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The paper’s broad motivation, shared by a recent theoretical investigation [Daou and
Daou, “Flame balls in mixing layers,” Combustion and Flame, Vol. 161 (2014),
pp. 2015–2024], is a fundamental but apparently untouched combustion question; specif-
ically, ‘What are the critical conditions insuring the successful ignition of a diffusion
flame by means of an external energy deposit (spark), after mixing of cold reactants has
occurred in a mixing layer?’ The approach is based on a generalisation of the concept
of Zeldovich flame balls, well known in premixed reactive mixtures, to non-uniform
mixtures. This generalisation leads to a free boundary problem (FBP) for axisymmetric
flame balls in a two-dimensional mixing layer in the distinguished limit β → ∞ with
εL = O(1); here β is the Zeldovich number and εL is a non-dimensional measure of the
stoichiometric premixed flame thickness. The existence of such flame balls is the main
object of current investigation. Several original contributions are presented. First, an
analytical contribution is made by carrying out the analysis of Daou and Daou (2014)
in the asymptotic limit εL → 0 to higher order. The results capture, in particular, the
dependence of the location of the flame ball centre (argued to represent the optimal
ignition location which differs from the stoichiometric location) on εL. Second, two
detailed numerical studies of the axisymmetric flame balls are presented for arbitrary
values of εL. The first study addresses the infinite-β FBP and the second one the original
finite-β problem based on the constant density reaction–diffusion equations. In partic-
ular, it is shown that solutions to the FBP exist for arbitrary values of εL while actual
finite-β flame balls exist in a specific domain of the β–εL plane, namely for εL less
than a maximum value proportional to

√
β; this scaling is consistent with the existence

of solutions to the FBP for arbitrary εL. In fact, the flame ball existence domain is
found to have little dependence on the stoichiometry of the reaction and to coincide,
to a good approximation, with the domain of existence of the positively-propagating
two-dimensional triple flames in the mixing layer. Finally, we confirm that the flame
balls are typically unstable, as one expects in the absence of heat losses.

Keywords: flame balls; forced ignition of diffusion flame; ignition in non-uniform
mixtures

1. Introduction

In order to understand the problem of successful flame ignition in a non-uniform reac-
tive mixture, typically exemplified by a localised energy deposit leading to triple flame
propagation and the establishment of a diffusion flame in a mixing layer, a theoretical
study has been recently published which seems to be the only analytical investigation in
the literature [1]. The present paper is a continuation of this investigation and it shares
with it the broad motivation of understanding a fundamental problem which is important
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2 R. Daou et al.

in applications. This is the problem of the forced ignition of a diffusion flame, by means of
a spark say, after the mixing of cold reactants has occurred resulting in the formation of a
mixing layer. Surprisingly, this fundamental problem, concerned for example with the de-
termination of the minimum ignition energy required for ignition and the optimal location
for its deposit, has not received, to our knowledge, dedicated attention in the literature.

An important objective of [1] was to determine the critical minimum ignition energy
which was argued to be, in first approximation, the thermal energy inside a non-propagating
non-spherical axisymmetric structure, called a flame ball, generalising the well-known
spherical Zeldovich flame ball to non-uniform mixtures. This stationary axiymmetric struc-
ture is expected to be unstable, as is the case with its spherical counterpart in uniform pre-
mixed gases [2, p. 327], except in special circumstances where preferential diffusion and
volumetric heat losses are taken into account [3–6]. However, the instability of flame balls
does not in any way diminish their importance. On the contrary, their instability may be
viewed as an essential ingredient for characterising the ‘critical conditions’ for successful
ignition in a first theoretical analysis of flame initiation in non-uniform reactive mixtures.
This interpretation is in line with Zeldovich’s pioneering interpretation of such stationary
unstable structures in (perfectly) premixed gases as described by the following quotation
[2, p. 331]: ‘This type of stationary combustion at a spherical surface could be viewed as
the condition that must be overcome in order to ignite a gas, i.e., in order to produce a
uniformly propagating combustion wave. If a thermal source with the same temperature,
but a smaller radius, is created in a reactive gas, then the source will be dissipated. On the
other hand, if the radius of a source with the same temperature exceeds the radius of the
sphere, then ignition occurs’.

The short discussion above provides one significant motivation, related to ignition in
non-uniform mixtures, for the study of stationary axisymmetric flame balls. In this ignition
context, two important questions arise, namely ‘What is the minimum energy (of a spark
say) required for ignition?’ and ‘What is the optimal location in the mixing layer for energy
deposition?’ Answers to these two questions may be related to the thermal-energy content of
the flame ball and to its location, which are both fixed by the parameters of the problem. We
note that the question related to the location is not relevant to the case of uniform premixed
gases, but is fundamental in our non-uniform case. In fact, it is not generally true that the
optimal location should coincide with the stoichiometric location, as an educated guess may
suggest, but as we shall see, this location is mainly determined by the stoichiometry of the
reaction and the Damköhler number. We shall not repeat herein the introductory remarks
given in reference [1] to further motivate this study. The interested reader is referred to
this publication for this purpose, as well as for a discussion of the most relevant references
related both to flame balls and to triple flames (which will be involved in the interpretation
of results, e.g. those associated with the existence of the flame balls and their location).
We find it important however to underline a few key points from [1] which help set the
objectives of the current investigation. In particular, we note that the constant density model
used in [1], describing axisymmetric flame balls in a two-dimensional mixing layer, will
be adopted here. As we shall discuss in Section 2, the model leads to a non-dimensional
problem involving six parameters, which we shall refer to throughout as the finite-β problem
to distinguish it from the free boundary problem (FBP) introduced below. The focus of the
current investigation is restricted to three of the six non-dimensional parameters, namely
β, εL and �; these are defined in the next section and represent the Zeldovich number, the
planar stoichiometric flame thickness1 and the stoichiometry of the reaction, respectively.

In the distinguished limit β → ∞ with εL = O(1), the finite-β problem was shown in [1]
to lead to a free boundary problem. The FBP was solved analytically by perturbation methods
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Combustion Theory and Modelling 3

in the (fast-chemistry or large-Damköhler) limit εL → 0. The FBP and the corresponding
analytical formulae are summarised and discussed in Sections 3.1 and 3.2. These formulae
determine in particular the flame ball shape and the corresponding thermal energy (argued to
represent the minimum ignition energy) for small values of εL. It is important to emphasise
that no information is available about the solutions to the FBP for arbitrary values of εL.
In fact, the very existence of such solutions is not guaranteed and requires examination.
Therefore, numerical calculations are needed to this end, as well as to check the validity
of the asymptotics for small values of εL. Similarly, the solutions to the finite-β problem
and their existence need also be examined and furthermore compared with those of the
FBP. These remarks determine the main objectives of the current paper, which are:

(a) to test the validity of the asymptotic findings of [1] by comparing them with
numerical solutions to (i) the FBP and (ii) the finite-β problem;

(b) to determine the flame ball’s existence domain in the β–εL plane as solutions to the
finite-β problem, as well as their εL-domain of existence as solutions to the FBP –
this is crucial information without which the theory would have shaky foundations;

(c) to determine the influence of the stoichiometric coefficient � on the results;
(d) to determine the dependence of the location around which the flame ball must

be centred (for it to exist) on εL both analytically, for small values of εL, and
numerically in the general case – this location is important as it may be argued to
represent the optimal location for energy deposition.

The numerical results, as well as additional new analytical results, to be presented should
provide crucial information completing the theory of [1], e.g. regarding the existence of
the flame ball solutions, and a fairly thorough appreciation of the dependence of the flame
balls on the physical parameters considered.

The paper is carefully written and essential details are provided with some necessary
partial repetitions from [1], including a summary of its main findings, in order to insure
clarity. Some effort is required in reading the paper, however, given the intricacies of the
problem. These intricacies are associated with the required links to several theoretical
aspects of combustion (the asymptotics of triple flames, flame balls, diffusion flames, and
distinguished limits related to the presence of four spatial scales – see Figure 1 and its
captions, to be introduced shortly). The level of detail adopted in the presentation is hence
deemed necessary in order to facilitate understanding and benefit future workers on this
rich topic (rather than merely listing new results which are far from obvious).

The paper is structured as follows. We begin in Section 2 by formulating the problem and
defining the scope of the study. The FBP is presented in Section 3.1 and the corresponding
analytical results from [1] are summarised and discussed in Section 3.2. These are followed
by new asymptotic results whose derivation is motivated and presented in Section 3.3. The
numerical simulations pertaining to the FBP are addressed in Section 4 and those pertaining
to the finite-β problem in Section 5. The paper closes with concluding remarks, summarising
and discussing the main findings, and with suggestions for future investigations. These
investigations should include the combined study of preferential diffusion, heat losses,
and the stability of flame balls; stability is addressed in Section 5.6 only in passing and is
restricted to an equidiffusional adiabatic context to illustrate the generic situation, important
for ignition, where the flame ball is unstable. Additional topics for future studies addressing
aspects which are important in practice, such as the effect of variable density and the
relation between successful ignition and spark duration (as described in [7] for a premixed
gas), are not considered in this paper. This exclusion is adopted intentionally in order to
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4 R. Daou et al.

allow a proper treatment addressing the main objectives listed above, mostly related to
the existence of flame balls. The extensive set of results thus obtained present however a
significant addition to the theory and should provide a useful benchmark for comparison
with future studies.

2. Formulation

The setup for the investigation of flame balls in a mixing layer is the same as the one adopted
in [1]. Namely, we consider a reactive mixture in a two-dimensional channel delimited by
two planes located at Z = ±L as depicted in Figure 1. The planes represent two porous
walls where the concentrations of the fuel F and oxidiser O are assumed to be maintained
fixed. Although this setup may be difficult to achieve experimentally, it is adopted here
to construct the simplest theoretical model for an axisymmetric flame ball as depicted in
the left half of the figure; this is a non-propagating structure of burnt gas, axisymmetric
with respect to the vertical Z-axis, which is surrounded by an unburnt mixture of infinite
extent in the horizontal X- and Y-directions. A similar setup has been used in several
previous investigations (see e.g. [8–11]) which addressed, in particular, the propagation of
2D triple flames and the buoyancy-induced instability of 1D diffusion flames; these 2D
and 1D combustion structures, which will enter the discussion at several points of the text,
are represented in the right half of the figure.2 Extension of the study to other slightly

Oxidizer Side

X

Y
Z

Stoichiometric Surface Diffusion Flame

L [β ]

L

β
[O(1)]

δL [O( L)]

L

β
[O(1)]

(axisymmetric)
Flame Ball Triple Flame

Fuel Side

z = zc (z-coordinate of the flame ball centre)

Figure 1. A flame ball in a non-uniform reactive mixture between two porous walls (left half of
the figure) and a triple flame (right half). The mass fractions are prescribed by YF = YF, F and YO =
0 on the fuel side, and YF = 0 and YO = YO, O on the oxidiser side. Non-dimensional length scales
introduced in the text are enclosed in square brackets. Note that the z-coordinate of the flame ball
centre is depicted as coinciding with the z-coordinate of the leading edge of the triple flame; this is
justified by the asymptotic analysis of [1]. Note that four scales are present in our flame ball problem:
L, L/β, δL and δL/β, describing respectively the vertical size of the domain, the location of the flame
ball centre, the size of the flame ball, and the thickness of the reaction zone around the flame ball.
The corresponding non-dimensional scales are β, 1, εL and εL/β.
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Combustion Theory and Modelling 5

more complex setups, probably easier to realise experimentally, such as the axisymmetric
counterflow configuration adopted in [12], will be the subject of future investigations.

The combustion is represented by a one-step reaction of the form

F + sO → (1 + s)Product + q,

where s and q denote the mass of oxidiser consumed and the heat released per unit mass of
fuel. The reaction rate ω̃, defined as the mass of fuel consumed per unit volume and unit
time, is assumed to obey an Arrhenius law with pre-exponential factor B and activation
energy E of the form

ω̃ = Bρ2YFYO exp(−E/RT ). (1)

Here ρ, YF, YO, R and T represent the density, the fuel mass fraction, the oxidiser mass
fraction, the universal gas constant and the temperature, respectively.

For large activation energies, the region which is able to sustain significant heat genera-
tion is centred around the stoichiometric surface where YO = sYF. In the frozen mixture far
away from the flame ball, i.e. for X2 + Y2 → ∞, this surface is located at Z = Zst which
is determined using the mass fractions profiles which are linear in Z there. Specifically, we
have

Zst

L
= � ≡ S − 1

S + 1
, (2)

where S ≡ sYF, F/YO, O is a normalized stoichiometric coefficient and � a scaled version
thereof which we shall use instead.

Note that the location of the stoichiometric surface is midway between the walls, i.e.
Zst = 0, if the conditions are such that � = 0 (or S = 1), a special case which we shall refer
to as the stoichiometrically balanced case; in this special case, the flame balls exist only if
centred at the stoichiometric surface. In the general case � �= 0, the flame ball centre is
located away from the stoichiometric surface, at a distance of order L/β as indicated in the
figure.3 In fact � > 0 in this specific figure, hence the stoichiometric surface and the flame
ball centre are located closer to the oxidiser boundary; their locations would be closer to
the fuel boundary if � < 0.

With the subscript ‘st’ indicating values at (X2 + Y2) → ∞, Z = Zst, we introduce the
scaled quantities

yF = YF

YF, st
, yO = YO

YO, st
, θ = T − Tu

Tad − Tu

.

Here Tad ≡ Tu + qYF, st/cp is the adiabatic flame temperature, which is used to define the
Zeldovich number β ≡ E(Tad − Tu)/RT 2

ad at the conditions prevailing at the stoichiometric
location. At these conditions (and for β 	 1), the laminar speed SL of the stoichiometric
planar flame with thickness δL ≡ DT/SL is given by

SL =
√

4LeFLeO

β3
YO, st(ρDT )B exp(−E/RTad), (3)
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6 R. Daou et al.

where DT, LeF and LeO are the thermal diffusivity, the fuel Lewis number and the oxidiser
Lewis number, respectively.

The non-dimensional equations are given by

∂θ

∂t
= ∇2θ + ε−2

L ω (4a)

∂yF

∂t
= Le−1

F ∇2yF − ε−2
L ω (4b)

∂yO

∂t
= Le−1

O ∇2yO − ε−2
L ω, (4c)

in terms of the coordinates

x = βX

L
, y = βY

L
, z = β(Z − Zst)

L
, (5)

after selecting Lr ≡ L/β as unit length and L2
r /DT as unit time.4 As discussed in [1], Lr

represents the appropriate scale for measuring the radius of curvature of the triple flame
(sketched in the figure) which can propagate in the mixing layer, as well as for measuring
the distance between the location where the flame balls are centred and the stoichiometric
surface. As for the parameter εL, it represents the thickness of the planar stoichiometric
flame measured with the reference length L/β; it is also related to the Damköhler number
Da defined as the ratio between the diffusion time across the mixing layer L2/DT and the
flame transit time δ2

L/DT . Specifically, we have

εL ≡ δL

Lr

= βDT

LSL

and Da ≡ L2

δ2
L

= β2ε−2
L . (6)

The non-dimensional reaction rate ω takes the form

ω = β3

4LeFLeO
yFyO exp

[
β(θ − 1)

1 + α(θ − 1)

]
, (7)

where α = (Tad − Tu)/Tad.
The boundary conditions, corresponding to frozen profiles in the far field and prescribed

values on the walls, are

θ = 0 (8a)

yF = 1 − z

β(1 − �)
(8b)

yO = 1 + z

β(1 + �)
, as x2 + y2 → ∞, z → −β(1 + �) or z → β(1 − �). (8c)

Equations (4) with the boundary conditions (8) complete the formulation of the problem
(subject to suitable initial conditions). A main aim when tackling this problem is to find its
stationary solutions (flame balls) and examine their stability. In particular, one would like
to determine the domain of existence of these stationary solutions, and the corresponding
profiles of θ , yF and yO, in terms of the parameters εL, �, β, LeF, LeO and α. The analysis
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Combustion Theory and Modelling 7

of these equations in the asymptotic limit β → ∞ leads to an FBP that can be solved
analytically for small values of εL; the FBP is presented in the next section along with
a summary and a discussion of the main findings of [1]. This discussion will motivate
more clearly the direct objectives of the paper announced in the introduction, and facilitate
understanding the new results. These include the extension of the small εL asymptotic
analysis to higher order, undertaken in Section 3.3, and the determination of the solutions
of the infinite-β FBP and those of the finite-β problem, carried out numerically for arbitrary
values of εL in Sections 4 and 5, respectively.5

Before proceeding, we point out that, out of the six parameters listed above, only the
influence of the first three, namely εL, � and β, will be investigated; unless otherwise stated,
the other parameters will be assigned fixed values, namely LeF = 1, LeO = 1 and α = 0.85.
Our main focus will be on the determination of the stationary solutions and their existence
domains as well as on the validation of the asymptotic results. Furthermore, the instability
of the flame balls in our equidiffusional adiabatic framework will be confirmed numerically
rather concisely, leaving a detailed stability analysis, including differential diffusion and
heat losses, for a future investigation.

3. The free boundary problem for flame balls in the limit β → ∞
3.1. The free boundary problem

In the limit β → ∞, stationary solutions of Equations (4a)–(4c) with the boundary condi-
tions (8), representing flame balls in the mixing layer, are solutions of an FBP. This FBP has
been derived in [1] in the distinguished limit β → ∞ with εL, lF, lO = O(1), where lF ≡
β(LeF − 1) and lO ≡ β(LeO − 1) are the reduced Lewis numbers. It consists of a single
Laplace equation for the leading order temperature denoted by ψ to be solved outside a
domain � (the burnt gas domain), with ψ required to vanish in the far field and to satisfy
two conditions on the unknown boundary ∂� of � (the infinitely thin reaction sheet):

∇2ψ = 0 in R3\� (9a)

ψ = 0, as |r| → ∞ (9b)

ψ = 1,
∂ψ

∂n
= −F on ∂�. (9c)

Here F is an explicit function of (z; εL, �, lF, lO) given by

F = ε−1
L

{
1 +

∣∣∣∣ lF − lO

2
+ z

1 − �2

∣∣∣∣
}1/2

exp

{−lF − lO

4
− �z

2(1 − �2)

−
∣∣∣∣ lF − lO

4
+ z

2(1 − �2)

∣∣∣∣
}
.

A significant simplification is obtained if we assume that lF = lO, equal to l, say, leading
to

F = ε−1
L exp

(
− l

2

)
F(z; �), (10)
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8 R. Daou et al.

where

F =
{

1 + |z|
1 − �2

}1/2

exp

{
− �z + |z|

2(1 − �2)

}
. (11)

For simplicity, we shall write in the remainder of the paper F(z) for F(z; �). Also, before
proceeding, we note that formulae (9)–(11) may be viewed as a generalisation of the so-
called near-equidiffusion flame (NEF) approximation of premixed combustion [13, p. 39] to
the specific case of flame-balls in our non-uniform mixture. This generalisation is derived in
[1] and it involves jump conditions across a reaction sheet which can be obtained following
the methodology of [14]. These jump conditions lead in particular to (9 c) involving the
explicit function F .

3.2. Summary and discussion of main analytical results

For small values of εL, an analytical description of the solutions of the FBP (9)–(11) was
recently presented in [1]. Here we summarise and discuss the main results of this publication
which are needed for this investigation; we also introduce some notation that is important
throughout the text. The analytical results will be complemented in the next section by
the derivation of additional ones. It is shown in [1] that a flame ball can exist only if it is
centred at a single location zc of the symmetry axis; to leading order zc ∼ z0 where z0 is
fully specified by the stoichiometric coefficient � as

zc ∼ z0 = −�(1 + |�|) . (12)

In fact, z0 is determined as an eigenvalue and it is found to correspond to the location of
the maximum of the function F(z) given in (11), which also coincides with that of the
leading-edge of the triple flame in the mixing layer. Furthermore, z0 is used to define a
small expansion parameter ε, a rescaled version of εL, as

ε = εL

F(z0)
exp

l

2
. (13)

The perturbation approach for small ε leads to the following two-term expansions:

ψ = 1

r
+ b ε2

3

(
1

r
+ 1

r3
− 3 cos2 θ

r3

)
(14)

R = 1 + b ε2

3

(
2 − 3 cos2 θ

)
(15)

V = 4π

3

(
1 + b ε2

)
(16)

EB

EZ

= 1

F3
0

(
1 + b ε2

)
, (17)

where

F0 ≡ F(z0) = exp (−|�|/2)

(1 − |�|)1/2
and b = 1

4 (1 + |�|)2
. (18)
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Combustion Theory and Modelling 9

These expressions are obtained after rewriting the problem, as explicitly given in
Section 4.1, in terms of spherical coordinates centred at (x, y, z) = (0, 0, zc) and rescaled
such that

(x, y, z − zc) = ε(r sin θ cos φ, r sin θ sin φ, r cos θ ). (19)

The expansions describe axisymmetric solutions (independent of the azimuthal angle
φ) where r = R(θ ) represents the domain boundary ∂� and ψ the temperature field for
r > R(θ ), i.e. outside the burnt gas region. The latter has a non-dimensional volume V
and a dimensional volume VB = 3V VZ/4πF3

0 ; here VZ = 4πδ3
Z/3 is the volume of the

(spherical) Zeldovich flame ball at the stoichiometric location z = 0, whose radius δZ =
δLexp (l/2). The thermal energies inside VB and VZ are denoted by EB and EZ, respectively;
these are given by EB = ρcp(Tad − Tu)VB and EZ = ρcp(Tad − Tu)VZ, where cp is the heat
capacity, when non-dimensional temperature variations of order β−1 are neglected.

In order to appreciate the meaning of the analytical findings better, and facilitate com-
parison with the numerical results, a few comments are in order. To this end, it is convenient
to denote by ZFB(z) the (spherical) Zeldovich flame ball in a uniform mixture at the con-
ditions prevailing at z. As argued in [1], the dimensional radius of ZFB(z) is given by
δZ/F(z). Therefore, the Zeldovich flame ball with the smallest radius, equal to δZ/F0, is
encountered at z = z0, since z0 is the maximum of F(z). It follows, on referring to (13) and
(6), that the parameter ε has a simple interpretation: it is a non-dimensional measure of this
minimum radius in terms of the reference length Lr ≡ L/β. Furthermore, the rescaling of
the spherical coordinate system introduced in (19) is then seen to be equivalent to selecting
as unit length δZ/F0 instead of Lr; however, the scale Lr is still needed for the determination
of the location z0 used in (19) to centre the spherical coordinate system. Also needed is
the mixing-layer scale L which is used in (2) for determining the stoichiometric location
z̄st ≡ Zst/L by

z̄st = �. (20)

Note that we use bars here and elsewhere to indicate that a coordinate is made non-
dimensional using L as reference length, as explained in the footnote following Equation (5).
In particular, the location of the flame ball centre measured with L is given by

z̄c = z̄st + zc

β
, (21)

and hence, to leading order by

z̄0 = z̄st + z0

β
, (22)

that is, using (12) and (20),

z̄0 = � − �(1 + |�|)
β

. (23)

Furthermore, we shall define for future reference the maximum radius of the flame ball,
Rmax, as the maximum of R(θ ) for 0 ≤ θ ≤ π . According to (15), R(θ ) is symmetric to
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10 R. Daou et al.

O(ε2) with respect to the plane θ = π /2 , where the maximum is taken with

Rmax ≡ R
(π

2

)
∼ 1 + ε2

6 (1 + |�|)2
. (24)

Similarly, (15) implies that R(θ ) takes its minimum value Rmin on the z-axis, θ = 0 or π ,
with

Rmin ∼ 1 − ε2

12 (1 + |�|)2
. (25)

Equation (25) indicates that the flame ball is deflated (flattened) on the z-axis, with the
deflation increasing with ε, leading to flame breakup (Rmin = 0) for ε = ε∗ with

ε∗ = 2
√

3 (1 + |�|) . (26)

However, the conclusion concerning flame breakup, based on our small-ε asymptotic anal-
ysis, is questionable and is one of the points which need to be tested by solving the problem
numerically. In fact, for ε = ε∗ the second term on the right of (25) becomes of the same
order of magnitude as the first, suggesting that the expansion becomes invalid (which is
also true for the other expansions). Therefore, the most optimistic estimate consists in
identifying the ε-domain of validity of the asymptotics with the interval [0, ε∗]. According
to (26) the size of this interval increases with |�|; this suggests that the predictions based
on the asymptotic formulae should be more robust for higher values of |�|. Of course, the
degree of accuracy of these conclusions need again to be assessed numerically.

3.3. Asymptotic results to higher order

We note that the two-term asymptotic expansions (14)–(17) are obtained by solving the
perturbation problem to O(ε2), but this does not determine a two-term expansion for the
flame ball centre zc; this is only determined to leading order by Equation (12) which does
not describe its variations with ε. In order to understand how zc varies with ε and compare
with the numerical results, a two-term expansion for zc is needed. This two-term expansion
for zc can be obtained by solving the problem to O(ε3), which provides as a bonus 3-term
expansions for ψ and R. We briefly outline the main steps of the derivation. We begin by
adding an additional term to each of the available expansions (12), (14) and (15) by writing

zc ∼ −�(1 + |�|) + ε2ζ

ψ ∼ 1

r
+ b ε2

3

(
1

r
+ 1

r3
− 3 cos2 θ

r3

)
+ ε3ψ3

R ∼ 1 + b ε2

3

(
2 − 3 cos2 θ

) + ε3R3.

Inserting these into the governing Equations (9) and following closely the methodology of
[1] leads in the end to the problem
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Combustion Theory and Modelling 11

∇2ψ3 = 0 (r > 1) (27)

ψ3 = 0 as r → ∞ (28)

∂ψ3

∂r
+ 2ψ3 = 2bζ cos θ − c cos3 θ at r = 1 (29)

R3 = ψ3(r = 1), (30)

where b is given by (18) and where c is defined and evaluated by

c ≡ Fzzz(z0)

6F(z0)
=

⎧⎪⎨
⎪⎩

− 1

(� + 1)3
for 0 < � < 1

− 1

(� − 1)3
for − 1 < � < 0.

(31)

The Laplace differential equation and the first two boundary conditions are sufficient to
determine ψ3 and ζ ; the last condition then allows determination of R3. Indeed, the general
solution of (27) satisfying (28) is given by

ψ3 =
∞∑

n=0

AnPn(cos θ )

rn+1
, (32)

involving Legendre polynomials Pn. Applying the boundary condition (29) implies that

∞∑
n=0

(1 − n)AnPn(cos θ ) = 2b ζ cos θ − c cos3 θ (33)

from which it follows, using the formulae cos 3θ = [3P1(cos θ ) + 2P3(cos θ )]/5 since
P1(x) = x and P3(x) = (5x3 − 3x)/2, that

ζ = 3c

10b
, A3 = c

5
, An = 0 (n �= 1, 3), A1 arbitrary. (34)

From the first equality in (34), and using (18) and (31), we find

ζ = − sign(�)

5(1 + |�|) ,

which provides the following two-term expansion for the flame ball centre zc:

zc = −�(1 + |�|) − sign(�)

5(1 + |�|)ε
2 = −�(1 + |�|) − sign(�)e� 1 − |�|

1 + |�|
ε2
L

5
. (35)

This is the main result we are after, which exhibits the dependence of the flame ball centre
on εL (or ε). We emphasise that formula (35) has been derived, and is expected to be valid,
in the limit εL → 0 with � fixed at a non-zero value.6 In particular, for � = 1/2 we have

zc = −3

4
− e1/2

15
ε2
L, (36)
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12 R. Daou et al.

a case which will be tested against the numerical simulations. In fact, the simulations
whose discussion starts in the next section will be compared with the second order
expansions for ψ , R and zc, which are now all available.

Before doing so, we mention that the solution of the O(ε3) problem can now be com-
pleted. This solution is obtained and its implications briefly discussed in Appendix A; in
particular it is found that although the shape of the flame ball is modified by the O(ε3) cor-
rection, the thermal energy enclosed within it is not. Finally, we simply record the 3-term
expansions obtained, namely,

ψ = 1

r
+ b ε2

3

(
1

r
+ 1

r3
− 3 cos2 θ

r3

)
+ c ε3

5

(
−cos θ

r2
+ 5 cos3 θ − 3 cos θ

2r4

)
(37)

R = 1 + b ε2

3

(
2 − 3 cos2 θ

) − c ε3

2
cos θ sin2 θ, (38)

in which b and c are functions of � given by (18) and (31).

4. Numerical solution of the free boundary problem

4.1. Formulation and numerical approach

Looking for axisymmetric solutions, the free boundary problem (9)–(11) can be expressed
in terms of the spherical coordinates defined in (19) by

∇2ψ = 0 for r > R(θ ) (39a)

ψ = 0 as r → ∞ (39b)

ψ = 1,
∂ψ

∂r
= −

(
1 + R′2

R2

)−1/2 F (
zc + εLF−1

0 r cos θ
)

F0
at r = R(θ ), (39c)

where the function F is defined in (11), F0 is defined in (18) and

∇2ψ = 1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
.

Note that the free boundary ∂�, represented by r = R(θ ), needs to be determined as well
as zc as part of the solution. Note also that we have used (13) to write ε = εLF−1

0 under the
equidiffusional assumption l = 0, which will be adopted henceforth.

To solve the problem numerically, we introduce new coordinates

ξ = r − R(θ ), θ̂ = θ, (40)

so as to fix the free boundary at ξ = 0. In terms of these, and dropping the hat notation,
Equations (39) take the form

∇2ψ = 0 for ξ > 0 (41a)

ψ = 0 as ξ → ∞ (41b)
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Combustion Theory and Modelling 13

ψ = 1,
∂ψ

∂ξ
= −

(
1 + R′2

R2

)−1/2 F (
z0 + εLF−1

0 (ξ + R) cos θ
)

F0
at ξ = 0, (41c)

where

∇2ψ =
(

1 + R′2

(ξ + R)2

)
∂2ψ

∂ξ 2
+ 1

(ξ + R)2

∂2ψ

∂θ2
− 2R′

(ξ + R)2

∂2ψ

∂ξ∂θ

+
(

2

ξ + R
− R′ cos θ

(ξ + R)2 sin θ
− R′′

(ξ + R)2

)
∂ψ

∂ξ
+ cot θ

(ξ + R)2

∂ψ

∂θ
. (42)

As an equation for the free boundary R(θ ) we simply require for computational
purposes

∂R

∂r
= 0. (43)

Due to the assumption that the problem is axisymmetric, we impose the boundary
conditions

∂ψ

∂θ
= ∂R

∂θ
= 0 at θ = 0, θ = π. (44)

The additional equation needed to compute zc is taken to correspond to choosing zc

as the midpoint between the intersection points of the symmetry axis with ∂�, namely
Equation (A2), which we rewrite here for convenience:

R (π ) − R (0) = 0. (45)

The problem (41)–(45) is solved numerically using the finite element package COMSOL
Multiphysics R©, in a rectangular domain (ξ , θ ), where 0 ≤ ξ ≤ 400εL and 0 ≤ θ ≤ π . Once
the solution has been calculated in the rectangular domain, the results can be plotted
using Matlab R© in the cross-sectional x–z plane by setting x = (ξ + R)sin θ and z =
(ξ + R)cos θ . The domain is covered by a non-uniform grid of approximately 100,000
rectangular elements. The PDEs and auxiliary conditions, after being entered into the
software’s PDE interface, are transformed using a finite-element discretisation into a set
of nonlinear algebraic equations, which are solved using an affine invariant form of the
damped Newton method (see e.g. [15]). The solution has been checked to be independent
of the mesh; in particular the Dirichlet boundary condition (41b) applicable at ξ = ∞ has
been applied numerically at ξ = 400εL with negligible loss of accuracy, given that the
computational domain is large, with radial size 400 times the typical flame ball radius. The
same interface and a similar numerical approach are used in the simulations of the finite-β
problem presented in Section 5, without repeating there the details related to the software
and the numerical method. We note however that the same software has been successfully
used and thoroughly tested in several publications on flames, involving diffusion, premixed
and triple flames; see [9–11,16].
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14 R. Daou et al.
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z − zc

(a) (b)

Figure 2. Plots of the flame shape R(θ ) for selected values of εL, for (a) � = 0 and (b) � = 0.5.
The dashed lines correspond to asymptotic results and the solid lines to numerical computations.

Once the numerical solution has been calculated, the flame ball energy EB/EZ can be
found by numerically evaluating the formula

EB

EZ

= 3V

4π
≡ 3

2

∫ π

0

∫ R(θ)

0
r2 sin θ dr dθ. (46)

4.2. Results

In this section we present the numerical results corresponding to the problem (41)–(45) and
compare them with the asymptotic predictions, namely with the two-term expansions (14),
(15), (17) and (36). The main focus is on describing the influence of the parameters εL and
� on the flame balls, in particular on the location of their centre zc, their energy EB/EZ ,
their shape R(θ ) and their maximum radius Rmax.

4.2.1. Effect of εL

We begin by investigating the effect of εL on flame balls with a fixed value of �. Figure 2(a)
compares the asymptotic and numerical flame shapes R(θ ) for selected small to moderate
values of εL in the stoichiometrically balanced case � = 0. The figure shows that for
low values of εL there is very good agreement between the asymptotic and the numerics
(the curves for εL = 0.1 are almost indistinguishable). The agreement for small values
of εL is expected because the asymptotic results are derived in the limit εL → 0. The
agreement remains qualitatively and quantitatively good for εL < 1. For εL = 2, however, a
qualitative difference can be observed between the asymptotic and numerical flame shapes;
the asymptotics predict a strong vertical deflation around the z-axis, which leads in fact
to flame breakup for larger values of εL (not shown). This deflation and breakup are not
observed in the numerical solution of the FBP; they simply indicate that the domain of
validity of the asymptotics can only be extended to values of εL close to unity.

We now turn to Figure 2(b), corresponding to � = 0.5. It can be seen that the agreement
between the numerical and asymptotic solutions is even better in this case; the asymptotic
and numerical flame shapes are still indistinguishable for εL = 1, and there is good agree-
ment between both sets of results even up to εL = 2. We note that the visible increase
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Combustion Theory and Modelling 15
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Figure 3. Plots of the temperature ψ in the near field around the flame ball along the line θ = π/2
for selected values of εL and �.

in the domain of validity of the asymptotics for the larger value of � is in line with the
conclusions following Equation (26).

Figure 3 shows a comparison of the asymptotic and numerical solutions for the temper-
ature ψ along the line θ = π/2, for selected values of εL and �. The agreement between the
asymptotic and the numerical results is seen to be qualitatively good even up to εL = 2, and
quantitatively very good when εL = 0.1, as expected. Similarly to Figure 4, the agreement
is better in the case � = 0.5.

In Figure 4 we compare the numerical results for the flame ball energy E ≡ EB/EZ,
calculated using Equation (46), and the maximum radius Rmax, with the corresponding
asymptotic results (17) and (24), for the case � = 0. Again, good agreement between the
asymptotic and numerical results for low values of εL can be seen, say up to εL < 0.7.
For larger values of εL, the numerical values are found to be smaller than the asymptotic
ones. The corresponding results for � = 0.5 are also given in Figure 6 and show a similar
behaviour with an even better agreement.

In Figure 5 the flame ball centre zc is plotted against εL for � = 0.5 (solid line) with the
asymptotic value (horizontal dashed line) obtained from (36); note that no similar figure is
needed for the case � = 0, for which by symmetry zc = 0 for all values of εL. The figure
shows that there is good agreement for low and moderate values of εL, say for εL < 1.5.
As εL increases further, the numerical calculations yield a value of zc which decreases at
a slower rate than the asymptotic value. A full interpretation of the results necessitates the
use of (21) with a finite value of β and this point is further discussed in Appendix B. Here,
it suffices to take notice of the trend corresponding to � > 0, namely that an increase in
εL results in the flame ball centre moving downwards (towards the fuel side) away from the
stoichiometric surface (located closer to the oxidiser side, since z̄st = � > 0 according to
Equation 20).
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16 R. Daou et al.
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Figure 4. Plots of the flame ball energy, E ≡ EB/EZ, and the flame ball radius, Rmax, versus εL for
� = 0 and � = 0.5.
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−0.8

L

Asymptotic
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zc

Figure 5. Flame ball centre zc versus εL for � = 0.5. The dotted line corresponds to the asymptotic
formula (36).

The discussion of the last four figures confirms the validity of the asymptotic formulae
and indicates their range of applicability. We now provide complementary numerical results
for large values of εL. Shown in Figure 6 are temperature contours around the flame ball
(whose shape is represented by a thick line) for selected values of εL up to a value of εL =
10, for � = 0 and � = 0.5. It can be seen that as εL increases to large values the flame
ball becomes thinner in the vertical direction and longer in the horizontal direction, while
still remaining roughly elliptical in shape. We note that the asymmetry in the flame shape
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Combustion Theory and Modelling 17

observed in the case of � = 0.5 is in line qualitatively with the conclusions in the short
discussion following (A5) and (A6). The dependence of the flame ball on large values of
εL is further illustrated in Figure 7, where the maximum flame ball radius Rmax is plotted
versus εL for large values of εL, for � = 0 and � = 0.5. To conclude, we note that solutions
to our FBP can be found for arbitrarily large values of εL (or arbitrarily small values of
the Damköhler number); this conclusion is intimately connected and consistent with the

−5 0 5 −5 0 5 −5 0 5

−5

0

5

−5

0

5

Δ = 0

Δ = 0.5

L = 1 L = 5 L = 10

x

z
z
−

z c

Figure 6. Temperature contours around the flame ball (whose shape is represented by the thick inner
line) for selected values of εL and �. The contours are represented by solid lines corresponding to
values of ψ decreasing from 1 (the thick inner line) in steps of 0.1.

0 10 20

5

Δ = 0

Δ = 0.5

L

R
x

a
m

Figure 7. Plots of the maximum flame ball radius Rmax versus εL, for a wide range of εL, with � =
0 and � = 0.5.
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Figure 8. Plots of the flame ball energy E ≡ EB/EZ and flame ball maximum radius Rmax versus �
for selected values of εL. The solid lines correspond to asymptotic results for each of the selected
values.

infinite-β limit adopted in the derivation of the FBP. This is an important point which will
become clearer in Section 5.4, when we examine the large-β behaviour of the finite-β
solutions.

4.2.2. Effect of �

In this section we examine the influence of � on flame balls for fixed values of εL.
Shown in Figure 8 are plots of the flame ball energy EB/EZ and its maximum radius Rmax,
corresponding to the asymptotic and the numerical results for selected values of εL. As
expected, very good agreement between the two sets of results is observed when εL is small
enough. For higher values of εL, better agreement is obtained when � is large. This better
agreement is consistent with Figure 2, which showed that the flame shapes based on the
asymptotics were closer to the numerical flame shapes for � = 0.5 than for � = 0.

It can also be seen in Figure 8 that, for large values of εL, the asymptotics overestimate
the flame ball energy compared with the numerical results, which curve to lower values as
� approaches zero; the same is true for the flame ball radius Rmax.

5. The finite-β problem

5.1. Formulation

As stated at the end of Section 2, our main aim is to find stationary solutions to Equations (4)
with the boundary conditions (8), focusing on the dependence of their existence domain
on the three non-dimensional parameters εL, � and β, with the remaining three non-
dimensional parameters identified being assigned the fixed values LeF = 1, LeO = 1 and
α = 0.85. In particular, under the unit Lewis numbers assumption, the equations and
boundary conditions imply that θ + yF and θ + yO are known functions of z given by the
right-hand sides of (8b) and (8c), respectively. Therefore, a single equation is needed, say
the θ equation, in which ω is a function of θ and z. Hence, we have to solve

∂θ

∂t
= ∇2θ + ε−2

L β3

4

[
1 − θ − z

β(1 − �)

] [
1 − θ + z

β(1 + �)

]
exp

[
β(θ − 1)

1 + α(θ − 1)

]
(47)
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Combustion Theory and Modelling 19

with

θ = 0 as x2 + y2 → ∞, z → −β(1 + �) or z → β(1 − �). (48)

Of course, the stationary axisymmetric solutions to the problem (47)–(48) represent the
flame balls in the mixing layer we are interested in. Two other types of solutions of (47)
which will be used in our discussion are the one-dimensional diffusion flames θ = θ (z)
and the two-dimensional travelling-waves θ = θ (x − Ut, z), representing triple flames with
propagation speed U in the positive x-direction. To obtain these two types of solutions, the
boundary condition should be modified respectively to

θ = 0 as z → −β(1 + �) or z → β(1 − �) (49)

or

θ = 0 as x → ∞, z → −β(1 + �) or z → β(1 − �) and θx = 0 as x → −∞.

(50)

We note that other types of flames also exist in the mixing layer, which include two-
dimensional flame tubes (see e.g. [17–19]) which will not be considered herein. They also
include expanding flame discs, a structure to which our stationary flame balls may evolve
if perturbed (see e.g. Figure 19). The propagation speed of the front of these flames is in
fact a function of the disc radius [8–12], and these will not be examined in detail; suffice it
to say that their propagation speed is given to a good approximation by that of the 2D triple
flames as soon as their radius exceeds a few times L/β.

The numerical approach in the simulations to be presented next is based on the software
COMSOL, as discussed at the end of Section 4.1.

5.2. An illustrative case

We begin with an illustrative case corresponding to the stoichiometrically balanced case
� = 0 and β = 10. Shown in Figure 9 are the reaction rate and temperature fields in the
x–z plane for selected values of εL increasing from left to right. We note by examining the
temperature field that the flame ball is practically spherical for small values of εL and that it
becomes more elongated in the horizontal direction as εL increases.7 The maximum value
of εL for which stationary solutions exist in this case is found to be εm ≈ 2.4. The flame ball
elongation in the horizontal direction is conveniently measured by the maximum flame ball
radius Rmax introduced in (24) and is plotted in Figure 10. Numerically, Rmax is calculated
as being the distance between the origin and the location of ωmax , the maximum of ω which
is taken in the horizontal plane z = 0 in this case where � = 0. It is seen that Rmax is an
increasing function of εL which diverges to infinity as εL → εm. Note that, given our choice
of the reference length Lr = L/β, Rmax decreases to zero like εL as εL → 0, which is the
radius of the Zeldovich flame ball δZ, equal to δL due to our equidiffusional assumption,
scaled (divided) by Lr. The results rescaled by the Zeldovich flame ball radius calculated
numerically (in the uniform spherical case) show that the rescaled radius tends to unity as
εL → 0, as it should.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
] 

at
 0

2:
08

 0
2 

M
ar

ch
 2

01
6 



20 R. Daou et al.

Figure 9. Reaction rate and temperature fields for the (axisymmetric) flame balls in the x–z plane
for � = 0, β = 10 and selected values of εL. Colours vary from blue corresponding to near-zero
values to red corresponding to the maximum values indicated. The non-dimensional coordinates x̄
and z̄ are scaled versions of x and z, as described in the footnote following Equation (5).

We note that a similar behaviour is obtained for other values of β with the main
difference being in εm, the critical value of εL above which flame balls cease to exist. In
fact, εm is found to be an increasing function of β, as we shall see below.

5.3. Comparison between the numerical and asymptotic results

In this section we compare the numerical results of our finite-β problem with the asymptotic
results of the FBP summarised in Equations (14)–(17). We start by the stoichiometrically
balanced case, � = 0, for which Equations (14)–(17) are to be used with z0 = 0, b = 1/4,
F0 = 1 and ε = εL, on account of (18); hence, restricting the asymptotic results to the
plane θ = π /2 where R = Rmax, and letting E ≡ EB/EZ denote the flame ball thermal energy
scaled by that of the Zeldovich flame ball, we have

ψ = 1

r
+ ε2

L

12

(
1

r
+ 1

r3

)
, Rmax = 1 + ε2

L

6
, E = 1 + ε2

L

4
. (51)

We start by comparing the theoretical predictions for the three quantities listed in (51)
with numerical calculations carried out for β = 10 and β = 20. The comparison is shown
in Figures 11, 12 and 13. As can be seen, the agreement is good for small values of εL

and improves with higher values of β. The agreement is also good when the flame ball
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Scaled by Zeldovich Flame Ball radius

Figure 10. Flame ball maximum radius Rmax versus εL for � = 0 and β = 10.

shape, plotted in Figure 14, which is based on the numerical calculations, is compared with
Figure 4 based on the asymptotic and numerical results pertaining to the FBP.

A few additional remarks are useful to explain how some of the numerical results are
determined. Specifically, the definition of the flame ball shape, or boundary of the burnt gas
domain, used in the computations is based on the temperature contour θ = 1 − 2β−1. This
is used in evaluating the thermal energy inside the flame ball, defined as the volume integral
of θ over the burnt gas domain. This choice, although somewhat arbitrary, is motivated by
the fact that this contour passes by the maximum of ω which occurs at the x-axis; this
is because the reaction rate ω in the uniform case, also equal to w(θ , z = 0), attains its
maximum at a value of θ ∼ 1 − 2β−1 as can be checked by a simple calculation.

L

β = 10
β = 20

Rmax

Asymptotic

Figure 11. Flame ball maximum radius Rmax versus εL for � = 0.
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Figure 12. Temperature profile along the x-axis (with x rescaled by εL).
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E
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Figure 13. Energy of the flame ball E versus εL. E is obtained by integrating θ over the domain
θ > 1 − 2β−1 and rescaling the result by the energy of the Zeldovich flame ball obtained by a similar
integration.

5.4. Existence domain in the β–εL plane. Relation to triple flames

From the discussion above, we may conclude that whereas the FBP admits solutions for
arbitrarily large values of εL, stationary solutions for the finite β problem exist only for a
restricted range of εL. For � = 0, the domain of existence of flame balls in the β–εL plane
is determined in Figure 15 (left), indicating that εL must be smaller than a critical value
εm(β), which is an increasing function of β. For comparison, the domain of existence of
the two-dimensional triple flames in the mixing layer is shown in the same figure (right).
These well studied flames correspond to travelling wave solutions which are illustrated in
Figure 16 for selected values of εL. Their propagation speed U, which can be positive or
negative, is plotted versus εL in Figure 17. It is seen in Figure 15 that the domain of existence
of the flame balls coincides, to a good approximation, with that of the positively propagating
triple flames. In fact, a more detailed analysis of the numerical results shows that flame
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Figure 14. Flame ball shape in the x–z plane, represented by the temperature contour θ = 1 − 2β−1

for β = 10 and selected values of εL. Also shown is the (spherical) Zeldovich flame ball (ZFB).
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Figure 15. (a) Existence domain of the flame balls in the β–εL plane. (b) Existence domain of the
two-dimensional triple flames (� = 0).

balls and positively propagating triple flames exist, in order of magnitude, for 0 < ε <
√

β,
while8 negatively propagating triple flames exist for

√
β < ε < β. An order of magnitude

argument explaining these scalings for triple flames in a similar (strained mixing layer)
configuration can be found in Daou and Liñán [20]. For flame balls, the important point
is that the critical value εm below which these flames exist is found to follow the scaling
εm ∼ √

β. Therefore, in the limit β → ∞ under which the FBP is derived, εm → ∞,
implying that the flame balls are expected to exist for arbitrarily large values of εL. This
is a significant observation as it explains why the FBP admits solutions for all values of
εL, as found in Section 4. Another implication of the scaling found for εm is that the FBP
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24 R. Daou et al.

Figure 16. Two-dimensional triple flames in the mixing layer for � = 0 and β = 10. Shown is the
reaction rate field for selected values of εL with the propagation speed U being specified in each case
(as indicated in the following figure).
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(b)

Figure 17. Propagation speed U of the two-dimensional triple flames versus εL for � = 0 and β =
10. The points (a), (b) and (c) refer to the cases described in the previous figure.

solutions are expected to be a good approximation to the solutions of the finite-β problem
provided εL � √

β.

5.5. Effect of the stoichiometric coefficient � on the flame ball existence domain

Since the stoichiometric coefficient � affects the flame balls as well as the planar diffusion
flame, it is important to assess the effect of � on the existence domain of these structures.
This is done in Figure 18 pertaining to a fixed value of β, β = 10. Plotted versus � are
the critical value εm, below which flame balls exist, and the extinction value εext, below
which diffusion flames exist. The figure shows that the existence domain of the flame balls
in the �–εL plane (as well as that of the diffusion flame) is practically independent of �.
This is so except when � → 1; in this limit the flames approach the upper boundary of the
mixing layer and their reaction zone structure is affected. This influence of the boundary is
however restricted to values of � which become closer and closer to one as β is increased
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L

Δ

β = 10

m

Flame ball existence domain

Extinction of diffusion flame, ext

Figure 18. Existence domain of the flame balls (0 < εL < εm) and of the planar diffusion flame (0
< εL < εext) in the �–εL plane for β = 10. Note that � in the horizontal axis may be replaced by |�|.

Figure 19. Reaction rate fields at three instants of time for � = 0 (top) and � = 0.5 (bottom) with
β = 10 and εL = 0.5. The initial profile used at t = 0 corresponds to the stationary flame ball solution
to which a localised ‘positive perturbation’ (increasing the initial thermal energy) is added. Note that
the initial quasi-spherical burnt gas region evolves in time as an expanding flame disc in these cases.

(not shown). Note that our computations and diagram have been restricted to those cases
for which � ≥ 0; however, the diagram can be extended to the � < 0 cases simply by
replacing � in the horizontal axis by |�|. Finally, we refer the reader to Appendix B
for a more thorough discussion of the effect of the stoichiometric coefficient on flame
balls.
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26 R. Daou et al.

Figure 20. Reaction rate fields at three instants of time for � = 0 (top) and � = 0.5 (bottom) with
β = 10 and εL = 0.5. The initial profile used at t = 0 corresponds to the stationary flame ball solution
to which a localised ‘negative perturbation’ (decreasing the initial thermal energy) is added.

5.6. Stability

Although the stability of the flame balls in the mixing layer is not a main focus in this paper,
we provide herein a short confirmation that they are typically unstable. As known from flame
ball investigations in uniform premixed mixtures, instability is expected unless additional
stabilising effects, combining heat losses and preferential diffusion, are accounted for [3–
6]. Therefore, a full stability analysis including such additional effects in non-uniform
mixtures will be the subject of a dedicated study. Here we simply illustrate the unstable
nature of our stationary solutions by carrying out time-dependent calculations. These are
exemplified in Figures 19 and 20, which provide snapshots of the time evolution of the
flame in two cases with � = 0 and � = 0.5. The figures show that a localised perturbation
added to the stationary solution can lead either to successful ignition (flame propagation)
or to flame extinction. Figure 19 illustrates successful ignition, which typically occurs if the
initial perturbation increases the initial thermal energy of the flame ball. Such perturbation
(termed ‘positive perturbation’ in the figure) is seen to result in a propagating triple flame
that leaves behind it a one-dimensional diffusion flame. Flame extinction following a
‘negative perturbation’ is similarly illustrated in Figure 20, where the reported maximum
of the reaction rate, ωmax , is seen to decay with time towards zero.

6. Concluding remarks

This paper has been dedicated to the investigation of flame balls in mixing layers and
completes a theoretical analysis initiated in [1]. The results are believed to represent a
solid basis for understanding and further investigating the problem of forced ignition in
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Combustion Theory and Modelling 27

non-uniform mixtures, typically encountered in practical combustion situations involving
diffusion flames. Indeed, the thermal energy of the flame balls described and their location
in the mixing layer may be argued to represent the minimum ignition energy and the optimal
location for its deposition.

Several contributions have been presented in this study. First, an analytical contribution
is made by carrying the asymptotic analysis to a higher order. The results thus derived allow
to be captured, in particular, the dependence of the location of the flame ball centre on the
parameter εL, i.e. the influence of the Damköhler number (∼ ε−2

L ) on the optimal ignition
location. They also introduce an asymmetry in the flame shape, for non-stoichiometrically
balanced mixtures, which is shown to occur without a change in volume, and hence does
not affect the minimum ignition energy. Second, two detailed numerical studies of the ax-
isymmetric flame balls are presented for arbitrary values of εL. The first study addresses the
infinite-β FBP and the second one the original finite-β problem based on the constant den-
sity reaction–diffusion equations. The validity of the asymptotic formulae of [1] was tested
and confirmed by comparison with numerical calculations pertaining to both problems.
These calculations, in addition to characterising the range of validity of the asymptotics,
provide a fairly complete picture related to the existence and the behaviour of the solutions
outside this range. In particular, it is shown that an important difference exists between the
infinite-β FBP and the finite-β problem. Indeed, whereas the stationary solutions to the FBP
are found to exist for arbitrary values of εL, those to the finite-β problem are only found in
a finite domain of εL, depending mainly on β and very weakly on the stoichiometric coef-
ficient �. Specifically, the εL-existence domain of the flame balls is found to correspond to
0 < εL <

√
β, in order of magnitude, and to coincide, to a good approximation, with the

existence domain of the two-dimensional triple flames with positive propagation speeds in
the mixing layer; the latter have negative propagation speeds for

√
β < εL < β, the upper

limit characterising the extinction of the one-dimensional diffusion flame. The dependence
of the εL-domain of existence on β exhibited clarifies the reason why the solutions of the
FBP exist for arbitrarily large values of εL. The study also clarifies, for fixed values of β,
the combined influence of εL and � on the existence of the flame balls and their location in
the mixing layer. This location is also compared with that of the one-dimensional diffusion
flame, from which it is found to be able to differ significantly.

Finally we note that the analysis has been restricted to the equidiffusional adiabatic
case, in order to understand the rather intricate combined influence of the parameters β, εL

and �. In this context, we have provided in passing a quick confirmation of the expected
instability of the flame balls, based on time-dependent computations. However, the full
stability problem is a crucial one in the context of flame balls [2,21], and will be the subject
of a dedicated study allowing the presence of heat losses and non-unit Lewis numbers, as
it should [3–6].

Notes
1. It is useful to note that εL is in fact inversely proportional to the square root of the Damköhler

number Da, εL∝Da−1/2, where Da is suitably defined in Equation (6) below.
2. To avoid potential confusion, we note that the non-dimensional model (equations and boundary-

conditions) formulated in this section pertains only to flame balls and not to triple or diffusion
flames. A few computations of triple and diffusion flames will be needed however in Section 5;
there, the necessary modifications of the model will be described succinctly.

3. The reason for this assertion will become clearer later. Indeed, as we shall see, the non-
dimensional location of the flame ball centre zc is determined by the leading order asymptotic
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28 R. Daou et al.

result (12) derived in [1], and the two-term expansion (35) derived in the present paper and
checked numerically in Figures 2 and 3.

4. It will be convenient below to use on occasion non-dimensional coordinates based on L,
characterised by bars, namely x̄ ≡ X/L, ȳ ≡ Y/L and z̄ ≡ Z/L. Note that (5) implies that
x = βx̄, y = βȳ and z = β(z̄ − z̄st), with z̄st = � according to (2).

5. The non-theoretically-inclined reader may find the material of Section 5 easiest to understand.
6. This formula is not to be used in the limit � → 0 with εL fixed; clearly the second term is a

function of �, which is discontinuous at � = 0 with distinct right and left limits there. This
discontinuity can be traced back to the (finite) discontinuity of the third order derivative Fzzz(z0)
appearing in (31). This occurs in the limit z0 → 0, corresponding to � → 0, and only in this
limit. At any other value of z0 (the maximum of F(z) corresponding to a non-zero value of �)
the function F(z) is in fact infinitely differentiable.

7. This trend is in agreement with that exhibited by the solutions of the FBP in Figure 6. Note that
the diffusion flame seen inside the flame ball when plotting the reaction rate fields for finite β
and non-small values of ε is absent in the asymptotic model which describes the exterior of the
flame ball only; the reaction rate of the diffusion flame inside the ball can be shown indeed to
be vanishingly small compared with that of the premixed flame envelope in the limit β → ∞
with εL fixed.

8. Strictly speaking, flame balls and positively propagating triple flames exist for εign < ε <
√

β,
where εign corresponds to the ignition of the one-dimensional diffusion flame. However εign,
which strongly decreases with β, is effectively zero; e.g. εign ≈ 2 × 10−5 for β = 5 and εign ≈
10−11 for β = 10.

9. Similar symmetry arguments can be used below, if needed. For example, a reflection with
respect to the vertical axis in Figures B2 and 18 will extend the graphs to negative values of �;
alternatively, � may be replaced by |�|.

10. In the finite-β cases, zc is defined as the barycentre of the one-dimensional region I on the
z-axis where the reaction rate is non-negligible (ω > 10−4); specifically, zc = ∫

I
z dz/

∫
I

dz.
This definition is used because it is consistent with that adopted in the infinite-β FBP.
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Appendix A. Solution of the FBP to O(ε3)
In this appendix we shall complete the solution of the O(ε3) problem (27)–(30) and briefly discuss its
implications. To this end, we first note that from Equations (32) and (34) we have

ψ3 = A1P1(cos θ )

r2
+ c

5

P3(cos θ )

r4
. (A1)

The constant A1, being undetermined, requires an additional condition for its specification. The
required condition follows in fact from a precise definition of the flame ball centre. Specifically, we
shall define the centre as the midpoint of the intersection points of the boundary ∂� (the flame ball
reaction surface) with the symmetry axis. This definition is equivalent to the requirement that R(θ )
satisfies

R(0) = R(π ). (A2)

From this equation it follows that R3(0) = R3(π ), that is, on using (30),

ψ3(1, 0) = ψ3(1, π ).

Applying this condition to (A1) implies that A1 = −c/5 and hence

ψ3 = c

5

(
− cos θ

r2
+ 5 cos3 θ − 3 cos θ

2r4

)
. (A3)

Evaluating (A3) at r = 1 and referring to (30) again we then have

R3 = − c

2
cos θ sin2 θ.

The solution of the O(ε3) problem is now complete and is given by the expansions

ψ = 1

r
+ b ε2

3

(
1

r
+ 1

r3
− 3 cos2 θ

r3

)
+ c ε3

5

(
−cos θ

r2
+ 5 cos3 θ − 3 cos θ

2r4

)
(A4)
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z − zc

x

Leading order expansion

Second order
Third order

Figure A1. Flame ball shape in the x–z plane for � = 0.5 and ε = 0.95 based on the leading order,
second order and third order expansions for R(θ ).

R = 1 + b ε2

3

(
2 − 3 cos2 θ

) − c ε3

2
cos θ sin2 θ, (A5)

in which b and c are functions of � given by (18) and (31). A notable feature of (A5) is that its
last term introduces an asymmetry in the flame shape R(θ ) with respect to the plane θ = π /2. This
asymmetry is however weak, being of order ε3; furthermore it does not modify the volume of the
flame ball V (and hence of the thermal energy enclosed within) because the third order term has zero
contribution when computing the integral

V ≡ 2π

∫ π

0

∫ R(θ)

0
r2 sin θ dr dθ. (A6)

A visual illustration of this asymmetry without change in volume and of the contribution of the three
terms in the expansion (A5) to the flame shape is provided in Figure A1. It is seen in this case,
pertaining to a positive value of �, that the flame becomes more flattened near the upper pole (θ =
0) when the third order term is accounted for; a change in the sign of � would simply lead to flame
flattening near the lower pole (θ = π , not shown).

Appendix B. Stoichiometric effects
In this appendix, we examine the influence of the stoichiometric coefficient � on flame balls. We
begin by testing the asymptotic prediction that the location of the flame ball centre for εL → 0 follows
formulae (22) and (23); the formulae indicate that z̄0 is equal to the stoichiometric location z̄st for
� = 0 and deviates from it by an amount increasing with � to a maximum value approaching 2β−1

as � → 1. This trend is indeed confirmed qualitatively and quantitatively by the finite-β simulations
reported in Figure B1. Note that we have restricted the computations to positive values of �; the
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Stoichiometric surface

Figure B1. Location of the flame ball centre, z̄0, and location of the stoichiometric surface, z̄st ≡ �,
versus the stoichiometric coefficient �. The simulations pertain to two cases corresponding to β =
10 and β = 20 with εL = 0.1.
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Figure B2. Flame ball energy (defined as in Figure 15) versus � (or |�|) for εL = 0.1 and β = 10.

graph can be extended to negative values using a reflection with respect to the origin given that z̄0

and z̄st are expected to be odd functions of �.9

In Figure B2, we compare the flame ball energy E ≡ EB/EZ predicted by formula (17) with that
found numerically. The agreement is quite good for β = 10 and is even better for β = 20 (not
shown). Note that E decreases from unity as � (or more generally |�|) increases from zero (the
stoichiometrically balanced case); this indicates that the minimum energy required for ignition in the
mixing layer is less than that required for igniting a uniform mixture under the conditions prevailing
at the stoichiometric surface. Therefore, the figure determines, together with the previous one, both
the minimum energy required and the optimum location where it must be deposited, for successful
ignition to occur. The results displayed are typical of cases corresponding to small values of εL.

We now examine the dependence of the location of the flame ball centre (the optimum ignition
location) on the value of εL in a non-stoichiometrically balanced case, say � = 0.5 (for � = 0 the
flame ball and the stoichiometric location are of course always located at z̄ = 0). Plotted in Figure 3
is the coordinate zc of the flame ball centre as predicted by the asymptotic formula (36) as well as
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Figure B3. Flame ball centre zc versus εL for � = 0.5 as predicted by the asymptotic formula (36)
and by three numerical simulations. The simulations correspond to the infinite-β FBP and to the
finite-β problem with β = 10 and β = 20.

Figure B4. Reaction rate and temperature fields of the (axisymmetric) flame balls in the x–z plane
for � = 0.5, β = 10 and selected values of εL. Colours vary from blue, corresponding to near-zero
values, to red, corresponding to the maximum values. The location z̄c of the flame ball centre is
indicated by a ‘+’ sign in the burnt gas.
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Figure B5. Maximum at the symmetry axis of the reaction rate, ωmax , and temperature, θmax , for the
FB and their locations z̄. These are plotted with the corresponding quantities for the planar diffusion
flame versus εL for � = 0.5 and β = 10.

by three numerical simulations; the simulations correspond to the infinite-β FBP and to the finite-β
problem with β = 10 and β = 20, respectively.10 As can be seen, the finite-β results are consistent
with both the numerical results of the FBP (with an improved quantitative agreement for higher values
of β) and with the asymptotic predictions for small-to-moderate values of εL. All curves predict a
monotonic decrease of zc with increasing εL, except in a small interval of εL in the case of the finite-β
simulations. This small interval is close to the critical existence value εm introduced in Section 5.2;
in fact, as εL approaches εm the flame ball becomes so elongated that it makes the conditions near
the symmetry axis approach those of the planar diffusion flame, which are quite different from those
corresponding to the infinite-β flame ball solutions, as discussed further below. However, outside
this εL-interval near εm, the influence of εL on the flame ball location is satisfactorily described, at
least qualitatively, by the infinite-β solutions. More precisely, the fact that zc appears as a negative
decreasing function of εL implies that an increase in εL will increase the distance between the flame
ball centre z̄c and the stoichiometric location z̄st = �; this is because z̄c = z̄st + zc/β according to
(21). A visual illustration is provided in Figure B4, where the reaction rate and the temperature
fields are plotted for three selected values of εL. In this case the stoichiometric surface is located at
z̄st = 0.5. The location of the flame ball centre based on Figure B3 is also indicated by a plus sign
placed in the burnt gas and is seen to move downwards, away from the stoichiometric location, as εL

is increased.
We close this section by emphasising the difference between the conditions near the symmetry

axis for the stationary flame ball solutions and those corresponding to the planar diffusion flame
in the mixing layer. This is illustrated in Figure B5, which uses the same parameters as Figure B4.
Plotted are the maxima of the reaction rate and temperature for the flame ball at the symmetry axis
along with their locations; also plotted are the corresponding quantities for the planar diffusion flame.
It is seen that the maxima and their locations are quite different for these two types of stationary
flames, especially for small values of εL. Therefore, adopting the planar diffusion flame conditions
as boundary conditions for the flame balls to be anchored near the symmetry axis, as done in [8], is
a questionable approximation. We note however that, as εL is increased towards εm, corresponding
quantities merge with the elongation of the flame ball forcing the conditions at the symmetry axis to
be effectively those of the planar diffusion flame. It is in a small neighbourhood of εm, as mentioned in
the discussion of Figure B3 above, that an increase in zc versus εL is noted. Examination of additional
numerical results (not shown) indicate that the reaction rate at the symmetry axis has three local
maxima for moderately small values of εL (reminiscent of the three branches of a triple flame), the
global of which is plotted in Figure B5. As εL is increased, the middle maximum, corresponding to
a diffusion flame, increases in magnitude and tends to merge with the upper maximum. A further
increase in εL results in a decrease in the magnitude of the lower maximum until the lower branch
is extinguished near the axis. The increase of zc with increasing εL observed in Figure B3 coincides
with this extinction of the lower (premixed) branch.
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