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Abstract
We describe the combined influence of heat-loss and strain (characterized here
by non-dimensional parameters κ and ε, respectively) on premixed flame-edges
in a two-dimensional counterflow configuration. The problem is formulated as
a thermo-diffusive model with a single Arrhenius reaction. In order to help
classify the various flame-edge regimes, the non-adiabatic one-dimensional
problem which characterizes the wings (far downstream) of the flame-edge
is briefly revisited and its solutions are delimited in the κ–ε plane. An
analytical description of the flame-edges is then presented in the weak-strain
limit ε → 0. This is complemented by a detailed numerical study. Several
combustion regimes are found and their domains of existence are identified
in the κ–ε plane. These include ignition fronts, extinction fronts, solutions
with propagation speeds that depend non-monotonically on the strain-rate,
propagating flame tubes and stationary flame tubes. Multiplicity of solutions
and hysteresis phenomena, which are partly but not exclusively associated with
the one-dimensional regimes, are also identified and discussed.

1. Introduction

Since the early work on triple-flames by Phillips [1] and Ohki and Tsuge [2], a great deal
of information has been gathered on triple-flames, especially after the studies undertaken
by Dold [3–5]. These flame structures, and their counterparts in premixed systems, can
collectively be called ‘flame-edges’, denoting a region where some form of otherwise uniform
flame structure comes to an end [6, 7]. Several aspects of flame-edges have been investigated
over the last thirteen years or so, including gas-expansion effects, preferential-diffusion,
proximity of cold surfaces and stability issues (see [8–17] and references therein). However, the
influence of volumetric heat-losses on flame-edges seems to have received little attention in the
published literature so far. A numerical study by Kurdyumov and Matalon [18] has considered
the effects of volumetric heat-losses, which are found to provide a possible mechanism for
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222 R Daou et al

flame-edge oscillations in the non-strained mixing layer established at the mouth of a cylindrical
injector.

In recent studies, we have investigated the effect of volumetric heat-loss, in some detail,
both numerically [19] and analytically [20], in the non-premixed context of a triple-flame
propagating in a strained mixing layer. In particular, we were able to obtain and to classify
a number of different forms of triple-flame propagation, as well as the ranges of strain-rate
and the rate of heat-loss for which they appear. The aim of this work is to carry out a similar
investigation using the same basic two-dimensional counterflow configuration in premixed
systems. Thus, we address the combined influence of strain and heat-loss on premixed
flame-edges.

As will be seen, the results are far from a simple extension of the non-premixed case.
In fact, a richer and more complex picture arises, associated with the existence of multiple
solutions and hysteresis phenomena. The new complexities are partly, but not exclusively,
related to the existence of multiple solutions of the underlying non-adiabatic one-dimensional
problem (described, for example, in [21, 22]).

The paper is structured as follows. The problem is first formulated in a thermo-diffusive
context with a single Arrhenius reaction. The one-dimensional problem, which can describe
the trailing wings of a premixed flame-edge, far from the edge, is then revisited, since it
is an essential prerequisite for understanding and classifying the two-dimensional results,
which describe the flame-edge itself. An asymptotic analysis of flame-edge propagation under
weak-strain conditions is then presented. This is followed by a numerical description of the
general case, including a comparison with the asymptotic results and a synthesis of the various
combustion regimes, by way of classifying the ranges of strain-rate and heat-loss intensity in
which they can be found.

2. Formulation

The study is carried out in the counterflow configuration shown in figure 1, where the velocity
field has components vX = 0, vY = −aY and vZ = aZ in the X-, Y - and Z-directions,
respectively, measured dimensionally. Here, a is the strain-rate. We shall mainly address the
steady propagation of premixed flame-edges along the X-axis, with their propagation speed
Û being positive if the fronts are moving in the negative X-direction. The chemistry will be
represented by a one step irreversible Arrhenius reaction which consumes the fuel, considered
to be deficient, at a rate ω̂ = ρYFB exp(−E/RT ), where B, ρ, YF and E/R represent the
pre-exponential factor, the (constant) density, the mass fraction of fuel and the activation
temperature, respectively.

In a reference frame attached to the flame, the governing equations are

Û
∂T

∂X
− aY

∂T

∂Y
= DT

(
∂2T

∂X2
+

∂2T

∂Y 2

)
+

q

cp

ω̂

ρ
− κ̂(T − T0), (1)

Û
∂YF

∂X
− aY

∂YF

∂Y
= DF

(
∂2YF

∂X2
+

∂2YF

∂Y 2

)
− ω̂

ρ
. (2)

Here, DT and DF are the thermal and mass diffusion coefficients. The term κ̂(T − T0) is
included in (1) to account for volumetric heat-losses in a simple way, the temperature in both
incoming streams being T0. The problem will be considered in the upper half-plane Y � 0,
with boundary conditions (given in non-dimensional form below) corresponding to a frozen
mixture as X → −∞ or Y → +∞, vanishing Y -derivatives at Y = 0 (because of symmetry)
and vanishing X-derivatives as X → +∞.
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Effect of heat-loss on flame-edges 223

Figure 1. The counterflow configuration: (a) a two-dimensional flame-edge and (b) planar
twin-flames.

For a non-dimensional formulation, we first introduce the scaled dependent variables

F ≡ YF

YF,u
and θ ≡ T − T0

Tad − T0
,

where YF,u is the composition in the frozen mixture and Tad ≡ T0 + qYF,u/cp is the adiabatic
flame temperature. As unit speed, we select the laminar speed of the stoichiometric planar flame
under adiabatic equidiffusional conditions, S0

L = [2β−2DTB exp(−E/RTad)]1/2, or more
precisely its value in the asymptotic limit of large Zeldovich number β ≡ E(Tad − T0)/RT 2

ad.
As unit length we select the (thermal) mixing layer thickness L ≡ √

2DT/a.
In terms of the rescaled spatial coordinates y ≡ Y/L and x ≡ X/L, we thus obtain the

non-dimensional equations

U
∂θ

∂x
− 2εy

∂θ

∂y
= ε

(
∂2θ

∂x2
+

∂2θ

∂y2

)
+ ε−1ω − ε−1

β
κθ, (3)

U
∂F

∂x
− 2εy

∂F

∂y
= ε

LeF

(
∂2F

∂x2
+

∂2F

∂y2

)
− ε−1ω. (4)

The parameter ε is defined by

ε ≡ l0
fl

L
= l0

fl√
2DT/a

(5)

which represents the premixed flame thickness, l0
fl = DT/S0

L, measured against the reference
length L. It is related to the Damköhler number, Da, by ε−2 = Da, if Da is defined as the
ratio of the mechanical time, 2a−1, to the chemical reaction time l0

fl
2
/DT. The parameter

LeF ≡ DT/DF is the Lewis number of the fuel, and κ ≡ β(DT/S0
L

2
)κ̂ is the non-dimensional
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224 R Daou et al

heat-loss coefficient. The dimensionless reaction-rate ω is given by

ω ≡ β2

2
F exp

β(θ − 1)

1 + αh(θ − 1)
, (6)

with αh ≡ (Tad − T0)/Tad. The boundary conditions are

θ = 0, F = 1 as x → −∞ or y → ∞, (7)

representing conditions in the frozen mixture, and

∂θ

∂x
= ∂F

∂x
= 0 as x → ∞, (8)

since the profiles are expected to be independent of x far downstream, and finally

∂θ

∂y
= ∂F

∂y
= 0 at y = 0, (9)

for symmetry about y = 0.
In solving the problem above, the main aim is to determine the (scaled) propagation speed

U in terms of the non-dimensional parameters ε, κ and LeF. This task will mainly be addressed
numerically with the focus being on the dependence on the parameters ε and κ (characterizing
the strain-rate and heat-loss intensity). Analytical results, valid in the weak-strain limit, will
be also derived. However, as an essential prerequisite for the two-dimensional studies, the
next section is dedicated to a review of the underlying one-dimensional problem.

3. The one-dimensional flame

The combined effect of strain and heat-loss on the planar premixed flame (the twin flames in
figure 1) has been the subject of several studies in the literature (see, for example, [21, 22]
and references therein). These studies have pointed out that typically two limits of extinction
of the planar flame exist for a given intensity of the heat-loss: a ‘quenching’ limit at a high
value of the strain-rate (as in the adiabatic case) and a ‘radiation’ limit at a lower value of the
strain-rate. Although the reader is referred to the original publications for a detailed discussion
of the problem, a succinct derivation of the main findings relevant to our study is provided here
for convenience; the emphasis is on delimiting the different burning regimes in the κ–ε plane,
which is not readily available in the literature.

An asymptotic approach, similar to that described in [22], is adopted using the limit
β → ∞ along with the nearly equidiffusive approximation lF ≡ β(LeF − 1) = O(1). The
problem can then be reformulated in terms of the leading order temperature, θ0, and the excess
enthalpy h ≡ θ1 +F 1, where superscripts indicate orders of expansions in β−1. More precisely,
for β → ∞, the chemical reaction is confined to an infinitely thin sheet located at y = y∗, say.
On either side of this sheet, the equations

d2θ0

dy2
+ 2y

dθ0

dy
= 0,

d2h

dy2
+ 2y

dh

dy
= −lF

d2θ0

dy2
+ κε−2θ0,

must be satisfied along with the boundary conditions

θ0 = 0, h = 0 as y → ∞,

dθ0

dy
= dh

dy
= 0 at y = 0,
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Effect of heat-loss on flame-edges 225

and the jump conditions

[θ0] = [h] = 0,

− 1

lF

[
dh

dy

]
=

[
dθ0

dy

]
= ε−1eσ/2,

at y = y∗. Here, σ stands for the perturbation in the flame temperature, σ ≡ h(y∗) and, as is
conventional, the squared bracket is equal to the value of a given quantity on the unburnt gas
side (where y = y+

∗ ) minus its value at the burnt side (y = y−
∗ ).

Using the boundary conditions and the continuity of θ0 and h at the reaction sheet, we
thus find that

θ0 = 1,

h = σ − κ
√

π

2ε2

(
[erf(y∗) − erf(y)]

∫ y∗

0
eu2

du +
∫ y

y∗
[erf(u) − erf(y)]eu2

du

)
,

in the burnt gas region (y < y∗) and

θ0 = erfc(y)

erfc(y∗)
,

h = σ
erfc(y)

erfc(y∗)
+ lF

y exp(−y2) erfc(y∗) − y∗ exp(−y2
∗) erfc(y)√

πerfc2(y∗)

− κ
√

π

2ε2erfc2(y∗)

(
[erf(y) − erf(y∗)]

∫ ∞

y∗
erfc2(u)eu2

du

+erfc(y∗)
∫ y

y∗
[erf(u) − erf(y)] erfc(u)eu2

du

)
,

in the unburnt gas region (y > y∗).
It then follows from the jump conditions that the perturbation in the flame temperature σ

and the location of the flame y∗ are given in terms of ε, κ and lF by

σ = − κ
√

π

2ε2 erfc(y∗)

[
erfc2(y∗)

∫ y∗

0
eu2

du +
∫ ∞

y∗
erfc2(u)eu2

du

]

− lF

2

[
1 + 2y2

∗ − 2y∗ exp(−y2
∗)√

π erfc(y∗)

]
, (10)

ε =
√

π

2
erfc(y∗) exp

(
y2

∗ +
σ

2

)
. (11)

For a fixed value of ε, equation (11) provides an explicit expression for σ in terms of y∗ which
when inserted in (10) yields an explicit formula for κ in terms of y∗ and lF. Thus, for fixed
values of ε and lF, a parametric plot of σ versus κ can be generated by varying y∗ from zero
to infinity.

Figure 2 summarizes the results for the unit Lewis number case lF = 0. The dashed
curves in this figure show the dependence of the burning rate per unit flame surface area
µ ≡ exp(σ/2) on κ , for selected values of ε. The inner solid curve, given by κ = −µ2 ln(µ),
corresponds to the familiar non-adiabatic unstrained planar flame for which the lower branch
is known to represent unstable solutions. Extinction here occurs at the turning point for which
κ = κ0 ≡ (2e)−1. We note that this curve is approached by the dotted curves as ε (or the
strain-rate) tends to zero, as is to be expected.
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226 R Daou et al

Figure 2. Burning rate per unit flame area versus κ for selected values of ε.

It can be seen that for any non-zero value of ε smaller than a critical value εc (which is found
to be approximately equal to 0.186), the dotted curves are inverse-S-shaped curves indicating
the existence of three burning solutions in a certain range of values of κ . It is reasonable to
expect that the middle branch is unstable by analogy with the classical unstretched case; note
anyway that this branch has the probably unphysical feature that the burning rate µ increases
with κ . In addition to these three solutions, there is, of course, the frozen solution µ = 0.

Thus, three stable planar solutions, including the frozen one, can be expected. It is seen,
however, that at most one stable burning solution persists for any fixed value of κ in the
asymptotic limit ε → 0, since the lower solution is then lost1. Furthermore, for ε > εc,
µ becomes a monotonically decreasing single-valued function of κ , and flame extinction is
obtained only by quenching at the stagnation plane.

The locus of the quenching points is the solid curve labelled ‘quenching curve’ obtained
by setting y∗ = 0 in (10) and (11). This curve shows that, in the presence of strain, burning
solutions may be encountered for values of κ much larger than the planar extinction value
κ0 ≈ 0.184, namely for κ < κmax, say. In fact, the locus of the quenching points in the κ–ε

plane is described by the equation

κ = − 4ε2

A
√

π
ln

2ε√
π

with A ≡
∫ ∞

0
erfc2(u)eu2

du, (12)

from which it can be deduced that κmax = √
π(2eA)−1 ≈ 0.834, corresponding to

ε = √
π/4e ≈ 0.537. Thus, the flame is most resistant to heat-loss for intermediate values

of the strain-rate, namely for ε ≈ 0.537, being able to withstand a heat-loss intensity more
than four times higher than the value that can be tolerated by a planar unstretched flame.

Another useful way of examining the results is by plotting µ as a function of ε for selected
values of κ . Figure 3 summarizes the calculations obtained by solving the corresponding
non-linear system for this (10) and (11) numerically. The quenching curve of the previous
figure now appears as the straight line µ = 2ε/

√
π . Below this line no burning solutions can

be obtained since they would correspond to negative values of y∗. The sections of the curves
where, for fixed ε, the burning rate µ increases with κ , are almost certainly unphysical. These
correspond to the middle branch of the inverse-S-shaped curves of the previous figure, and are
shown dashed in figure 3. They appear here as the upper branch of the inverse-C-shaped curves

1 This remark is important for the asymptotic study of the next section.
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Effect of heat-loss on flame-edges 227

Figure 3. Burning rate per unit flame area versus ε for selected values of κ .

Figure 4. Parameter chart in the κ–ε plane.

in situations where κ < κc ≈ 0.159. When κ0 > κ > κc, they consist of the lower branch of
the inverse-C-shaped curves. Note that for a fixed value of κ in the latter range, the ε-domain
of existence of stationary solutions has a gap in it (see, for example, the case κ = 0.18).

Finally, figure 4 is a parameter plot, where regions characterizing the multiplicity of
solutions in the κ–ε plane are identified. The solid curve in this diagram, labelled ‘quenching
curve,’ is based on equation (12). The dashed and dotted curves, that anihilate each other in
a cusp at (κc, εc), represent the loci of the upper and lower turning points, respectively. Thus,
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228 R Daou et al

based on the discussion above, four regions are delimited2. In region I, to the right of the
quenching curve and of the dashed line, no burning solutions exist. In region II, to the left
of the quenching curve and above the cusp, only one burning solution exists. In region III,
inside the cusp and below the lower branch of the quenching curve, two burning solutions
exist with the lower one being expected to be unstable. In the remaining small region IV,
three burning solutions are found with the intermediate one being expected to be unstable. Of
course, in all four regions we have, in addition, the frozen solution.

It is clear from this diagram that there are several possible ways in which two-dimensional
travelling fronts, or flame-edges, can connect the various one-dimensional solutions above. In
principle, any pair of solutions (of which the quenched solution is only one) can be connected
by a stable or unstable flame-edge [6,7]. However, in seeking only stable flame-edges, it must
be stressed that the situation is simplified by the fact that only one stable burning solution is
expected outside the small region IV. Although, several numerical calculations pertaining to
region IV will be presented, much of our work will pertain to domains outside this region,
which includes the domain pertinent to the asymptotic study of the next section corresponding
to ε → 0 with κ fixed.

4. The weak-strain asymptotic limit

In the limit of weak-strain, ε � 1, it is possible to describe the flame-edges analytically.
The methodology is close to that used in [13, 20], and thus will be presented with less detail.
We begin by reformulating the problem in the asymptotic limit β → ∞ in the framework
of the near-equidiffusion and near-adiabatic limit where lF and κ are of order one, as in the
previous section. We also rescale the problem by choosing as a new unit of length 2S0

L/a,
leading to the new non-dimensional coordinates x̃ = εx and ỹ = εy; this is the appropriate
length-scale when considering small values of the strain-rate, since it is then equal, in order
of magnitude, to the standoff distance of the twin-flames from the centreline. Characterizing
the reaction sheet by the equation x̃ = f (ỹ), and introducing the flame-attached coordinate
ξ = x̃ − f (ỹ), the resulting equations become

(U + 2ỹf ′)
∂θ0

∂ξ
− 2ỹ

∂θ0

∂ỹ
= ε2�θ0, (13)

(U + 2ỹf ′)
∂h

∂ξ
− 2ỹ

∂h

∂ỹ
= ε2�h + ε2lF�θ0 − ε−2κθ0, (14)

with

� = (1 + f ′2)
∂2

∂ξ 2
+

∂2

∂ỹ2
− f ′′ ∂

∂ξ
− 2f ′ ∂

∂ξ∂ỹ
.

The system (13) and (14) is to be solved for ξ 	= 0, subject to the jump conditions[
θ0

] = [h] = 0, (15)

[
∂h

∂ξ

]
= −lF

[
∂θ0

∂ξ

]
, (16)

ε2(1 + f ′2)1/2

[
∂θ0

∂ξ

]
= exp

(σ

2

)
, (17)

2 In regions I, II, III and IV there are 1, 2, 3 and 4 solutions respectively, including the frozen one.
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Effect of heat-loss on flame-edges 229

at the reaction sheet located at ξ = 0. Here, σ ≡ h(0, ỹ) is the value of h at ξ = 0. The
boundary conditions are

θ0 = 0, h = 0 as ξ → −∞ or ỹ → ∞, (18)

∂θ0

∂ỹ
= ∂h

∂ỹ
= 0 at ỹ = 0, (19)

with the additional requirement that the solutions are to be free from exponentially growing
terms as ξ → ∞.

We now seek a perturbation solution to the reformulated problem (13)–(19), by writing
expansions in the form

f = f0 + ε2f1 + · · · , U = U0 + ε2U1 + · · · ,
with similar expressions for θ0 and h. Note that only even powers of ε are considered since
ε appears in its square in the equations. In the limit ε → 0, the flame, including its preheat
zone, can be viewed as an infinitely thin layer located at ξ = 0, since its thickness is O(ε2).

In the outer regions on both sides of the flame, it is readily found that

θ0 =
{

0 for ξ < 0,

1 for ξ > 0
(20)

and

h = 0 for ξ < 0 (21)

valid to all orders in ε. We shall not need the explicit form of the outer expansion of h

downstream, since the exclusion of exponentially growing terms for ξ > 0, along with the
matching with the outer solutions upstream, is sufficient to determine the inner solutions that
we construct next.

We introduce the inner expansions

θ0 = θ0 + ε2θ1 + · · · , h = h0 + ε2h1 + · · ·
and the stretched variable ζ ≡ ξ/ε2. To leading order, this provides the equations

(U0 + 2ỹf ′
0)

∂θ0

∂ζ
= (1 + f ′2

0 )
∂2θ0

∂ζ 2
, (22)

(U0 + 2ỹf ′
0)

∂h0

∂ζ
= (1 + f ′2

0 )
∂2h0

∂ζ 2
+ lF(1 + f ′2

0 )
∂2θ0

∂ζ 2
− κθ0, (23)

which describe the inner problem. These can be solved, using the jump conditions (15) and (16)
and matching with the outer solutions, to give

θ0 =
{

exp(αζ ) for ζ � 0,

1 for ζ � 0,
(24)

h0 =




−
[

2κ

(α(U0 + 2ỹf ′
0))

+

(
αlF − κ

(U0 + 2ỹf ′
0)

)
ζ

]
exp(αζ ) for ζ � 0 ,

− 2κ

(α(U0 + 2ỹf ′
0))

−
(

κ

(U0 + 2ỹf ′
0)

)
ζ for ζ � 0,

(25)

where

α ≡ U0 + 2ỹf ′
0

1 + f ′2
0

.

From (16), it then follows that

SL0 exp

(
κ

S2
L0

)
= 1,
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230 R Daou et al

Figure 5. Asymptotic flame shape for selected values of κ .

where

SL0 ≡ U0 + 2ỹf ′
0

(1 + f ′2
0 )1/2

(26)

is the local laminar flame speed to leading order3. At the leading edge, we have f ′
0 = 0 and

SL0 = U0, so that

U0 exp

(
κ

U 2
0

)
= 1. (27)

Thus, to leading order, SL0 and U0 are equal to the propagation speed of the non-adiabatic
planar flame. With these quantities being known, (26) can be reused to determine f ′

0, and thus
the flame shape in the first approximation (see figure 5). Also, for later reference, we note that
the flame curvature at the leading-edge, located at y = 0, is found to be

f ′′
0 (0) = 4

U0
. (28)

At the next approximation the equations are

(U0 + 2ỹf ′
0)

∂θ1

∂ζ
− (1 + f ′

0
2
)
∂2θ1

∂ζ 2
= L(θ0) − (U1 + 2ỹf ′

1)
∂θ0

∂ζ
+ 2ỹ

∂θ0

∂ỹ
,

(U0 + 2ỹf ′
0)

∂h1

∂ζ
− (1 + f ′

0
2
)
∂2h1

∂ζ 2
= L(h0 + lFθ0) − (U1 + 2ỹf ′

1)
∂h0

∂ζ

+ lF(1 + f ′2
0 )

∂2θ1

∂ζ 2
+ 2ỹ

∂h0

∂ỹ
− κθ1, (29)

where the operator L is given by

L ≡ 2f ′
0f

′
1

∂2

∂ζ 2
− f ′′

0
∂

∂ζ
− 2f ′

0
∂2

∂y∂ζ
. (30)

These equations are valid for ζ 	= 0. The jump conditions at ζ = 0 are

[θ1] = [h1] = 0,

[
∂h1

∂ξ

]
= −lF

[
∂θ1

∂ξ

]
,

[
∂θ1

∂ζ

]
=

(
σ1

2
− f ′

0f
′
1

1 + f ′
0

2

) [
∂θ0

∂ζ

]
. (31)

3 The laminar flame speed, SL ∼ SL0 + ε2SL1, is given by SL = (U i − 2ỹj) · n where the unit vector normal to the
reaction sheet is n = (i−f ′j)/(1+f ′2)1/2, pointing to the burnt gas; hence we have that SL = (U +2ỹf ′)/(1+f ′2)1/2.
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Effect of heat-loss on flame-edges 231

Downstream of the reaction sheet, it is found that θ1 must be zero in order to be bounded as
ζ → ∞ and to match with (20). We thus have from (29), after eliminating exponentially
growing terms

θ1 = 0, (32)

h1 = σ1 +
κζ

(U0 + 2ỹf ′
0)

2
(A + Bζ) for ζ � 0,

where

A = f ′′
0 − 4

f ′
0

2 + 3ỹf ′
0f

′′
0

U0 + 2ỹf ′
0

+ U1 + 2ỹf ′
1 +

20ỹ(1 + f ′
0

2
)(f ′

0 + ỹf ′′
0 )

(U0 + 2ỹf ′
0)

2
,

B = 2ỹ(f ′
0 + ỹf ′′

0 )

U0 + 2ỹf ′
0

,

and σ1 is as yet undetermined.
Solving for θ1 in the unburnt gas, ζ � 0, it is found that

θ1 = (C + Dζ)
ζ exp(αζ )

1 + f ′
0

2 , (33)

where

C = U1 + 2ỹf ′
1 + f ′′

0 − 2f ′
0f

′
1α +

2α′

α2
ỹ and D = f ′

0α
′ − α′

α
ỹ,

after using the matching requirement θ1 → 0 as ζ → −∞, and the continuity requirement
θ1 = 0 at ζ = 0.

We now integrate equations (29) from ζ = −∞ to ζ = 0− to obtain

(1 + f ′
0

2
)

[
∂θ1

∂ζ

]
= Iθ − (U1 + 2ỹf ′

1) − 2ỹ
α′

α2
,

(U0 + 2ỹf ′
0)σ1 = Ih + lFIθ + G

(34)

after using (24), (25), (31) and (32), together with the matching condition that θ1, h1 and
their derivatives with respect to ζ must vanish as ζ → −∞. In (34), we have introduced the
quantities

Iθ =
∫ 0

−∞
L(θ0) dζ, Ih =

∫ 0

−∞
L(h0) dζ

and

G = (1 + f ′
0

2
)
∂h1

∂ζ

∣∣∣∣
ζ=0+

+ (U1 + 2ỹf ′
1)σ0 + 2ỹ

∫ 0

−∞

∂h0

∂y
dζ − κ

∫ 0

−∞
θ1 dζ.

These can be evaluated from (24), (25) and (33), to give

Iθ = 2f ′
0f

′
1α − f ′′

0 ,

Ih = −2lFf
′
0f

′
1α +

2κ(1 + f ′2
0 )

(U0 + 2ỹf ′
0)

2
[f ′′

0 − f ′
0f

′
1α]

and

G = − 2ỹ
α′

α2
lF +

κ(1 + f ′2
0 )

(U0 + 2ỹf ′
0)

2

[
2U1 + 4ỹf ′

1 + A + C − 2D

α

+
12ỹ(1 + f ′

0
2
)

(U0 + 2ỹf ′
0)

2

[
f ′

0 + yf ′′
0 +

(U0 + 2ỹf ′
0)α

′

α

]]
.
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Now using the last jump condition of (31) in (34), we obtain a system of two equations for
the three unknowns σ1, U1 and f ′

1. However, it is possible to determine directly the perturbation
in flame velocity, U1, if the system of equations is applied at the leading edge of the flame,
y = 0, where f ′

0 = 0. Thus, we obtain

U1 = −f ′′
0 (0)

[
1 +

lF

2(1 − 2κ/U 2
0 )

]
= − 4

U0

[
1 +

lF

2(1 − 2κ/U 2
0 )

]
. (35)

At this stage, a two term approximation U ∼ U0 + ε2U1 is available for the propagation speed
from (27) and (35). For example, for the case where lF = 0 (to be considered in the numerical
study below) we have

U ∼ U0 + ε2U1, with U0 exp

(
κ

U 2
0

)
= 1 and U1 = − 4

U0
. (36)

A plot of U versus κ based on (36) will be given later, along with a comparison with numerical
results (see figure 12).

5. Numerical results and discussion

In this section, numerical results corresponding to the problem (3)–(9) are presented. The
numerical method used is based on a finite-volume discretization combined with an algebraic
multigrid solver, as in [20]. The computational domain dimensions are typically 20 times the
mixing layer thickness in the y-direction and 100 times the planar laminar flame thickness
in the x-direction. The grid is non-uniform with typically 250 000 points. The results were
calculated to describe the influence of ε and κ , with the other parameters being assigned fixed
values, namely β = 8, αh = 0.85 and LeF = 1. The calculations are limited to ε > 0.1 to
ensure numerical accuracy.

We begin with a comparison between three cases, corresponding to κ = 0, κ = 0.12
and κ = 0.2, represented by figures 6, 7 and 8, respectively. In each case, five temperature
contours are shown above and five reaction-rate contours are shown below, for selected values
of ε increasing from left to right; in each figure, the largest values pertain to near-extinction
conditions. The contours are equidistributed between zero and the maximum value indicated
on each subfigure.

The adiabatic case κ = 0, corresponding to figure 6, shows a transformation of the
flame-edge from an ignition-front propagating to the left with U > 0 (top subfigure) to an
extinction-front retreating to the right with U < 0 (bottom subfigure). A similar behaviour
is observed in figure 7 for a moderate value of κ , in which the reaction-rates are of course
weaker, causing the transition from ignition to extinction fronts to occur at a lower value of ε.
A notable qualitative new feature, however, which is absent when κ = 0, is the extinction of
the trailing planar wings of the flame-edge, for small values of ε. For still larger values of κ ,
as illustrated in figure 8, the existence of ignition-fronts is no longer guaranteed, and the range
of values of ε where flame-edge solutions are found is reduced.

The remarks just presented are supported and complemented by figure 9, where the
propagation speed U is plotted against ε for selected values of κ . Disregarding, for the time
being, the curve with triangles4, we observe that the monotonic decrease of U from positive to
negative values for moderate κ is similar to that encountered in the adiabatic case. However,
when κ exceeds a critical value of the order of 0.13, a non-monotonic behaviour is obtained,

4 The triangles represent another branch of weakly burning solutions. An example of such weakly burning solutions
will be illustrated later in figure 17.
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Effect of heat-loss on flame-edges 233

Figure 6. Reaction-rate and temperature contours.

Figure 7. Reaction-rate and temperature contours.
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Figure 8. Reaction-rate and temperature contours.

Figure 9. Propagation speed versus ε for selected values of κ .

and the ε-range of existence of the two-dimensional solutions is reduced; in particular, total
extinction occurs at two values of ε (see, for example, the curve corresponding to κ = 0.2). The
non-existence of two-dimensional burning solutions for such values of κ , when ε is sufficiently
small, is explained by the asymptotic treatment of the previous section; as ε → 0, the flame
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Figure 10. The planar strained flame.

tends locally to be a planar unstretched flame which does not exist when κ exceeds an extinction
value5.

The fact that the two-dimensional structure extinguishes at two values of the strain-rate is
closely linked to the behaviour of the planar stretched flame. This can be seen from figure 10,
where the maximum temperature of the planar flame is plotted against ε for selected values
of κ . It is clear that this figure is consistent with figure 3 (based on asymptotics), although
no attempt has been made here to obtain the physically dubious dashed branches of the latter.
When κ has a small non-zero value, e.g. κ = 0.10, two solutions exist, with the strongly
burning one extinguishing at a high value of ε, and the weakly burning one (with triangles)
extinguishing at two lower values of ε. For larger values of κ , e.g. κ = 0.20, a unique burning
solution is found with two extinction values of ε.

The influence of heat-loss at fixed values of ε is illustrated in figure 11 where the
propagation speed U is plotted against κ . It is seen that under weak-strain conditions, such as
ε = 0.1, total extinction occurs at a finite positive speed, as in the case of a planar deflagration;
this is not surprising since, as mentioned earlier, the flame front tends locally to be a planar
deflagration as ε → 0. For larger values of ε, the two-dimensional structure experiences total
extinction at a negative value of U .

A comparison between the asymptotic and numerical predictions of U as a function of κ

is illustrated in figure 12, for the case ε = 0.1. The asymptotic prediction is based on (36).
The quantitative discrepancy observed can be attributed to the finite activation energy used in
the computations. The numerically calculated value of κ at extinction, for β = 8, is simply
lower than the asymptotic value for which β → ∞. We can compare κnum

ext ≈ 0.122 with
κ

asy
ext ≈ 0.184. Also, in comparing the adiabatic values of U , corresponding to κ = 0, we find

that U num
ad ≈ 0.84 and U

asy
ad = 1 − 4ε2 ≈ 0.96. However, a linear rescaling of the numerical

5 The theoretical extinction value, obtained in the limit β → ∞, is κ0 = (2e)−1 ≈ 0.184. The numerical extinction
value, obtained for β = 8, is κ0

num ≈ 0.125.
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236 R Daou et al

Figure 11. Propagation speed versus κ for selected values of ε.

Figure 12. Comparison between asymptotic and numerical results.

results (κ �→ κκ
asy
ext /κ

num
ext and U �→ UU

asy
ad /U num

ad ) shows that the rescaled numerics compare
rather well with the asymptotics, even under near-extinction conditions, as figure 12 shows.

The dependence of the flame shape on κ is illustrated in figure 13 for ε = 0.1. Plotted are
reaction-rate contours equidistributed between zero and the maximum value ωmax indicated in
each subfigure, as before. It is seen that the flame-front radius of curvature and its transverse
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Effect of heat-loss on flame-edges 237

Figure 13. Reaction-rate contours for ε = 0.1.

extent decrease with κ , in agreement with the analytical findings and with figure 5. Note also
the extinction of the trailing wings of the flame-edge far downstream in the last subfigure.

A summary of the overall numerical findings discussed so far is provided by figure 14
in the κ–ε plane. The solid lines are deduced from one-dimensional numerical solutions; the
inverse-C-shaped curve represents the locus of quenching points, and the curves forming a cusp
represent the loci of the upper and lower turning points, as found numerically. The qualitative
agreement with the asymptotic picture in figure 4 is clear. The squares correspond to the
extinction limits of the two-dimensional flame-edges, and the triangles denote the conditions
at which their propagation speed is zero. Since calculations could not be carried out accurately
with ε < 0.1, the dotted curves are extrapolations based on simply rescaling the corresponding
asymptotic curves in figure 4.

Several regions are thus delimited. In the region labelled A, to the right of the squares, the
flame-edge structures are entirely extinguished. The extinction in this case is dictated by the
extinction of the planar structure in situations where the squares lie on the one-dimensional
quenching curve. This occurs for ε larger than a critical value ε∗ which is seen to be close
to 0.13.

For smaller values of the strain-rate (more precisely for ε < ε∗), the two-dimensional flame
structures can survive in situations where the planar flame is extinguished. This occurs in the
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Figure 14. Regimes of flame-edge propagation under strain and heat loss.

region labelled B, where positively propagating flames without trailing wings are encountered,
as seen in the top subfigures of figure 7.

These flame structures cannot accurately be described as flame-edges, since there is no
flame of which they can form an edge. In a sense they are remnants of a flame-edge that has
continued to survive in spite of the quenching of the flame of which they would otherwise have
formed an edge; an analogous process at low Lewis numbers leads to oscillatory flame-edge
propagation for both premixed and non-premixed systems [13–17]. It would be convenient
to call these structures edge flames, since it is the edge-nature of the structure that clearly
dominates, but this term has been used synonymously with flame-edges by some authors.
They might be called isolated flame-edges. Analogous isolated flame-edge structures found
in non-premixed systems have been termed tailless triple-flames [19, 20].

A non-propagating form of isolated flame-edge has also been identified in both premixed
and non-premixed systems [14–17]. In [15, 16] these are called flame tubes. By extension,
we might also therefore refer to the isolated flame-edges identified here, and in [19,20] for the
non-premixed case, as propagating flame tubes.

In the region labelled D, to the right of the triangles, retreating flame-edges are encountered.
Finally, in the remaining region labelled C, including the regions III and IV, positively
propagating flame-edges with infinite longitudinal extent are found. In region C we have, in
addition to these, negatively propagating edges of flames correponding to the one-dimensional
weakly burning solution; an example of such a flame is shown later in figure 17(b).

It should be emphasized that the rather extensive set of numerical simulations which are
summarized in figure 14 is not exhaustive. Other complications arise whose detailed study
may allow a more refined albeit more complex picture to be drawn. These complications are
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Effect of heat-loss on flame-edges 239

mainly associated with the existence of multiple solutions and hysteresis phenomena and are
briefly discussed in the remainder of this section.

A first example of multiplicity of solutions and hysteresis is illustrated in figures 15 and 16.
Reaction-rate contours are plotted on the left and temperature contours are plotted on the right
for a fixed value of κ , namely κ = 0.12. In figure 15, the profiles are obtained by starting
from the initial solution corresponding to ε = 0.13 and increasing ε. In figure 16, the profiles
are obtained by starting from the initial solution corresponding to ε = 0.17 and decreasing ε.
Although the top and bottom subfigures are the same, the middle subfigures show two distinct
solutions which are obtained for the same value of the parameters.

Another example of multiplicity of solutions is presented in figure 17, where three distinct
solutions are shown for the same values of κ and ε. We first note that three one-dimensional
solutions are obtained numerically in this case. In line with the analysis of section 3 these

Figure 15. Reaction-rate and temperature contours.

Figure 16. Reaction-rate and temperature contours.
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Figure 17. An example of multiple of solutions.

Figure 18. Reaction-rate and temperature contours with ε = 0.2.

are: a frozen, a weakly burning, and a strongly burning solution. The left subfigures show a
two-dimensional front connecting the frozen solution (far upstream) to the strongly burning
one-dimensional solution (far downstream); the resulting propagation speed U (indicated on
the subfigure) is positive. The middle subfigures show a two-dimensional front connecting the
frozen solution to the weakly burning one-dimensional solution, with a resulting negative
propagation speed. The right subfigures show another two-dimensional front connecting
the frozen solution to the strongly burning one-dimensional solution, with a small negative
value of U 6.

Yet another type of solution which has not been considered so far corresponds to stationary
flame tubes (for which U = 0). Examples of these are shown in figure 18. Reaction-rate and
temperature contours are plotted for ε = 0.2 and three values of κ increasing from left to right.
It can be seen that the size of the tube decreases with increasing κ . The longitudinal extent of
these tubes, as a function of κ , is shown in figure 19 for selected values of ε. For each value

6 We have not been able to find a two-dimensional front connecting the weakly and strongly burning solutions to each
other. It may be possible that no travelling wave solution (with constant U ) exists which may achieve this connection.
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of ε, the tubes exist between two critical values of κ . As κ is increased above the upper value
the tube is extinguished, while as κ approaches the lower value, the longitudinal extent of the
tube approaches infinity, tending to regenerate the planar structure.

Finally, it is instructive to delimit the existence domains of the stationary and non-
stationary tubes in the κ–ε plane. This is carried out in figure 20. The squares and triangles
in this figure have the same meaning as in figure 14 and are included here for reference. It is
seen that the domains of existence of the stationary and non-stationary tubes are not disjoint.
This illustrates once more the frequent occurrence of multiple two-dimensional solutions, and

Figure 19. Longitudinal extent of stationary tubes versus κ for selected values of ε.

Figure 20. Existence domains of stationary and propagating tubes.
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emphasizes that this added complexity is not necessarily related to that of the underlying
one-dimensional problem.

6. Conclusion

Two-dimensional flame-edges, isolated flame-edges or propagating flame tubes and non-
propagating flame tubes, encountered in a premixed counterflow configuration under non-
adiabatic conditions have been investigated analytically in the weak-strain and large activation
energy limits, and numerically for a finite activation energy. The results illustrate the existence
of a wide spectrum of behaviour, which we have discussed and classified in a two-dimensional
diagram characterizing the rates of heat-loss and strain. The complexity of the problem
has been associated in part with the existence of multiple solutions of the underlying one-
dimensional y-dependent problem. However, other issues which are not directly related to
the one-dimensional problem, such as the coexistence of stationary and propagating tubes and
the multiplicity of two-dimensional travelling-wave solutions with the same conditions far
upstream and downstream, have also arisen. A natural extension of the present work, which is
worth undertaking, is to account for unsteady effects and to study the stability of the various
stationary solutions presented. A non-linear radiative heat-loss term could also be considered,
as in [18]. However, even without these additional aspects, the present work constitutes an
important first step in uncovering the effect of heat-loss on premixed flame-edges.
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[9] Kioni P N, Rogg B, Bray C and Liñán A 1993 Combust. Flame 95 276–90

[10] Buckmaster J and Matalon M 1989 Proc. Combust. Inst. 22 1527–35
[11] Ruetsch G R, Vervisch L and Liñán A 1995 Phys. Fluids 7 1447–54
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[13] Daou J and Liñán A 1998 Combust. Theory Modelling 2 449–77
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