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a b s t r a c t

We present a study of flame balls in a two-dimensional mixing layer with one objective being to derive an
ignition criterion (for triple-flames) in such a non-homogeneous reactive mixture. The problem is formu-
lated within a thermo-diffusive single-reaction model and leads for large values of the Zeldovich number
b to a free boundary problem. The free boundary problem is then solved analytically in the asymptotic
limit of large values of the Damköhler number, which represents a non-dimensional measure of the
(square of the) mixing layer thickness. The explicit solution, which describes a non-spherical flame ball
generalising the classical Zeldovich flame balls (ZFB) to a non-uniform mixture, is shown to exist only if
centred at a single location. This location is found to be precisely that of the leading-edge of a triple-flame
in the mixing layer, and typically differs from the location of the stoichiometric surface by an amount of
order b�1 depending only on a normalised stoichiometric coefficient D.

The thermal energy of the burnt gas inside the flame ball is used to derive an expression for the min-
imum energy Emin (of an external spark say) required for successful ignition. In particular, it is found that
the presence of the inhomogeneity increases Emin compared to the homogeneous case. For a stoichiomet-
rically balanced mixture, corresponding to D ¼ 0, the relative increase in the ignition energy is found to
be proportional to b2=Da, i.e. to the square of the Zeldovich number and to the reciprocal of the Damköh-
ler number Da. More generally, for arbitrary value of D, the minimum ignition energy is found to corre-
spond to that of the Zeldovich flame ball in a uniform mixture at the local conditions prevailing at the
location of the leading edge of the triple-flame, plus a positive amount depending on D which is again
proportional to b2=Da. In short, the analysis provides a possible criterion for successful ignition in a
non-homogeneous mixture by determining the minimum energy required (Emin) and the most favourable
location (that of the leading-edge of a triple-flame) where it should be deposited.

� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

In order to ignite a reactive mixture by means of an external
source such as an electric spark, the energy of the source must ex-
ceed a minimum critical value. In homogeneous premixed mix-
tures, theoretical studies are available relating this critical value
to the thermal energy contained inside a non-propagating spheri-
cal flame known as Zeldovich flame ball (ZFB), which is a stationary
solution of the reaction–diffusion equations. In non-uniform reac-
tive mixtures on the other hand, there seems to be no theoretical
studies in the literature addressing the same ignition problem
and describing analytically the corresponding non-propagating
solutions. These non-spherical solutions, generalising ZFBs to

non-homogeneous mixtures, are the subject of the current investi-
gation and we shall also refer to them as flame balls.

In homogeneous premixed reactive gases, flame balls were pre-
dicted by Zeldovich about seventy years ago as time-independent
spherically symmetric solutions of the heat conduction and diffu-
sion equations [1]. An important feature of these solutions is that
they are unstable under adiabatic conditions [1,2] and that addi-
tional physical mechanisms need to be taken into account for them
to be stable. Such stabilising mechanisms have been found to in-
clude volumetric heat-loss [3,4], conductive heat-loss to walls [5]
or some weakly non-uniform flow fields [6]. In fact, much of the re-
cent theoretical work on flame balls has been motivated by the
observation of such apparently stable structures in lean hydro-
gen–air mixtures in the experiments by Ronney and coworkers un-
der micro-gravity conditions [7,8]. More recently, ZFBs have been
shown to be a special case of stationary spherical flames, termed
generalised flame balls by Daou et al. [9], surrounding a point
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source/sink of hot inert gas. The existence and stability of these
flames have been investigated in [9], and it was found, in particu-
lar, that they can have positive, zero or negative burning speeds,
with zero speeds characterising ZFBs. It is worth noting that, in
addition to the significance of flame balls as a possible mode of
combustion, such as for drifting flame balls [10–12], they are also
significant in ignition problems involving heat addition by an
external source [1,2,13–15]. In this context in its most fundamen-
tal form, they may indeed serve to estimate the minimum energy
to be deposited by the source for successful ignition whereby an
initially formed hot kernel generates an outwardly propagating
premixed-flame front [1].

In a non-homogeneous reactive mixture, such as the two-
dimensional mixing layer between non-premixed reactants con-
sidered in this study, successful ignition by an external source
should also lead to flame fronts propagating away from the source,
as observed numerically in [16]. Given that the mixture varies from
fuel-lean to fuel-rich conditions across the mixing layer, the fronts
are expected to be those of two triple-flames travelling in opposite
directions. Such triple-flames, first observed experimentally by
Philips [17], are now well-understood combustion structures due
to several dedicated studies which followed the pioneering analyt-
ical work by Ohki and Tsuge [18] and Dold and coworkers [19,20].
Indeed, several aspects of triple-flames have been to date investi-
gated including gas-expansion [21–24], preferential diffusion
[25,26], heat losses [27–29], reversibility of the chemical reaction
[30,31] and the presence of a parallel flow [32,33]. We shall not
discuss here the relatively vast literature on triple-flames, but refer
the interested reader to the review paper [34] or to [35], for further
references. We would like to point out, however, that despite the
wealth of investigations available, there seems to be no analytical
studies dedicated to the ignition of triple-flames based on an
extension of the concept of ZFBs to reactive mixing-layers. Some
important results with some relevance to our investigation can
be found in the literature nevertheless. For example, in the context
of edge-flames (in premixed and non-premixed mixtures), two
dimensional structures termed flame tubes, flame strings or 2D-
spots depending on the author, have been identified in two-dimen-
sional counterflows, both experimentally [36] and numerically
[37–40]. These structures although resembling ZFBs are also differ-
ent given that their existence hinges on the presence of strain, as
mentioned in [38] where it is also argued that the cellular instabil-
ity of the planar flame may be at their origin. Of more direct rele-
vance to this paper are two numerical studies by Jackson and
Buckmaster [41] and Lu and Ghosal [42]. The first study is carried
out in a two-dimensional unstrained mixing layer, a configuration
to be adopted in this paper and that we have used in two previous
publications on triple-flames [32,33]. The second study is con-
ducted in an strained mixing layer corresponding to an axisym-
metric counterflow configuration. Two types of combustion
structures are addressed in [41], namely flame isolas, finite-size re-
gions of burning surrounded by a non-reacting mixture similar to
the flame balls investigated in this paper, and flame holes, regions
of local extinction on a diffusion flame discussed previously in
[43]. The authors of [41] describe the expansion or shrinkage of
these structures and the dependence of the propagation speed of
their edges on the Damköhler number and their instantaneous ra-
dius. Similar structures are investigated in [42], termed flame discs
and flame holes, with particular focus on their temporal evolution
and dynamics. Among the findings, a critical hole (disc) radius
depending on the strain rate is determined which corresponds to
non-propagating holes (discs). In particular, the critical disc radius
is found numerically to be an increasing function of the strain rate,
and this is argued to indicate that a minimum source energy is re-
quired for successful ignition in a mixing layer. We shall provide an
explicit formula for such minimum ignition energy valid in the

framework of our asymptotic study. Before proceeding, it is worth
mentioning that our study differs from [41,42] in several important
aspects which include the following: (1) It is asymptotic and
analytical. (2) the stoichiometric coefficient is an important param-
eter in our study and not fixed; this is important since the flame
balls/discs/isolas are not necessarily centered at the location of
the diffusion flame, as we shall see, contrary to the stoichiometri-
cally balanced case considered in [41,42]. (3) Our problem is posed
as a free boundary problem and in particular we do not use the
one-dimensional diffusion flame to provide boundary conditions
for our flame balls as done in [41], may be as an approximation,
in order to anchor the flame at one boundary.

The paper is organised as follows. We begin by describing the
thermo-diffusive model adopted and formulating the correspond-
ing problem in Section 2. This is followed by an asymptotic
analysis which is based on a compact reformulation of the prob-
lem derived in Section 3 in the limit of infinitely large activation
energy of the chemical reaction. The reformulated problem is
shown to reduce to a neat free boundary problem which is solved
analytically in Sections 4 and 5. The results and their physical
implications are discussed in Section 6 with concluding remarks
given in Section 7.

2. Formulation

We consider a reactive mixture in a channel of width 2L extend-
ing to infinity along the X-direction and Y-direction, the latter
being perpendicular to the plane of the figure; see Fig. 1. The walls
of the channel are assumed to be porous and the concentrations of
fuel and oxidizer are maintained fixed at the walls. This setup has
been used in previous publications such as [32,33,41]. Although
such a configuration may be difficult to achieve experimentally,
it is adopted here in order to construct a simple theoretical model
for flame balls in a mixing layer. The combustion is represented by
a single irreversible one-step reaction of the form

Fþ sO! ð1þ sÞPþ q

where F denotes the fuel, O the oxidizer and P the products. The
quantity s denotes the mass of oxidizer consumed and q the heat re-
leased, both per unit mass of fuel. We consider a thermo-diffusive
approximation with constant density and constant transport prop-
erties. The governing equations in dimensional form can be written
in the form

@T
@t
¼ DTDT þ q

cp

~x
q

ð1Þ

@YF

@t
¼ DFDYF �

~x
q

ð2Þ

@YO

@t
¼ DODYO � s

~x
q
: ð3Þ

Here T; YF and YO are respectively the temperature and the mass
fractions of the fuel and oxidizer. In addition, DF ;DO, and DT denote
the diffusion coefficients of the fuel, the oxidizer, and heat respec-
tively, and are taken to be constants. The quantities q and cp denote
the density and the heat capacity. The reaction rate ~x, defined as
the mass of fuel consumed per unit volume and unit time, is
assumed to obey an Arrhenius law

~x ¼ Bq2YFYO expð�E=RTÞ; ð4Þ

where B and E=R represent, respectively, the (constant)
pre-exponential factor and the activation temperature.

The conditions as j X2 þ Y2 j! 1 correspond to the frozen
solution independent of X and Y, which is given by
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T ¼ Tu; ð5aÞ

YF ¼
YF;F

2
1� Z

L

� �
; ð5bÞ

YO ¼
YO;O

2
1þ Z

L

� �
; ð5cÞ

where YF;F and YO;O refer to the mass fraction of the fuel side and the
oxidizer side respectively, and Tu refers to the temperature on both
sides as well as in the unburnt mixture; thus, the lateral boundary
conditions are also given by (5) with Z ! �L for all X and Y.

For large activation energies, the region which may be able to
sustain significant heat generation is centred around the stoichi-
ometric surface. In the frozen mixture far away from the flame ball,
i.e. for X2 þ Y2 !1, this surface is located at Z ¼ Zst where Zst is
determined from YO ¼ sYF and Eqs. (5) to be

Zst

L
¼ S� 1

Sþ 1
; ð6Þ

where S � sYF;F=YO;O is a normalised stoichiometric coefficient (or a
global equivalence ratio).

Next, we write the governing equations in terms of the scaled
quantities

yF ¼
YF

YF;st
; yO ¼

YO

YO;st
; h ¼ T � Tu

Tad � Tu
; ð7Þ

where the subscript ’st’ indicates values at ðX2 þ Y2 !1; Z ¼ ZstÞ
and where Tad � Tu þ qYF;st=cp is the adiabatic flame temperature.

To non-dimensionalise the problem, we follow [26] and select
as unit length Lr � L=b, that is (half) the ratio between the mixing
layer thickness and the Zeldovich number b � EðTad � TuÞ=RT2

ad.
This length scale represents the typical radius of curvature of the
triple-flame (sketched in the figure) which can propagate in the
mixing layer [26,32,33]; it is also, as we shall see later, the appro-
priate scale to measure the distance between the location where
the flame balls are centered and the stoichiometric surface. As a
unit time we choose the diffusion time L2

r =DT . Then, on substituting
(7) into Eqs. (1)–(3), we obtain the non-dimensional problem

@h
@t
¼ Dhþ ��2

L x ð8Þ

@yF

@t
¼ Le�1

F DyF � ��2
L x ð9Þ

@yO

@t
¼ Le�1

O DyO � ��2
L x; ð10Þ

in terms of the coordinates x ¼ bX=L; y ¼ bY=L, and z ¼ bðZ � ZstÞ=L.
Here

�L �
dL

Lr
¼ bDT

LSL
; ð11Þ

where dL and SL are the thickness and speed of the laminar planar
stoichiometric flame which are related by dL ¼ DT=SL; thus �L repre-
sents the thickness of the planar stoichiometric flame measured
with the reference length L=b. In fact �L is related to the Damköhler
number Da that we define as the ratio between the diffusion time
across the mixing layer L2=DT and the flame transit time d2

L=DT by

Da � L2

d2
L

¼ b2��2
L : ð12Þ

Taking for SL its leading order value for large b, namely,

SL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4LeFLeO

b3 YO;stðqDTÞB expð�E=RTadÞ
s

; ð13Þ

the non-dimensional reaction rate x takes the form

x ¼ b3

4LeFLeO
yF yO exp

bðh� 1Þ
1þ aðh� 1Þ

� �
; ð14Þ

where a ¼ ðTad � TuÞ=Tad.
The boundary conditions are

h ¼ 0 ð15aÞ

yF ¼ 1� cF
z
b

ð15bÞ

yO ¼ 1þ cO
z
b
; as x2 þ y2 !1; z! � b

cO
or z! b

cF
; ð15cÞ

where

cF ¼
1þ S

2
and cO ¼

1þ S
2S

: ð16Þ

The problem now is fully formulated by Eqs. (8), with the boundary
conditions (15). A main aim when tackling this problem is to find its
stationary solutions (flame balls) and examine their stability. In
particular, one would like to determine the domain of existence of
these stationary solutions, and the corresponding profiles of h; yF ,
and yO, in terms of LeF; LeO; S; �L; b and a. This can be carried
out numerically in the general case. For the sake of an analytical
treatment, however, we consider in this paper the problem in the
limiting case b!1 where a compact reformulation can be derived

Fig. 1. A schematic illustration of a flame ball in a non homogeneous domain between two porous wall. The mass fractions are prescribed by YF ¼ YF;F and YO ¼ 0 on the fuel
side, and YF ¼ 0 and YO ¼ YO;O on the oxidizer side.
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and then solved analytically using perturbation methods for the
determination of the stationary solutions. We shall restrict our fo-
cus on this task in the present study leaving a more general treat-
ment, necessarily numerical, to further investigations. In
particular, we shall not examine herein the stability of the station-
ary solutions or their temporal evolution to propagating triple-
flames, nor the propagation of the triple-flames. In fact, triple-flame
propagation in this configuration has been addressed in our recent
publications carried out in more general contexts allowing for the
presence of an imposed flow [32,33] or for variable density and
buoyancy effects [24].

3. The large activation energy asymptotic limit

3.1. A b-free reformulated problem

In this section, we derive a compact formulation valid in the
distinguished limit b!1with �L ¼ Oð1Þ. The analysis is restricted
to near-equidiffusion flames for which

LeF � 1þ lF

b
and LeO � 1þ lO

b
;

where lF and lO are the reduced Lewis numbers of the fuel and oxi-
dizer respectively. In this limit, the reaction zone is confined to an
infinitely thin sheet that we shall call the flame surface, which is
given by Fðt; x; y; zÞ ¼ 0, say. A reformulation of the problem free
from the presence of b can then be derived. To this end, we expand
the dependent variables in terms of b�1 in the form

h ¼ h0 þ h1

b
þ . . . ; yF ¼ y0

F þ
y1

F

b
þ . . . ; yO ¼ y0

O þ
y1

O

b
þ . . .

In the reaction zone and in the burnt gas, we assume that h0 ¼ 1 and
y0

F ¼ y0
O ¼ 0, which leads to

h ¼ 1þ h1

b
þ . . . ; yF ¼

y1
F

b
þ . . . ; yO

¼ y1
O

b
þ . . . ; in the burnt gas: ð17Þ

The reaction term can be eliminated from Eqs. (8)–(10) by using the
variables ZF � hþ yF and ZO � hþ yO which when substituted into
(8)–(10) lead to

@ZF

@t
¼ DZF �

lF
b

DyF ; ð18Þ

@ZO

@t
¼ DZO �

lO

b
DyO; ð19Þ

The variables ZF and ZO can be expanded as

ZF ¼ Z0
F þ

Z1
F

b
þ . . . ; ZO ¼ Z0

O þ
Z1

O

b
þ . . . ; ð20Þ

but since h0 þ y0
F ¼ 1 and h0 þ y0

O ¼ 1 everywhere, one obtains

Z0
F ¼ h0 þ y0

F ¼ 1; Z1
F ¼ h1 þ y1

F ;

Z0
O ¼ h0 þ y0

O ¼ 1; Z1
O ¼ h1 þ y1

O:

Introducing the dependent variables h � h1 þ y1
F and k � h1 þ y1

O,
and substituting (17) and (20) into Eqs. (8), (18) and (19) yield
the governing equations for h0;h and k in the form

@h0

@t
¼ Dh0; ð21Þ

@h
@t
¼ Dhþ lFDh0; ð22Þ

@k
@t
¼ Dkþ lODh0; ð23Þ

which are to be solved on both sides of the reaction sheet where
F – 0, with the boundary conditions

h0 ¼ 0; h ¼ �cFz; k ¼ cOz as x2 þ y2 þ z2 !1: ð24Þ

The jump conditions at F ¼ 0 are

½h0� ¼ ½h� ¼ ½k� ¼ 0; ð25aÞ

@h
@n

� �
¼ �lF

@h0

@n

" #
;

@k
@n

� �
¼ �lO

@h0

@n

" #
; ð25bÞ

�L
@h0

@n

" #
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j h� k j

2

r
exp

hþ k� j h� k j
4

� �
; ð25cÞ

where n is coordinate normal to the flame surface F ¼ 0 pointing to-
wards the unburnt gas. It can be noted that these jump conditions
can be derived following the methodology described in [31]; see
also [44, p. 39].

3.2. Stationary solutions

We first note that Eqs. (22) and (23) are in fact valid across the
reaction sheet and that they are clearly satisfied, for time-indepen-
dent problems, by h and k given by

h ¼ �lFh
0 � cFz and k ¼ �lOh0 þ cOz: ð26Þ

We also note that these expressions satisfy the far field boundary
condition (24) and the jump conditions (25a) and (25b), and that
they are in fact known in the burnt gas domain, X say, since
h0 ¼ 1 there. Thus the problem is reduced to a single equation for
h0, to be solved outside X, with the solution required to vanish in
the far field, and to satisfy two boundary conditions on the reaction
sheet, i.e. on the unknown boundary @X of X. More precisely,
introducing the notation w � h0 henceforth (while reserving for h
its usual meaning in the spherical coordinate system to be used
shortly), we have to solve

Dw ¼ 0 in R3 nX ð27Þ
w ¼ 0; as j r j! 1 ð28Þ

w ¼ 1;
@w
@n
¼ �F on @X: ð29Þ

Here F is an explicit function of ðz; �L; S; lF ; lOÞ given by

F ¼ ��1
L 1þ lF � lO

2
þ ðSþ 1Þ2

4S
z

�����
�����

( )1=2

� exp min � lF

2
� Sþ 1

4
z;� lO

2
þ Sþ 1

4S
z

� �� 	
;

on using (25c) and (26). An important simplification occurs if we as-
sume that lF ¼ lO, equal to l, say, since these parameters can then be
absorbed into �L. With this assumption1 adopted henceforth we
have

F ¼ ��1Fðz; SÞ; ð30Þ

where2

F ¼ 1þ ðSþ 1Þ2

4S
j z j

( )1=2

exp min � Sþ 1
4

z;
Sþ 1

4S
z

� �� 	
; ð31Þ

1 Note that the assumption lF ¼ lO also implies that the diffusion flame location
coincides with that of the stoichiometric surface given by (6) in the Burke–Schumann
limit Da!1; see e.g. [26].

2 The argument of the exponential can also be written as

1� S2

 �

8S
z� 1þ Sð Þ2

8S
zj j:
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and

� � �L exp
l
2
: ð32Þ

Parenthetically, we note that � thus defined represents the non-
dimensional radius of the classical Zeldovich flame ball at the stoi-
chiometric conditions, whereas �L represents the non-dimensional
planar flame thickness as defined in (11). This follows from the fact
that the dimensional radius of the Zeldovich flame ball, dZ say, is gi-
ven by

dZ ¼ dL exp
l
2
; ð33Þ

as can be confirmed from the results to be derived (Eq. (42) below)
or shown independently.

4. Analytical Solution for S ¼ 1

We shall seek an analytical solution of the problem (27)–(31)
valid for small values of �, i.e. for large values of the Damköhler
number Da. It must be emphasised however that a non-trivial fea-
ture of the problem, as we shall confirm in the next section, is that
the flame ball is centred at a location z0 which needs to be deter-
mined as part of the solution. It is simpler therefore to begin with
the stoichiometrically balanced case S ¼ 1, for which we expect
z0 ¼ 0 based on the symmetry of the temperature field with re-
spect to the plane z ¼ 0. We introduce a spherical coordinate sys-
tem ðr; h;/Þ centred at the origin and rescaled such that
ðx; y; zÞ ¼ �ðr sin h cos /; r sin h sin /; r cos hÞ. The rescaling amounts
to using as a new reference length the Zeldovich flame ball radius
dZ given in (33) instead of Lr � L=b. The rescaled problem is still gi-
ven by (27)–(29) with F modified to read

F ¼ 1þ �r j cos h jð Þ1=2 exp � �r j cos h j
2

� �
: ð34Þ

We look for axisymmetric solutions (independent of the azimuthal
angle /) and assume that the flame ball boundary @X is described
by

r ¼ Rðh; �Þ ðor more simply r ¼ RðhÞÞ:

In terms of the coordinates ðr; hÞ, the problem takes the form

Dw ¼ 0 for r > RðhÞ; ð35Þ
w ¼ 0 as r !1; ð36Þ

w ¼ 1;
@w
@r
¼ � 1þ R02

R2

 !�1
2

F at r ¼ RðhÞ; ð37Þ

where primes denote differentiation with respect to h;F is given by
(34), and

Dw ¼ 1
r2

@

@r
r2 @w
@r

� �
þ 1

r2 sin h
@

@h
sin h

@w
@h

� �
:

We note that the last boundary condition is obtained by using the
equality

@w
@n
¼ 1þ R02

R2

 !1
2
@w
@r
; ð38Þ

valid at r ¼ RðhÞ. This can be justified by noting that if G � r � RðhÞ
then a unit outwardly-pointing vector normal to the flame surface
G ¼ 0 is given by

n ¼ rG
j rG j ¼

er � R0

R eh

1þ R02

R2


 �1
2

so that

@w
@n
¼ n � rw ¼ n � er

@w
@r
þ eh

r
@w
@h

� 	
r¼R

¼ 1þ R02

R2

 !�1
2
@w
@r
� R0

R2

@w
@h

� 	
: ð39Þ

Furthermore, since w ¼ 1 on the surface r ¼ RðhÞ;dw ¼ 0 for a dis-
placement on the surface. In other words, wrdr þ whdh ¼ 0 for a dis-
placement such that dr ¼ R0ðhÞdh. Therefore wh ¼ �R0ðhÞwr on the
surface showing that (38) follows from (39).

Returning to the problem (35)–(37), our aim is to find solutions
wðr; hÞ and RðhÞ. We shall determine two-term approximations of
these for small values of �. We first note that (34) implies that

F ¼ 1� b�2R2 cos2 hþ oð�2Þ with b ¼ 1
4
: ð40Þ

We therefore write expansions in the form

RðhÞ ¼ R0 þ �2R1ðhÞ þ � � � ; wðr; hÞ ¼ w0ðrÞ þ �2w1ðr; hÞ þ � � �

which we substitute into (35)–(37). The leading order problem is
then

1
r2

d
dr

r2 dw0

dr

� �
¼ 0 ðr > R0Þ; w0 ¼ 0 as r !1;

w0 ¼ 1;
dw0

dr
¼ �1 at r ¼ R0: ð41Þ

Its solution is clearly given by

R0 ¼ 1; w0 ¼
1
r

ð42Þ

and corresponds to the classical Zeldovich flame ball in a uniform
mixture.

To write the problem for w1, we first transfer the boundary con-
ditions given at r ¼ R ¼ 1þ �2R1 to the fixed location r ¼ 1 by using
Taylor expansions for small �. From the condition w ¼ 1 at r ¼ R we
obtain w1ðr ¼ 1Þ þ w00ð1ÞR1 ¼ 0, hence w1ðr ¼ 1Þ ¼ R1. Similarly,
using (37) and (40), we obtain the relation w1rðr ¼ 1Þþ
w000ð1ÞR1 ¼ b cos2 h; but since w000ð1Þ ¼ 2 and R1 ¼ w1ðr ¼ 1Þ, this
implies that w1r þ 2w1 ¼ b cos2 h at r ¼ 1. Finally the problem for
w1 is given by

Dw1 ¼ 0 ðr > 1Þ ð43Þ
w1 ¼ 0 as r !1 ð44Þ
@w1

@r
þ 2w1 ¼ b cos2 h at r ¼ 1 ð45Þ

R1 ¼ w1ðr ¼ 1Þ ð46Þ

The Laplace differential equation and the first two boundary condi-
tions are sufficient to determine w1; the last condition allows then
determination of R1. Indeed, the general solution of (43) satisfying
(44) is given by

w1 ¼
X1
n¼0

AnPnðcos hÞ
rnþ1 ; ð47Þ

involving Legendre Polynomials Pn. Applying the boundary condi-
tion (45) implies thatX1
n¼0

ð1� nÞAnPnðcos hÞ ¼ b cos2 h ð48Þ

from which we find3

3 using cos2 h ¼ 1
3 P0ðcos hÞ þ 2P2ðcos hÞð Þ since P0 ¼ 1; P1ðxÞ ¼ x and P2ðxÞ ¼

1
2 ð3x2 � 1Þ.
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A0 ¼
b
3
; A2 ¼ �

2b
3
; An ¼ 0 ðn > 2Þ; A1 arbitrary:

The arbitrariness of A1 indicates that there are infinitely many solu-
tions to the perturbation problem, obtained by arbitrary choosing
A1. However, only A1 ¼ 0 insures the symmetry of the solution with
respect to the plane z ¼ 0 (or h ¼ p

2) which we expect based on the
symmetry of the original problem. Therefore we shall adopt this
symmetry condition and set A1 ¼ 0. It is interesting to note that a
similar non-uniqueness of the solution of the perturbation problem
without additional condition being imposed has been noted in [10]
in the context of flame ball drift. With the coefficients Ai being
determined, we have on substituting into (47) and then using (46)

w1 ¼
b
3

1
r
� 2P2ðcos hÞÞ

r3

� �
and R1 ¼

b
3

1� 2P2ðcos hÞð Þ: ð49Þ

From (42) and (49) a two-term expansion is now available for w and
R and is given by

w ¼ 1
r
þ b�2

3
1
r
þ 1

r3 �
3 cos2 h

r3

� �
and

R ¼ 1þ b�2

3
2� 3 cos2 h
� 

ð50Þ

with b ¼ 1=4 in this particular case S ¼ 1.

5. Analytical solution in the general case

As mentioned in the previous section, a non-trivial feature of
the problem is that the flame ball is centred at a location z0 which
needs to be determined as part of the solution. This location is
determined by the function FðzÞ defined in (31), as we shall show.

First, expand FðzÞ in a Taylor series near z0

F ¼ Fðz0Þ þ F zðz0Þðz� z0Þ þ F zzðz0Þ
ðz� z0Þ2

2
þ � � �

and define

� � �L

Fðz0Þ
exp

l
2
: ð51Þ

Next use spherical coordinates centred at ðx; y; zÞ ¼ ð0;0; z0Þ and re-
scaled such that ðx; y; z� z0Þ ¼ �ðr sin h cos /; r sin h sin /; r cos hÞ. As
can be checked, the rescaling amounts to using as a new reference
length dZ=Fðz0Þ, where dZ is the Zeldovich flame ball radius corre-
sponding to the stoichiometric conditions at z ¼ 0 introduced in
(33).

Finally, with r ¼ RðhÞ denoting the flame surface as before, the
problem becomes

Dw ¼ 0 for r > R ð52Þ
w ¼ 0 as r !1 ð53Þ
w ¼ 1;

@w
@r
¼ � 1þ R02

R2

 !�1
2

1þ a�R cos h� b�2R2 cos2 hþ oð�2Þ

 �

at r ¼ R;

ð54Þ

where

a ¼ F zðz0Þ
Fðz0Þ

and b ¼ �F zzðz0Þ
2Fðz0Þ

: ð55Þ

We now write expansions in powers of � in the form

RðhÞ ¼ R0 þ �R1ðhÞ þ � � � wðr; hÞ ¼ w0ðrÞ þ �w1ðr; hÞ þ � � �

which we introduce into (52)–(54).
The leading order problem is then found to be exactly as before,

given by (41), with its solution ðw0;R0Þ determined by (42).

The problem in the next approximation is found to be given by
(43)–(46), except that (45) should now be modified to read
@w1

@r
þ 2w1 ¼ �a cos h at r ¼ 1:

This modification leads toX1
n¼0

ð1� nÞAnPnðcos hÞ ¼ �a cos h; ð56Þ

instead of Eq. (48). So we must have

An ¼ 0 ðn – 1Þ and 0� A1 ¼ �a:

Clearly the problem has no solution unless a ¼ 0, that isF zðz0Þ ¼ 0, in
view of (55). This condition appears as a solvability condition and
means that a flame ball may only exist if it is centred on an extremum
of the function FðzÞ. Assuming that z0 is such an extremum, the
boundary condition ð54Þ simplifies on setting a ¼ 0, and we are back
to the problem solved in the previous section whose solution toOð�2Þ
is given by (50), except that b must be determined now from (55).

All that remains to be done is to find z0 as an extremum of FðzÞ
and hence b. An elementary function study shows that FðzÞ
possesses a unique extremum, as illustrated in Fig. 2 for selected
values of S. More precisely, we find that

z0 ¼
2ð1�SÞ
ð1þSÞ2

for S 6 1
2Sð1�SÞ
ð1þSÞ2

for S P 1

8<: ; ð57Þ

which determines the location at which the flame ball must be cen-
tred versus S. From the expression of z0 it also follows that

Fðz0Þ ¼

ffiffiffiffiffiffi
1þS
2S

q
exp S�1

2ð1þSÞ

n o
ffiffiffiffiffiffi
1þS

2

q
exp 1�S

2ð1þSÞ

n o
8><>: and b ¼

ð1þSÞ2
16 for S 6 1
ð1þSÞ2

16S2 for S P 1

8<: ; ð58Þ

two quantities which completes the specification of � in (51) and
the two-term approximation (50) for wðr; hÞ and RðhÞ.

The volume of the flame ball, V say, given by

V � 2p
Z p

0

Z RðhÞ

0
r2 sin hdr dh; ð59Þ

can then be evaluated using the expression for RðhÞ in (50). The re-
sult is given below and is used in discussing minimum ignition
energies.

6. Discussion and implication of the results

6.1. Summary of main results

The analysis above has shown that flame balls can exist only if
centred at a single location z0 which is determined by the stoichi-
ometric coefficient S as given by (57). In fact, it is convenient to
introduce the modified stoichiometric coefficient

S = 1/4 S = 4

S = 1

Fig. 2. FðzÞ versus z for S ¼ 1
4 ;1, and 4.
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D � S� 1
Sþ 1

; ð60Þ

in terms of which the results can be expressed in a more compact
form. This coefficient represents the non-dimensional stoichiome-
tric location �zst � Zst=L on account of Eq. (6) which can be written as
�zst ¼ D: ð61Þ

In terms of D Eq. (57) can be expressed as

z0 ¼ �Dð1þ j D jÞ: ð62Þ

The analysis has also provided two-term approximations given by
(50) for the temperature field wðr; hÞ around the flame ball and for
the ball radius RðhÞ. Using the expression for RðhÞ in (59), a two-
term approximation for the burnt gas volume V can be obtained.
To sum up, it is found that

w ¼ 1
r
þ b�2

3
1
r
þ 1

r3 �
3 cos2 h

r3

� �
ð63Þ

R ¼ 1þ b�2

3
2� 3 cos2 h
� 

ð64Þ

V ¼ 4p
3

1þ b�2
� 

: ð65Þ

It should be noted that these formulas depend on z0, and hence on S,
as a consequence of the dependence of � and b on z0 exhibited in
(51), (55) and (58). This dependence can be conveniently expressed
in terms of D by rewriting (51) and (58) in the form

F 0 ¼
exp � jDj2


 �
1� j D jð Þ

1
2
; b ¼ 1

4 1þ j D jð Þ2
; � ¼ �L

F 0
exp

l
2
; ð66Þ

where the shorthand notation F 0 � Fðz0Þ has been introduced.

6.2. Scales, notation, and relation to triple-flames

At this point, a remark is worth making in order to avoid confu-
sion, namely that �zst; z0 and r in Eqs. (61)–(63) are coordinates non-
dimensionalised using the scales L; L=b and dZ=F 0, respectively.
These three scales are all needed to characterise the mixing length,
the location of the flame ball centre, and the flame ball radius,
respectively, as schematically depicted in Fig. 3 where L=b is taken
as unit length.4 Note that we have also sketched in the figure the tri-

ple-flame which can be encountered in this configuration and which
has been investigated analytically and numerically in recent publica-
tions [32,33] in a more general context allowing for the presence of a
parallel flow. As can be found in these publications when �	 1, the
triple-flame has a thin premixed front with radius of curvature of the
order of L=b, local burning speed SLFðzÞ, local thickness dL=FðzÞ and a
leading-edge located at z0 given by (62). An important first conse-
quence of the present analysis is therefore that flame balls may exist
only if centred at the location of the leading-edge of the triple-flame
which may exist in the non-uniform mixture considered. A second
consequence is that dZ=FðzÞ can be interpreted as a local Zeldovich
flame ball radius, i.e. the radius of the spherical flame ball pertaining
to a uniform mixture at the conditions prevailing at z. In particular,
dZ=F 0 is the radius of the Zeldovich flame ball at the conditions pre-
vailing at z0; this is consistent with Eq. (64) which implies that R! 1
as �! 0. Note that our notations also imply that z ¼ bð�z� �zstÞ, with
bars indicating that the coordinate is made non-dimensional using L
as reference length, i.e. �z � Z=L. Hence, the location of the flame ball
centre measured with L is given by

�z0 ¼ �zst þ
z0

b
;

that is, using (61) and (62),

�z0 ¼ D� Dð1þ j D jÞ
b

: ð67Þ

We are now ready to discuss the main implications of the results,
beginning with the stoichiometrically balanced case S ¼ 1, then
describing the effect of varying S, and finishing with conclusions re-
lated to the minimum energy required for successful ignition.

6.3. The stoichiometrically balanced case S ¼ 1

Shown in Fig. 4 are temperature contours in the near field out-
side the flame ball (bounded by the solid thick inner line) in the x–z
plane for S ¼ 1 and � ¼ 0:9. For comparison the spherical Zeldovich
flame ball is also represented by a dashed circle. The figure illus-
trates the deviation from sphericity which is especially clear close
to the flame and becomes weaker for r 
 1. The flame ball defor-
mation from a spherical shape increases with �, as illustrated in
Fig. 5. The figure shows how the non-uniformity in concentrations
lead to an extension of the flame ball in the horizontal direction
and a shrinkage it in the vertical direction. This deformation leads
to a change in the volume of the burnt gas inside the ball, which in
turn has implications concerning the minimum energy required for
ignition as will be discussed below.

Fig. 3. Illustration of the scales involved in the asymptotic analysis.

4 Of course, there is also a fourth scale pertaining to the reaction zone thickness of
the flame ball, which is b times smaller than its radius. Although not depicted, this has
been taken into account in the derivation of the jump conditions (25) valid in the limit
b!1.
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6.4. Effect of the stoichiometry of the reaction

The location of the stoichiometric surface (or that of the diffu-
sion flame), �zst , and the location of the flame ball centre, �z0, vary
with S according to (61) and (67) as shown in Fig. 6 where they
are plotted versus D ¼ ðS� 1Þ=ðSþ 1Þ. For S ¼ 1 or D ¼ 0, both loca-
tions coincide midway between the fuel and oxidizer boundaries,
�z0 ¼ �zst ¼ 0. For S > 1, the flame ball centre sits between the diffu-
sion flame and the fuel (or lower) boundary, �1 < �z0 < �zst < 1. For
S < 1, it sits between the diffusion flame and the oxidizer bound-
ary, �1 < �zst < �z0 < 1. It can be noted that the distance between
the flame ball centre and the diffusion flame is an increasing func-
tion of j D j of order b�1. In particular, we have �zst ! �1; �z0 !
�1þ 2b�1 as D! �1 and �zst ! 1; �z0 ! 1� 2b�1 as D! 1.

The change in the locations of �zst and �z0 just described is the
dominant effect of varying S on the solution as long as � remains
sufficiently small. It should be noted, however, that the value of
� also varies with S; these variations, can be accounted for, if
needed, using the third equation in (66).

6.5. Minimum ignition energy

In studies on ignition in uniform premixed reactive mixtures,
the thermal energy contained in a Zeldovich flame ball has been
used to estimate the energy (of a spark say) required for successful
ignition, see e.g. [1,2,13–15]. If VZ is the dimensional volume of the
Zeldovich flame ball in the mixture and Tad is the temperature of
the burnt gas enclosed, then

EZ ¼ qcpðTad � TuÞVZ : ð68Þ

In particular, if the uniform mixture is such that its reactants have
the same concentrations as those prevailing at the stoichiometric
surface in our problem, then VZ ¼ ð4p=3Þd3

Z where dZ is the radius
of the Zeldovich flame ball at the stoichiometric conditions given
in (33). Henceforth EZ will be taken to correspond to these condi-
tions and will be referred to as the minimum ignition energy of the
stoichiometric uniform mixture.

Let us by analogy use the energy enclosed in our flame balls as
an estimate for the minimum ignition energy required in our non-
uniform mixture. To this end, we note that the dimensional volume
of our flame ball corresponding to the non-dimensional volume V
given in (65) is VB ¼ VVZ=F 3

0; this is simply because the length
scale used to obtain (65) is dZ=F 0 as mentioned in Section 5. Corre-
sponding to this volume is a dimensional energy

EB ¼ qcpðTad � TuÞVB; ð69Þ

given that the temperature inside the flame ball is equal to Tad,
neglecting non-dimensional temperature variations of order b�1.

From (65), (68) and (69), it follows that

EB

EZ
¼ VB

VZ
¼ 1
F 3

0

1þ b�2
� 

; ð70Þ

where the coefficients F 0; b and � depend on the stoichiometric
coefficient D as given by (66). More explicitly, we obtain

EB

EZ
¼ e

3jDj
2 1� j D jð Þ

3
2 1þ ejDjþl 1� j D jð Þ

4 1þ j D jð Þ2
b2

Da

( )
; ð71Þ

where Eq. (12), namely �2
L ¼ b2=Da, has been used to introduce the

Damköhler number Da. For illustration, plots of EB=EZ versus j D j
based on (71) are shown in Fig. 7 for l ¼ 0 and three selected values
of �L.

Formula (71) is in fact an important result since it may serve as
a possible criterion for successful ignition in our non-uniform reac-
tive mixture. We shall simply highlight in what follows a few

x

z

Zeldovich 
Flame Ball

Fig. 4. Temperature contours in the near field outside the flame ball (bounded by
the solid thick inner line) in the x–z plane for S ¼ 1 and � ¼ 0:9. The contours are
represented by five solid lines corresponding to values of w uniformly equidistrib-
uted between 1 (the thick inner line) and 0:5 (the outer). For comparison the
spherical Zeldovich flame ball is also represented by a dashed circle.

ε = 0

ε = 2

  0.7
  1

x

z

Fig. 5. Flame ball shape in the x–z plane for S ¼ 1 and selected values of �. The
dashed circle pertaining to � ¼ 0 represents the spherical Zeldovich flame ball.
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surface (and the diffusion flame), �zst , versus the stoichiometric parameter D � S�1
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implications of this formula. In doing so, it is convenient to refer to
EB as the minimum ignition energy of the non-uniform mixture, de-
noted by Emin in the abstract and conclusion sections, by analogy
to our reference above to EZ as being the minimum ignition energy
of the stoichiometric uniform mixture.

We begin with the stoichiometrically balanced case S ¼ 1 or
D ¼ 0, for which (71) simplifies to

EB

EZ
¼ 1þ el

4
b2

Da
; ð72Þ

or, equivalently,

EB

EZ
¼ 1þ el�2

L

4
¼ 1þ �

2

4
:

This shows that the minimum ignition energy of the non-uniform
mixture EB is higher than that of the uniform mixture EZ by a rela-
tive amount which is proportional to the square of the Zeldovich
number and inversely proportional to the Damköhler number. It
can be noted that EB approaches EZ in the limit of infinitely large
Da, or more precisely of vanishingly small values of the non-unifor-
mity parameter �L (or�). This makes sense from the physical point
of view since in this case, S ¼ 1; EB is the thermal energy inside a
non-spherical flame ball centred at the stoichiometric surface, while
EZ is that inside of a (spherical) Zeldovich flame ball in a homoge-
neous mixture corresponding to the reactants concentration at
the same stoichiometric surface. It is natural therefore that the
non-spherical flame ball solution tends to the Zeldovich solution
as the non-uniformity measured by �L becomes weaker. This is
not true when S – 1 since then �z0 – �zst . In the general case, we
may write

EB

e
3jDj

2 1� j D jð Þ
3
2EZ

¼ 1þ ejDjþl 1� j D jð Þ
4 1þ j D jð Þ2

b2

Da
ð73Þ

showing that EB ! E0
Z in the limit �L ! 0 where

E0
Z � e

3jDj
2 1� j D jð Þ

3
2EZ :

In fact, E0
Z , which can also be written as EZ=F 3ðz0Þ on using the first

expression in (66), can be interpreted as the energy inside a Zeldo-

vich flame ball corresponding to a uniform mixture at the condition
prevailing at z0. To see this, let us define eEðzÞ as being the thermal
energy inside a Zeldovich flame ball in a uniform mixture at the lo-
cal conditions prevailing at z and let us refer to such a ball by the
shorthand notation ZFBðzÞ. The radius of ZFBðzÞ is dZ=FðzÞ as argued
in Section 6.2 and the temperature of the burnt gas inside it is Tad,
neglecting non-dimensional temperature variations of order b�1 for
z � 1. Therefore eEðzÞ ¼ ð4p=3ÞqcpðTad � TuÞd3

Z=F 3ðzÞ, that is

eEðzÞ ¼ EZ=F 3ðzÞ; ð74Þ

confirming our interpretation for E0
Z ¼ eEðz0Þ. In fact, E0

Z is clearly the
minimum of eEðzÞ, given that z0 is the location of the maximum of
FðzÞ. In other words, z0 is the location of the Zeldovich flame ball
ZFBðzÞ of minimum energy (and radius) in the mixing layer. Return-
ing to (73), it is seen that the energy of the flame ball in the non-
uniform mixture EB is equal the energy of the Zeldovich ball at
the location of the leading edge of a triple-flame to leading order
plus a positive correction depending on the stoichiometric coeffi-
cient and the Lewis number, which is proportional to the square
of the Zeldovich number and inversely proportional to the Damköh-
ler number. The findings suggest that a necessary condition for suc-
cessful ignition is that the energy deposited exceeds EB and that the
most favourable location for energy deposit is z0, given thateEðzÞP eEðz0Þ.

7. Concluding remarks

A thermo-diffusive model for flame balls in a mixing layer has
been analysed theoretically in the limit of large Zeldovich number
b. The analysis has lead to a free boundary problem outside a
(burnt-gas) domain whose unknown boundary represents an infi-
nitely-thin reaction zone. The free boundary problem has been
solved analytically using perturbation methods in the asymptotic
limit of large Damköhler number. The solutions have provided ex-
plicit formulas determining the free boundary and the temperature
field outside it. These solutions, which represent non-spherical
flame balls generalising the classical Zeldovich flame balls to
non-uniform mixtures, are shown to exist only if the flame ball is
centred at a single location �z0. This location differs from the loca-
tion of the stoichiometric surface �zs by an amount of order b�1,
and both locations depend simply on a normalised stoichiometric
coefficient D, see Eqs. (60), (61) and (67). In fact, it is found that
�z0 is precisely the position of the leading-edge of a triple-flame
in the mixing layer.

In analogy with the homogeneous case, the thermal energy of
the burnt gas inside the flame ball has been used to derive an
expression for the minimum energy Emin (of an external spark
say) required for successful ignition. In particular, it is found that
the presence of the inhomogeneity increases the minimum ignition
energy required compared to the homogeneous case. For a stoi-
chiometrically balanced mixture, corresponding to D ¼ 0, the rela-
tive increase in the ignition energy is found to be proportional to
the square of the Zeldovich number and to the reciprocal of the
Damköhler number, see formula (72) with Emin � EB. More gener-
ally, for arbitrary value of D, the minimum ignition energy is found
to correspond to that of the Zeldovich flame ball in a uniform mix-
ture at the local conditions prevailing at �z0, i.e. at the location of the
leading edge of the triple flame, plus a positive amount depending
on D which is again proportional to the square of the Zeldovich
number and to the reciprocal of the Damköhler number, see for-
mula (73). In summary, the analysis provides a possible criterion
for successful ignition in a non-homogeneous mixtures by deter-
mining the minimum energy required and the location �z0, argued
to be the most favourable for ignition, where it should be
deposited.

EB

EZ

0.5
1

L = 0

Fig. 7. EB
EZ

versus j D j for three selected values of �L (and l ¼ 0).
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We close the paper by noting that the study is a first theoretical
step towards a better understanding of ignition in non-homoge-
neous mixtures. The focus of the paper was on deriving a free-
boundary problem and providing an analytical description of its
stationary solutions where feasible. These solutions are expected
to be unstable, as observed in related numerical studies [41,42],
but this aspect, as well as the temporal evolution into propagating
triple-flames, is not considered here. The stability aspect will be
however the subject of further studies which will allow the inclu-
sion of stabilising effects such as volumetric heat-losses (which are
known to have a significant influence on flame balls [3,4] as well as
on triple-flames [27–29]), or a flow-field (as in related studies such
as [6,45] or [46]). Finally, three interesting open questions for fur-
ther investigation raised by one of the reviewer of the paper, to
whom we are grateful, are the following. (1) How would a convec-
tive field superimposed onto the non-homogeneity of the mixture
(like in previous studies [32,33]) affect the existence/stability of
the flame balls? (2) How may the uniqueness of the solution, en-
forced by the symmetry condition mentioned at the end of Section
4, be influenced by considering other configurations like e.g. in the
presence of a convective, laminar or even lightly turbulent, field?
(3) Can the dynamic ignition process, or the transit of the (typically
unstable) flame balls into propagating triple-flames, be described
by time-dependent evolution equations characterising the flame
shape, similar to the non-linear integro-differential equation for
the flame ball radius derived by G. Joulin in the homogeneous case
[13]?
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