
Flame Propagation in Poiseuille Flow under Adiabatic
Conditions

J. DAOU† and M. MATALON*
Department of Engineering Sciences and Applied Mathematics, Northwestern University,

Evanston, IL 60208-3125, USA

We describe flame propagation in a channel subject to a Poiseuille flow, within the thermo-diffusive
approximation and an adiabatic context. The two-dimensional flame fronts addressed may be either assisted or
opposed by the flow. The problem is characterized by two parameters, the intensity of the flow u0 and the spatial
scale e. The total burning rate and the propagation speed are determined in terms of u0 and e and different
distinguished regimes are described. From the results, simple criteria for flame flashback in channels are
identified. Conclusions concerning the long-term evolution of an ignition kernel in the present flow are also
drawn. The results may also be useful in interpreting similar features encountered in more complicated flow
situations. For example, the quadratic dependence of the burning rate on u0 for weak flow intensities, and linear
dependence for larger u0, is similar to that of the turbulent flame speed when the latter is considered as a
function of the velocity fluctuations or turbulence intensity. © 2001 by The Combustion Institute

INTRODUCTION

In this work, we describe the two-dimensional
traveling waves associated with flame propaga-
tion in a combustible mixture subject to a
Poiseuille flow. Despite the fundamental impor-
tance of this flow and its high relevance in
combustion applications (such as Bunsen burn-
ers), it does not seem to have received due
attention with regards to the evolution of freely
propagating deflagrations in it. In contrast, pre-
vious consideration has been devoted to the
stationary flame case in this context, mainly in
connection with the problem of flame anchoring
at the exit of a Bunsen burner (cf. [1–3]).
Stationary flames exist only for a restricted
range of flow intensity between a flashback and
a blowoff values. Outside this range, flame
propagation opposed to or assisted by the flow
may occur.

For stationary flames stabilized at the exit of
a Bunsen burner, heat losses to the burner’s rim
play a crucial role in “holding” the flame. By
decreasing the losses the flame may move into
the tube, a phenomenon known as “flashback”.
This could be achieved, for example, by heating
the walls of the burner, which may be induced
by the flame itself. Flashback conditions are not

desirable for design purpose and are serious
safety hazard. Therefore, it is important to
determine the conditions under which flashback
is suppressed. This will be identified in this work
as the conditions under which flame propaga-
tion opposing the flow is no longer possible.
Although such conditions depend, in general,
on the heat transfer rate to the walls, we shall
neglect such effects in the present paper and
consider them in later publications. For the
adiabatic conditions considered here, we there-
fore shall identify what may be considered as
sufficient conditions for the nonoccurrence of
flame flashback, which are expected to be valid
even in the presence of heat losses. We note
parenthetically that we are concerned here with
the steady propagation case and do not address
questions concerning flame stability.

Another issue that we address in this study is
the evolution of a localized ignition spot in
Poiseuille flow, which could be viewed as a
particular case of the practically important and
poorly understood problem of ignition in a
prescribed flow field. Consider, for instance, a
hot kernel of burned gas generated at initial
time, say by a strong spark, in an infinitely long
channel (see Fig. 1). Even when ignition is
successful, the conditions for flame propagation
depend, on the intensity and the scale of the
flow field. Our goal is to determine the longtime
evolution described by the two flame fronts
shown in Fig. 1b; the front to the right, which is
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assisted, and the one to the left, which is op-
posed by the flow. The only study that addresses
a similar problem is that of Dery [4], who used
a simple kinematic approach to examine the
evolution preceding the flame establishment at
the exit of a Bunsen burner.

In studying freely propagating deflagrations
in Poiseuille flow, we shall concentrate on the
influence of two parameters, namely the chan-
nel width relative to the flame thickness and the
maximum flow velocity relative to the laminar
flame speed. These can advantageously be
thought of as representing in general the typical
spatial scale and magnitude of the velocity
fluctuation (from its mean value). Because of
the simplicity of Poiseuille flow, their combined
effects may be studied with some detail, both
theoretically and experimentally. This may pro-
vide insight into more complex situations char-
acterized by similar parameters, such as the
interaction between an eddy of a given charac-
teristic size and speed with the flame. Such point
of view has been made previously by others (see
for example [5]–[7]) who have used spatially
sinusoidal flows with prescribed wavelength and
amplitude to explain certain aspects of turbu-
lent combustion. This approach may substan-
tially complement that based on the counterflow
configuration, which is characterized by a single
parameter, the strain rate, rather than indepen-
dent length and velocity scales.

The paper is structured as follows. We begin
by formulating the problem in the context of the
thermo-diffusive model of constant density and
constant transport properties. Unity Lewis num-
ber is assumed and adiabatic conditions are
considered. A simple model is first written for
the situation corresponding to a weakly
stretched flame, but which retains two indepen-
dent parameters for the characterization of the
scale and intensity of the flow. Analytical results
for different distinguished limits are thus de-
rived. Next, numerical results of the full two-
dimensional problem are presented along with
conclusions that address the issues introduced
above.

FORMULATION

We consider flame propagation in an infinitely
long channel of width 2 R, under a prescribed
Poiseuille flow as shown in Fig. 2. Within the
constant-density approximation adopted, the
flow is unaffected by the combustion process.
The fluid velocity is given by ũ0(1 2 Y2/R2)i,
where i is a unit vector along the X-direction,
and ũ0 is the centerline velocity, which may be
positive or negative. The channel walls are
assumed to be adiabatic. Curved flames are
addressed which correspond to traveling-waves
in the (X, Y) plane separating the frozen com-

Fig. 1. Skematic of flame development from an initial hot kernel of burnt gas in a Poiseuille flow. The top subfigure depicts
the situation at initial time, t 5 0. The bottom subfigure corresponds to t .. 1 and shows two flame fronts, the left one
propagating against the flow and the right one in the flow direction.
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bustible mixture, far to the left, from combus-
tion products to the right. The flames propagate
along the X-direction with speed 2Ũi relative
to the channel’s wall, a property that remains to
be determined. In a frame of reference attached
to the flame, the temperature and concentration
profiles are time-independent and the velocity
field v is given by v 5 {Ũ 1 ũ0(1 2 Y2/R2)}i.
A one-step irreversible chemical reaction is
adopted which consumes the fuel, considered to
be deficient, at a rate given by an Arrhenius law

ṽ 5 rYFB exp~2E/R0T!,

where B, YF, E, R0, and T represent, respec-
tively, the pre-exponential factor, the mass frac-
tion of fuel, the activation energy, the universal
gas constant, and the temperature.

We shall select as unit length the channel
half-width R and as unit speed the laminar
flame speed SL 5 =2b22DTB exp(2E/RTad).
The expression of SL is based on the asymptotic
approximation for b .. 1 of the burning veloc-

ity of a planar flame with unity Lewis number
LeF. The Lewis number is defined as the ratio
of the thermal diffusivity of the mixture DT to
the fuel diffusion coefficient DF. Here Tad 5
Tu 1 qYFu/cp is the adiabatic flame tempera-
ture, with the subscript u referring to conditions
in the fresh mixture, cp is the mixture heat
capacity and b 5 E(Tad 2 Tu)/RTad

2 the
Zeldovich number. In terms of the normalized
mass fraction yF 5 YF/YFu and temperature
u 5 (T 2 Tu)/(Tad 2 Tu), the dimensionless
governing equations are

@U 1 u0~1 2 y2!#
 yF

 x
5 eLeF

21DyF 2 e21v

(1)

@U 1 u0~1 2 y2!#
u

 x
5 eDu 1 e21v, (2)

where e is the ratio of the planar flame thickness
lFl 5 DT/SL to the reference length R, and U 5
Ũ/SL, u0 5 ũ0/SL are the scaled propagation
speed and centerline velocity, respectively. The
nondimensional reaction rate v is given by

v 5
b2

2
yF expH b~u 2 1!

1 1 a~u 2 1!J , (3)

where a [ (Tad 2 Tu)/Tad is the heat-release
parameter.

The boundary conditions adopted are

yF 5 1, u 5 0 as x3 2`, (4)

 yF

 x
5

u

 x
5 0 as x3 `, (5)

corresponding to the frozen conditions in the
fresh mixture and the uniform ( x-independent)
conditions far downstream, and

 yF

 y
5

u

 y
5 0 for y 5 0, (6)

 yF

 y
5

u

 y
5 0 for y 5 1, (7)

expressing symmetry and adiabatic conditions at
the impermeable walls.

The problem thus formulated can in general
be solved numerically; it yields in particular the
flame shape and the propagation speed U,
which is an eigenvalue, in terms of the param-

Fig. 2. Flame propagation in a channel under a prescribed
Poiseuille flow, with the centerline velocity denoted by u0.
The flame front separates a frozen combustible mixture to
the left from combustion products to the right. The subfig-
ures correspond, from top to bottom, to u0 . 0, u0 5 0 and
u0 , 0, respectively.
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eters. A physically significant quantity related to
U is the total burning rate (per unit depth)

e21 E
2`

` E
21

1

v d y dx ; 2V

Because of our choice of units, V is the total
quantity of fuel consumed per unit time in the
channel relative to that consumed by a planar
flame propagating in the same channel. Inte-
grating Eq. 1 across the channel using the
conditions that fuel does not penetrate through
the walls and that the combustion is completed
behind the flame, one finds that

V 5 U 1
2u0

3
(8)

Thus, a simple relation exists between the total
burning rate V, the propagation speed U and
flow intensity u0. For simplicity, we shall be
mainly concerned here with unity Lewis number
and concentrate on the influence of the param-
eters e and u0. Two related parameters, are the
Peclet number

Pe ;
uũ0uR
DT

5
uu0u

e
(9)

representing the ratio of convective-to-conduc-
tive heat transfer, and the Damkholer number

Da ;
Ruũ0u21

lFlSL
21 5

1
euu0u

(10)

representing the ratio of diffusion-to-chemical
reaction times.

ASYMPTOTIC RESULTS—WEAKLY
STRETCHED FLAME

Since the flames under investigation are curved
and subject to a nonuniform flow field, their
local normal propagation speed is expected to
deviate from the laminar flame speed. This
deviation is proportional to the Karlovitz stretch

k 5 2n z ¹ 3 ~v 3 n! 1 ~vf z n! z ~¹ z n!

when k is small [8, 9]. Here v and of vf are the
velocity of the fluid and of the flame, respec-
tively, and n is a unit vector normal to the thin
reaction sheet pointing to the burned gas. (In

the frame attached to the flame front, consid-
ered here, vf 5 0). If the reaction sheet is
described by x 5 f( y), the unit normal is given
by n 5 (i 2 f9( y)j)/(1 1 f92)1/ 2 and

k 5
e

Î1 1 f92 F uf9
Î1 1 f92G 9 (11)

where prime indicates differentiation with re-
spect to y. Note that an e appears in the
expression of k to account for the fact that the
length scale used in this study is the channel
width rather than the thickness of the planar
flame.

For a parallel flow v 5 u( y)i and, in the
absence of thermal expansion, one obtains for
the flame speed Sf [ v z n the expression

Sf 5
u~ y!

~1 1 f92!1/ 2 5 1 2 S1 1
leF

2 Dk, (12)

where leF 5 b(LeF 2 1) is a reduced Lewis
number. Because the validity of Eq. 12 requires
k to be small, the factor u( y)/(1 1 f92)1/ 2 is
equal to unity in first approximation. Thus k '
ef0/(1 1 f92)1/ 2 and this expression may be used
to simplify Eq. 12. In our particular case,
u( y) 5 U 1 u0(1 2 y2) leads to the following
equation for the slope of the flame front F [
f9( y):

U 1 u0~1 2 y2! 5 ~1 1 F2!1/ 2 2 eF9 (13)

For simplicity of notation, we have taken leF 5
0, but the equation is equally valid for leF Þ 0
if the factor (1 1 leF/ 2) is absorbed into e. The
boundary conditions to be satisfied by F are

F~0! 5 0, F~1! 5 0, (14)

expressing a zero slope at the wall and at the
centerline (symmetry). Because two boundary
conditions are available for the first order dif-
ferential Eq. 13, the determination of the eig-
envalue U along with the flame shape is possi-
ble, in principle, in terms of the parameters u0

and e. The integration may be carried out
numerically, for example, by using a shooting
method, as reported below. It is instructive,
however, to first consider special distinguished
limits.

It is worth pointing out that, by integrating
the energy Eq. 2 up to the flame front using the
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adiabatic condition Eq. 7 and the assumption of
complete fuel consumption, one finds

V 5 E
0

1

Î1 1 F2 d y (15)

This implies that the total burning rate is pro-
portional to the flame surface area, a relation
first observed by Damköhler [10] in connection
with the turbulent flame speed.

Weak flow u0 3 0 with e 5 O(1)

Here the leading order solution corresponding
to u0 5 0 is obviously the planar flame, F 5 0
and the propagation speed U 5 1 (Fig. 2b). A
straightforward expansion in powers of u0 yields

F 5 2
u0

3e
~ y 2 y3! 2

u0
2

18e3

z S 8y
105

2
y3

3
1

2y5

5
2

y7

7 D 1 o~u0
2! (16)

U 5 1 2
2u0

3
1

4u0
2

945e2 1 o~u0
2!, (17)

valid independently of the sign of u0. Thus, the
burning rate

V , 1 1
4u0

2

945e2 5 1 1
4

945
Pe2 (18)

depends only on a single parameter, the Peclet
number, and is minimum (equal to unity) when
u0 5 0.

Thin flame e 3 0 with u0 5 O(1)

Here the sign of u0 is important, since the
derivation depends on the location of the lead-
ing edge, which is dictated by this sign. We shall
begin with the case u0 , 0, for which the
leading edge is at the centerline, y 5 0 (Fig. 2a).
Letting U 5 U0 1 eU1 1 . . . , F 5 F0 1 eF1

1 . . . and substituting into Eqs. 13 and 14, we
find to leading order in e the equation

U0 1 u0~1 2 y2! 5 Î1 1 F0
2 (19)

that satisfies the boundary condition at the
centerline F0(0) 5 0, provided U0 1 u0 5 1.
Thus,

F0 5 1Î~1 2 u0y2!2 2 1 (20)

where the 1 sign in front of the square root has
been selected so that the flame trails behind its
leading edge. To next order we obtain

U1 5 F0F1/Î1 1 F0
2 2 F90, (21)

which yields, when applied at y 5 0, the
correction to the propagation speed U1 5
2F90(0) 5 =22u0, and when applied else-
where, an expression for F1. For the propaga-
tion speed and burning rate we may thus write

U , 1 2 u0 2 Î22u0 e (22)

V , 1 2
1
3

u0 2 Î22u0 e (23)

The significance of Eq. 22 is clear: the flame
speed at the leading edge, U 1 u0, is equal to
the laminar flame speed plus a correction due to
stretch, proportional to e times the square root
of the flow intensity u0.

We note that the boundary condition at the
wall, F(1) 5 0, has not been used; in fact this
condition is not satisfied by the approximate
solution Eq. 20 except when u0 5 0. To ensure
that F(1) 5 0 the solution must be matched to
that in a boundary layer near the wall where Eq.
13 must be reconsidered. The approximate so-
lution Eq. 20, however, provides a satisfactory
description of the flame elsewhere. This is par-
ticularly true near the leading edge where the
local flame shape dictates the value of U as we
have seen. More generally, by application of
(13) and (14) at y 5 0 and y 5 1, one finds U 1
u0 5 1 2 eF9(0) and U 5 1 2 eF9(1),
respectively. It follows that

eF9~1! 5 eF9~0! 1 u0, (24)

which relates the flame curvature, measured in
units of the flame thickness lFl, at the wall and
at the centerline. According to Eq. 24, these two
curvature cannot be simultaneously small unless
u0 is. In particular, a leading order solution
obtained by dropping the contribution of the
term eF9 in Eq. 13, cannot be uniformly valid
when u0 is O(1) as in the case under consider-
ation. A uniformly valid description can be
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found by matching the solution thus found to an
inner solution near the wall where eF9 5 O(1).
This correction is of little interest since anyway
Eq. 13 is physically meaningful only for small
values of the flame stretch, i.e., for eF9 ,, 1. A
similar problem, in a slightly different context,
was also noticed in [11].

We turn now to the case u0 . 0, for which
the leading edge is located at the wall (Fig. 2c).
To leading order Eq. 19 holds and, on using the
condition F0(1) 5 0, we find U0 5 1 and

F0 5 2Î@1 1 u0~1 2 y2!#2 2 1, (25)

where the minus sign is chosen so that the flame
trails behind its leading edge. To next order we
recover Eq. 21, which we apply at y 5 1 to
determine the correction to the propagation
speed U1. One finds that U1 3 `, because Eq.
25 implies that

F0 , 22u0
1/ 2Î1 2 y as y3 12 (26)

The straightforward expansion is thus not valid
near the wall. The appropriate scaling there is
found to be 1 2 y 5 2e2/3h with

F 5 e1/3C~h!, U 5 1 1 e2/3U1,

leading to the inner problem

Ch 1 C2 5 8u0h 1 2U1 (27)

This equation, supplemented with the boundary
condition C(0) 5 0, and the matching require-
ment Eq. 26, determine both C and the eigen-
value U1. Equation 27 is a Ricatti equation,
which reduces to the linear Airy equation Ph̃ 2
h̃P 5 0 when the substitution C 5 P9/P and
h̃ 5 (4u0h 1 U1)/ 2u0

2/3 is made. The general
solution may thus be written in terms of the Airy
functions Ai and Bi and their derivatives (de-
noted by primes) as

C 5 2u0
1/3 Ai9~h̃! 1 CBi9~h̃!

Ai~h̃! 1 CBi~h̃!
, (28)

where C is an arbitrary constant. This expres-
sion satisfies the matching condition Eq. 26 only
if C 5 0 because only then

C 5 2u0
1/3 Ai9~h̃!

Ai~h̃!
(29)

has the correct asymptotic behaviour C ;
22u0

1/ 2=2h as h 3 `. By using Eq. 29, we

apply now the boundary condition C(0) 5 0
which implies that h̃* 5 U1/ 2u0

2/3 is a zero of
the function Ai9(h̃). Among the infinitely many
zeros of Ai9 we select the largest value '21.02
because otherwise C would change sign at mul-
tiple locations and the flame will have multiple
tips (where C 5 0) in the inner layer. Therefore,
the propagation speed is given by

U , 1 2 2 Au0
2/3e2/3 (30)

V , 1 1
2
3

u0 2 2 Au0
2/3e2/3 (31)

with A ' 1.02. Again the flame speed at the
leading edge U is equal to the laminar flame
speed plus a small stretch-correction, but now
proportional to the product u0e raised to the
power 2/3, or Da22/3. Finally, we note that the
boundary condition at the centerline, F(0) 5 0,
is not satisfied by the solution Eq. 25 as is to be
expected from the remarks given above.

At this stage, it is appropriate to check the
results against numerical solutions of Eqs. 13
and 14 obtained by a shooting method. The
comparison is presented in Fig. 3 where the
burning rate V, given by Eqs. 8 or 15, is plotted
against u0 for selected values of e. The solid
straight lines in this figure are the leading terms
in the asymptotic expressions 22 and 30, for
small e. For given u0 the burning rate decreases
when increasing e and the corrections terms,
proportional to uu0u1/ 2 for u0 , 0 and to u0

2/3 for
u0 . 0, are in agreement with the trend
depicted by the numerical results. The solid
parabolas correspond to the leading order solu-
tion 18 for small u0, with e equal to 0.5 (upper
parabola) and 1 (lower one). It is seen that the
asymptotic expressions are indeed consistent
with the numerical results. In particular, for a
fixed e the profile of V vs. u0 is parabolic for
small u0, which implies that the increase in
burning rate as a result of a sufficiently weak
flow is the same whether the flow is directed
towards or against the direction of propagation.
For stronger flow intensities, the burning rate V
increases linearly with u0 in both cases but the
rate of increase is higher if u0 . 0. These
conclusions will be confirmed by the numerical
analysis of the full problem presented next.
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NUMERICAL RESULTS—SIGNIFICANTLY
STRETCHED FLAME

In this section, we present numerical solutions
of the two-dimensional problem consisting of
Eqs. 1 and 2 subject to boundary conditions 4
through 7. The numerical method is based on a
finite-volume discretization of the governing
equations in their steady-state form, which leads
to a linear system of equations at every step of
the iteration. The propagation speed is updated
iteratively so that the flame remains fixed in the
computational domain. The (non-dimensional)
size of the latter is 1 in the y-direction and 500e
in the x-direction. The grid is rectangular but
non-uniform with typically 800 3 100 points.

In the calculations presented below we exam-
ine the influence of varying e and u0 with the
other parameters assigned the fixed values Le 5
1, b 5 8, and a 5 0.85.

We begin by an illustrative case, depicted in
Fig. 4, corresponding to a fixed value of e 5 0.1
subject to different flow intensities u0. This case
corresponds to a relatively thin flame, or a wide
tube. In the figure, the value of u0 increases
from negative to positive, as we move from top
to bottom. The flame is characterized by two
iso-temperature contours, namely u 5 0.4 and
u 5 0.8; the adiabatic flame temperature cor-
responds to u 5 1. In all cases, the burned gas
lies to the right of the flame. The direction of
propagation is to the left, except when it is
explicitly indicated that U , 0; then the flame
moves to the right. When u0 5 0 the flame is
planar and propagates to the left into the qui-
escent unburned gas at the laminar flame speed
(U 5 1). In the presence of a weak flow, the
flame still propagates as a whole to the left, but
is now curved; its central part is pointing to-
wards the burned gas when u0 . 0 so that the

Fig. 3. Burning rate V vs. u0 for selected values of e obtained from the numerical solution of the ODE 13. The solid straight
lines are the leading terms in the asymptotic expressions for small e; the solid-curve parabolas correspond to the asymptotic
expression for small u0 with e equal to 0.5 (upper parabola) and 1 (lower one).
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leading edge is at the wall, and towards the
unburned gas when u0 , 0 so that the leading
edge is at the center of the tube. The burning
rate, proportional to the flame surface area (see
Eq. 15) is nearly equal in both cases and is
independent of the sign of u0, which is well
captured by the leading term of the expansion
18. By increasing the magnitude of the flow the
flame continues to propagate to the left, when
u0 , 0, with an increasing velocity U; it is being
blown off by the flow. When u0 . 0, however,
the direction of propagation eventually changes
and for large enough u0 the flame propagates to
the right (see for example the last subfigure in
Fig. 4). A negative value of U implies that the
leading edge of the flame, which is located in
this case at the wall, is retreating relative to the
stagnant gas there; i.e., the flame speed at the

leading edge is also negative. The critical value,
u0

cr say, corresponding to U 5 0 is the condition
necessary to stabilize the flame so that, in order
to avoid flashback (U . 0), it is required that
u0 . u0

cr. Such information is clearly relevant to
applications such as Bunsen burners for which,
of course, some modifications to our present
model are needed. Finally, it is seen, by com-
paring the first and last subfigures in Fig. 4, that
the flame develops more surface area when it is
opposed by the flow and thus propagate faster
than when it is aided by the flow (u0 , 0). This
is clearly consistent with the asymptotic results
of Fig. 3, as pointed out earlier.

Figure 5 is similar to Fig. 4 except that now
e 5 1, corresponding to a narrower tube, or a
thicker flame. This is clearly seen in the figure as
the distance between the same isotherms, u 5

Fig. 4. Flame shape for e 5 0.1 and selected values of u0. Each flame is represented by two iso-temperature contours, u 5
0.4 and u 5 0.8. The flames propagate to the left, relative to the channel wall (U . 0), except when explicitly indicated.
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0.4 and u 5 0.8, are now further apart. We also
note that, in this case, the flame deformation
from the planar shape is less pronounced. This
is to be expected because an increase in e is
associated with a decrease in Peclet number
(see Eq. 9) which implies that convective trans-
port responsible for flame deformation is
strongly opposed by heat conduction that tends
to eliminate temperature differences. We also
observe that the critical value u0

cr, below which
flashback occurs, is now reduced. Negative val-
ues of U are more easily attained, as u0 is
increased, when e is large as may be expected
from the expression 10 of the Damköhler num-
ber.

A summary of the numerical calculations is
given in Fig. 6. Shown in this figure is the
burning rate V vs. u0 plotted for selected values
of e, similar to Fig. 3, which was based on the
asymptotic results. For the sake of comparison,

we have included the two solid straight lines,
corresponding to the leading terms in the as-
ymptotic expansions 22 and 30 for small e, and
a solid-line parabola corresponding to the ex-
pansion 17 for small u0, with e 5 0.5. The
agreement between the numerical and asymp-
totic results is seen to be very good. In particu-
lar, as e goes to zero the numerical curves
approach the straight lines, and for fixed e 5
0.5, the numerical profiles coincide with the
solid-line parabola for small u0. Again, the
numerical results confirm that the rate of in-
crease of V with flow intensity is higher if u0 is
positive. Moreover, the profiles switch from
being parabolic for small u0, to become linear
for larger (positive or negative) values of u0. It
is quite notable that the simple model consid-
ered in the previous section captures all the
qualitative features of the problem, even those
corresponding to highly stretched flame. The

Fig. 5. Same as Fig. 4 but with e 5 1.
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behavior found here presents some similarities
with experimental results on turbulent premixed
flames [12] where the turbulent flame speed is
found to depend quadratically on the intensity
of turbulence (the r.m.s. of the fluctuating ve-
locity) if the latter is small, and linearly for
larger turbulence levels. The analogy, however,
is limited because of the multi-scale nature of
turbulence.

The increase in burning rate with u0 is accom-
panied by negative flame speeds. This is partic-
ularly clear in Fig. 7, where, based on the
numerical calculations the flame speed at the
leading edge of the flame, denoted by S*, is
plotted against u0; the flame speed is defined, as
usual, as the velocity of the flame relative to the
gas velocity of the fresh reactive mixture just

ahead of it. Thus, at the leading edge, the flame
speed is equal to U for u0 . 0 and U 1 u0 for
u0 , 0 (see Fig. 2). We see in the figure that S*
5 1 for u0 5 0 corresponding to a planar flame;
it decreases with increasing uu0u, becoming neg-
ative as the magnitude of u0 grows to suffi-
ciently large values. The decrease in flame
speed is steeper when the flame thickness, or e,
is larger but cannot exceed a critical value.
More precisely, the admissible region in the
diagram lies below the horizontal line S* 5 1,
corresponding to an infinitely thin flame (e 3
0), and above the straight solid-lines, corre-
sponding to a thick flame (e .. 1). The exis-
tence of the lower bound is explained by the fact
that, for fixed u0, the burning occurs in a thick
but nearly vertical zone as e 3 ` (see also Fig.

Fig. 6. Burning rate V vs. u0 for selected values of e obtained from the numerical solution of the two-dimensional problem.
The solid straight lines are based on the leading terms in the asymptotic expressions for small e; the solid-curve parabola
correspond to the asymptotic expression for small u0 with e 5 0.5.
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5). As noted earlier this limit corresponds to Pe
3 0 so that V 5 U 1 2u0/3 3 1.

Concentrating now on the right half of the
diagram (u0 . 0) in Fig. 7, the following
conclusions can be drawn concerning flame
flashback (corresponding to U . 0). First, we note
that flashback will always occur in an adiabatic
channel if u0 , 3/2, or equivalently if the average
flow velocity is less than unity. Second, for a given
value of e, the diagram determines the critical
value u0

cr. The condition u0 . u0
cr may actually be

considered as a sufficient requirement to avoid
flashback in all channels whether adiabatic or not,
since heat losses would typically lessen the ten-
dency for flashback. Finally, for fixed u0 a critical
e above that flashback will be suppressed can be
similarly determined.

We conclude this section by addressing the
question raised in the introduction regarding

the long-term evolution of an ignition kernel in
the flow under consideration (see Fig. 1). More
precisely, we would like to determine the speed
with which the kernel will grow after an initial
transient, namely the velocity of the flame front
propagating to the right and aided by the flow
relative to that propagating to the left and
opposed by the flow. Simple kinematic argu-
ments suggest that this extension speed is given
by (U1 1 U2)i where U1 and U2 are the
propagation velocities corresponding to u0 and
2u0, respectively. In Fig. 8 we have plotted this
quantity against the Peclet number Pe 5 u0/e
for selected values of e. Note that the use of the
Peclet number, instead of u0, makes the differ-
ent curves collapse to a single curve when Pe is
small; Pe , 5 say. This result is associated with
the parabolic dependence of V on u0/e depicted
in Eq. 17, which has also been used to plot the

Fig. 7. Flame speed at the leading edge, S* vs. u0 for selected values of e.
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solid-curve parabola. As u0 is increased the
dependence of the extension speed on Pe be-
comes linear but the slope varies significantly
with e. In all cases, the extension speed is larger
than two, namely twice the laminar flame speed.

CONCLUSION

We have studied flame propagation in an adia-
batic channel under a prescribed Poiseuille
flow. The problem has provided a simple frame-
work for the investigation of the combined
influence of the intensity of the flow field and its
spatial scale on the combustion process. In
particular, the dependence of the global com-
bustion rate has been determined in terms of
these two parameters, along with the propaga-
tion speeds and flame shapes in different distin-

guished regimes. The results have been used to
discuss the flashback conditions in two-dimen-
sional channels (based on negative propagation
speeds arguments) and the long-term evolution
an ignition kernel in a Poiseuille flow. Addi-
tional aspects such as inclusion of heat losses
and non-unity Lewis number effects will be
addressed in future publications.
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