selected values of the stoichiometric coefficient S, provided
in figure 6. Indicated in the figure are the calculated values of the critical Rayleigh
number Rac and the corresponding critical wavenumber ac for each value of S. It can
be seen that, for a given value of S, if Ra > Rac there is a band of wavenumbers for
which the growth rate σ > 0; thus if Ra> Rac the perturbations made to the base state
grow exponentially in time and the system is unstable. Velocity perturbation profiles
versus y at the onset of instability Ra = Rac for selected values of S are presented in
figure 7.

Next we plot, in figure 8, the variation in Rac with the stoichiometric coefficient S
and the flame position yst = 1/(1 + S). Indicated in each plot is the critical Rayleigh
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FIGURE 6. Marginal Rayleigh number versus wavenumber for two selected values of the
stoichiometric coefficient: (a) S= 1; (b) S= 5. For each wavenumber the system is unstable if
the Rayleigh number Ra takes a value larger than the marginal Rayleigh number, and stable if
Ra is lower. For each value of S, the lowest marginal Rayleigh number is the critical Rayleigh
number Rac and the corresponding wavenumber is the critical wavenumber ac.

number given in Chandrasekhar (1961, p. 39) for the non-reactive problem with two
rigid boundaries. The fact that Rac in our reactive case is found to be very close to
the non-reactive critical Rayleigh number for large values of S, but not exactly equal
in the limit S→∞, can be explained by considering the equations governing the
marginal state. As S→∞, the problem in the upper half-space above the reaction
sheet reduces to the non-reactive problem with two rigid boundaries, except for the
conditions (5.5) and (5.6) at the reaction sheet. Thus, as S→∞ the critical Rayleigh
number approaches a value slightly different to the non-reactive critical Rayleigh
number, as can be seen in figure 8. It is found that as the flame moves away from the
lower boundary, Rac first decreases slightly then increases to very large values as the
flame approaches the upper boundary.

It can be seen in figure 8 that the order of magnitude of Rac can significantly
deviate from the order of magnitude of the critical Rayleigh number in the non-
reactive case, especially as yst → 1. In order to facilitate comparison with the non-
reactive case, we scale the Rayleigh number, by using as reference length the distance
of the flame from the upper boundary (1− yst)L instead of L. This scaled Rayleigh
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FIGURE 7. Marginal velocity perturbation profile V± versus y for two selected values of the
stoichiometric coefficient S (scaled by the maximum value for comparison). In each case the
wavenumber a is equal to its critical value ac, given by ac = 3.95 for S = 1 and ac = 3.25 for
S= 2.

number is more comparable to the Rayleigh number in the non-reactive case because
both use as reference length the distance from the hot surface to the cold upper
boundary. The scaled critical Rayleigh number is given by

Rac,scaled = Rac(1− yst)
3. (6.1)

In figure 9 we plot Rac,scaled against the flame position yst and the stoichiometric
coefficient S and compare with two non-reactive cases. The first is the case of two
rigid boundaries; the second is the case of one rigid boundary and one free-surface
boundary. Similarly to above it is found that, as S→∞, Rac,scaled is of the order of
magnitude of the critical Rayleigh number in the rigid–rigid non-reactive case. It is
also found that for S ≈ 9 (i.e. yst ≈ 0.1), Rac,scaled is of the order of magnitude of the
critical Rayleigh number in the rigid–free non-reactive case. As the flame approaches
the upper boundary, in the limit S→ 0, Rac,scaled decreases to lower values.

7. Numerical study
We now proceed to a full numerical treatment of the problem, using the finite

element package Comsol Multiphysics to directly simulate the physical system.
We solve the time-dependent equations (2.47)–(2.51) with boundary conditions
(2.52)–(2.53). As initial condition we use the strongly burning planar diffusion flame
(which is found on the upper branch of the curve in figure 2). The aims in this
section are: first, to investigate the nature of the instabilities that occur for values of
the Rayleigh number slightly higher than Rac; secondly, to test the results of the linear
stability analysis presented in the previous section against numerical results; finally, to
test the effect of thermal expansion and finite chemistry on Rac.

All numerical calculations are performed for the parameter values β = 10 and
Pr = 1, in a numerical domain of aspect ratio 10; this aspect ratio has been shown
to be sufficiently large to approximate an infinite domain in the non-reactive case by
Gelfgat (1999). The domain is discretized into a non-uniform grid of approximately
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FIGURE 8. The effect of (a) the flame position yst = 1/(1 + S) and (b) the stoichiometric
coefficient S on the critical Rayleigh number Rac. Indicated with a dashed line is the critical
Rayleigh number in non-reactive Rayleigh–Bénard convection with two rigid boundaries.

120 000 triangular elements, with local refinement around the reaction zone and the
upper and lower boundaries; various tests have been performed to ensure the mesh-
independence of the results. We use a value of Da= 2× 104 to approximate an infinite
Damköhler number in all calculations unless otherwise specified.

We begin with an illustrative calculation, shown in figure 10, which displays the
nature of the instability that occurs if Ra takes a value slightly higher than Rac. The
figure shows the stationary, stable states that the system reaches for two selected
values of S when Ra > Rac. The mechanism of the fluid instability is similar to that
of the non-reactive case, described in detail by Chandrasekhar (1961, pp. 9–10) and
Getling (1998, p. 12), whereby fluid of higher density lies above the hotter, lower-
density fluid causing convection to occur. The induced flow enhances the transport of
fuel and oxidizer to certain parts of the flame, generating a cellular structure, as shown
in the figure.

Next, we test the validity of the linear stability results in the Boussinesq
approximation and the effect of compressibility on the critical Rayleigh number. In
figure 11 we plot the relationship between (a) Rac,scaled and S and (b) Rac,scaled and
yst for several values of the thermal expansion coefficient α. We also plot Rac,scaled as
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FIGURE 9. The effect of (a) the flame position yst = 1/(1 + S) and (b) the stoichiometric
coefficient S on the scaled critical Rayleigh number Rac,scaled. Indicated are the critical
Rayleigh numbers in non-reactive Rayleigh–Bénard convection with two rigid boundaries
and with one rigid boundary and one free boundary.

predicted by the linear stability analysis, for comparison. As expected, the values of
Rac,scaled calculated for a low value of α are similar to the values calculated in the
linear stability analysis. This is because the Boussinesq approximation is derived from
an expansion in small α of the governing equations.

The numerical results corresponding to larger, more realistic values of the thermal
expansion coefficient show several discrepancies with those of the linear stability
analysis. First, the non-Boussinesq system is found to be more stable, a well-known
result in non-reactive Rayleigh–Bénard convection (see Bormann 2001). Secondly,
the system is found to exhibit hysteresis at the onset of instability, whereby the
system allows two different steady states for the same parameter values as shown
in figure 12; again, it is well-known in the literature for the non-reactive case that
this is associated with departures from the Boussinesq approximation (see Fröhlich
et al. 1992; Getling 1998, p. 23). Despite these differences, figure 11(b) shows that
the relationship between Rac and S is found to be qualitatively similar for all of the
selected values of α.
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(a)

(b)

FIGURE 10. Convection roll/cellular flame steady-state streamlines for different values of
the stoichiometric coefficient S in the Boussinesq approximation: (a) S = 1, computed at
Ra = 3700; (b) S = 6, computed at Ra = 1740. The black line represents the flame position.
Calculations were performed with the parameter values Da= 2× 104, β = 10 and Pr = 1 and
for values of the Rayleigh number Ra slightly higher than its critical value Rac in each case.

To close this section, we now test the effect of finite chemistry on the critical
Rayleigh number by varying the Damköhler number Da. The results, presented in
figure 13, show that Rac decreases as Da decreases. In the limit Da→∞ there is little
change in Rac as Da varies; indeed, the curve in the figure can be seen to flatten out
near Da= 1000. Thus the value Da= 2×104 used previously to approximate infinitely
fast chemistry is sufficiently large. As Da approaches its extinction value Daext the
system becomes considerably more unstable and Rac is reduced significantly.

8. Conclusion
We have studied, using analytical and numerical methods, the stability of a planar

diffusion flame in an infinitely long porous channel under gravitational effects. The
conditions under which the diffusion flame becomes unstable have been determined by
calculation of the critical Rayleigh number, which defines the threshold of instability.
Such results do not seem to be available in the literature.

First, we have investigated the stability of the Burke–Schumann flame, using a
linear stability analysis in the Boussinesq approximation. The relationship between
the position of the flame in the channel (governed by the stoichiometric coefficient)
and the critical Rayleigh number has been determined. The growth rate of the linear
stability problem was first confirmed to be real using numerical methods, so that the
system could be studied analytically in the marginal state using a similar method to
that of the non-reactive problem.

Results have been presented, which show that as the flame approaches the lower
boundary with increasing stoichiometric coefficient, the critical Rayleigh number is
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FIGURE 11. Comparison of the behaviours of the scaled critical Rayleigh numbers Rac,scaled
versus (a) flame position yst = 1/(1 + S) and (b) stoichiometric coefficient S as predicted
by the linear stability analysis and the computations carried out for selected values of the
thermal expansion coefficient α. Numerical calculations were performed for the parameter
values Da= 2× 104, β = 10 and Pr = 1.

close to the well-known value it takes in the non-reactive case with two rigid
boundaries. A rescaling of the Rayleigh number using the distance between the
flame and the cold upper boundary as reference length was performed to aid in
the comparison between the reactive and non-reactive problems. The scaled critical
Rayleigh number was found to be (a) of the order of magnitude of the critical
Rayleigh number in the non-reactive problem with two rigid boundaries, as the flame
approaches the lower wall and (b) of the order of magnitude of the critical Rayleigh
number in the non-reactive problem with one rigid and one free-surface boundary,
when the flame is located a certain distance from the lower wall (which has been
calculated).

Secondly, we have performed numerical calculations in the low-Mach-number
formulation for several values of the thermal expansion coefficient using a finite-
element method with a high Damköhler number. The results show that when the
Rayleigh number is higher than its critical value, the fluid forms convection rolls as in
the non-reactive case, which interact with the flame to generate cellular structures.

For weak values of the thermal expansion coefficient α, which corresponds to
conditions for which the Boussinesq approximation is valid, the numerical results show
strong agreement with those of the linear stability analysis. For larger values of α,
there is qualitative agreement between the numerical and analytical results but several
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(a)

(b)

FIGURE 12. Numerical calculations displaying an example of hysteresis in the non-
Boussinesq system: (a) strongly burning planar diffusion flame with no flow (quiescent state);
(b) convection roll/cellular flame state with streamlines. The black line represents the flame
position. Both calculations were performed for the parameter values α = 0.85, Da = 2 × 104,
S = 1, β = 10, Pr = 1 and for Ra = 28 000, which is lower than Rac for these parameter
values. Both steady states are found to be stable, and since they both exist for Ra < Rac, this
is an example of a finite-amplitude subcritical instability of the quiescent state.
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FIGURE 13. The effect of the Damköhler number Da on the critical Rayleigh number Rac
and the scaled critical Rayleigh number Rac,scaled. The calculations were performed for the
parameter values α = 0.85, β = 10, S = 1 and Pr = 1. Indicated in the figure is the extinction
value of Da, below which the strongly burning planar diffusion flame cannot exist.

discrepancies caused by a higher thermal expansion coefficient. The non-Boussinesq
system was found to be more stable than the system in the Boussinesq approximation
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and to exhibit hysteresis at the onset of instability, which are well-known results in the
non-reactive case.

Finally, we have investigated the effect of finite chemistry on the system. The results
show that the system becomes less stable as the Damköhler number Da is decreased,
especially as Da approaches its extinction value Daext, below which the strongly
burning diffusion flame cannot exist. For large values of Da the decrease in the critical
Rayleigh number with decreasing Da was found to be small.

The results in this paper are a crucial step in the understanding of gravitational
effects on diffusion flames with important ramifications for combustion in non-uniform
mixtures such as triple flames. Further studies will concentrate on the effect of gravity
on the stability of triple flames, and will be helped by the characterization of the
instability of their trailing planar diffusion flame studied in this paper.
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