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a b s t r a c t 

A two-dimensional model for premixed flames accounting for flow-enhanced diffusion or Taylor disper- 

sion and heat loss is investigated. This is the first analytical study addressing the effect of Taylor dis- 

persion on the thermo-diffusive instabilities of non-adiabatic flames. It is also the first numerical study 

coupling flame instability with Taylor dispersion. A linear stability analysis is carried out in the limit of 

infinite Zeldovich number β . This leads to a dispersion relation, generalising classical relations in the 

literature, and involving three parameters, l (the reduced Lewis number), p (the Taylor-dispersion coeffi- 

cient which is proportional to the Peclet number), and κ (the heat loss coefficient). Stability diagrams are 

determined and their implications on the cellular and oscillatory instabilities are discussed. A Kuramoto–

Sivashinsky type equation incorporating the parameters l, p and κ and characterising the flame dynamics 

in the weakly non-linear regime near the onset of the cellular instability is derived. The theoretical re- 

sults demonstrate the ability of Taylor dispersion and heat loss to significantly affect the flame stability. 

In particular, the oscillatory instability is found to be promoted by an increase in κ and hampered by an 

increase in p. On the other hand, both p and κ have a destabilising effect in connection with the cellular 

instability. Also, the theory provides a formula predicting the typical size of cells first emerging from the 

cellular instability which is found to be a decreasing function of p. 

Numerical simulations are carried out illustrating and significantly extending the analytical findings. Par- 

ticular attention is devoted to the influence of β . In particular, we reconcile apparent quantitative and 

sometimes qualitative discrepancies between the numerical and theoretical predictions, which are found 

to be more pronounced for larger values of p. Luckily, the asymptotic theory is found to be robust in the 

sense that its predictions are recovered numerically if β is taken large enough, although such predictions 

may be questionable for realistic values of β . In general, the effect of β on flame stability is found to 

be opposite to that of p: an increase in p or a decrease in β have a destabilising effect in connection 

with the cellular instability, and a stabilizing effect in connection with the oscillatory instability; both 

instabilities are promoted by an increase in κ . 

© 2022 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

h

e

l  

l

B

b

d

c

e

i

a

b

t

v

i

d

s

e

[

t

h

0

(

. Introduction 

Taylor or Taylor–Aris dispersion, which refers to shear-flow en- 

anced diffusion, has been an ubiquitous investigation topic in ar- 

as involving transport phenomena since the early papers by Tay- 

or [1] and Aris [2] . This is reflected by the abundance of the re-

ated scientific publications cited in the comprehensive review by 

renner and Edwards [3] . Despite its popularity, the topic has not 

een addressed in combustion until recently, where it has received 

edicated studies in the context of premixed flames by Daou and 

o-workers [4–6] and in the context of diffusion flames by Liñán 

t al. [7] and Rajamanickam and Weiss [8] . 
∗ Corresponding author. 

E-mail address: joel.daou@manchester.ac.uk (J. Daou) . 

t

D

A  

ttps://doi.org/10.1016/j.combustflame.2022.112588 

010-2180/© 2022 The Author(s). Published by Elsevier Inc. on behalf of The Combustion

 http://creativecommons.org/licenses/by/4.0/ ) 
The effect of Taylor dispersion on the thermo-diffusive instabil- 

ties of premixed flames is a scientifically interesting and rich topic 

s argued in the recent publication [6] , which may be consulted for 

ackground and some technical details. For a review on the vast 

opic of flame instabilities, the reader is referred to dedicated re- 

iews such as Buckmaster [9] , Sivashinsky [10] , Matalon [11] . The 

nvestigation in Daou [6] addressed analytically under a thermo- 

iffusive approximation the effect of Taylor dispersion on flame 

tability in a Hele-Shaw channel, a configuration adopted in sev- 

ral studies such as Al Sarraf et al. [12] , Fernández-Galisteo et al. 

13] , Joulin and Sivashinsky [14] . The aim of the present paper is 

o extend the work of [6] and has two main focuses: (1) to extend 

he analytical theory by accounting for heat losses, neglected in 

aou [6] , but important in experiments such as those described in 

l Sarraf et al. [12] , Fernández-Galisteo et al. [13] , and (2) to carry
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Fig. 1. Flame propagation against a unidirectional flow in a channel with width 2 H. 
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ut a numerical study addressing the influence of Taylor dispersion 

n flame stability which appears to be the first in the literature. A 

articular effort will be devoted to reconciling apparent discrepan- 

ies between the theoretical findings, obtained in the asymptotic 

imit β → ∞ , and the numerical findings, obtained for finite val- 

es of the Zeldovich number β . This will highlight the importance 

f assessing the influence of β on flame stability, as can be sur- 

ised from previous studies addressing this issue in the absence 

f Taylor dispersion [15–19] . 

In this investigation, heat losses will be modelled for simplicity 

s being volumetric, although they are mainly due in practice to 

on-adiabatic walls. Approximating such losses to walls by a vol- 

metric sink term in the energy equation is justifiable, from the 

heoretical point of view, for narrow channels or thick flames [20] , 

rovided they are sufficiently weak, so that the walls are essen- 

ially near adiabatic. A detailed analytical and numerical study on 

he propagation of non-adiabatic flames in channels, addressing in 

articular this specific point, can be found in Daou and Matalon 

21] . Although the weak heat loss assumption is admittedly diffi- 

ult to satisfy from the experimental point of view as the walls 

hermal control poses non-trivial challenges, it is adopted herein 

s it is useful to advance the theory. 

The paper is structured as follows. The problem formulation is 

iven in the next section, where a two-dimensional model incorpo- 

ating Taylor dispersion is presented which results in enhanced dif- 

usion in the longitudinal direction and hence anisotropic diffusion. 

his is followed by a linear stability analysis of the planar flame 

ropagating in the longitudinal direction, carried out analytically 

n the asymptotic limit β → ∞ and culminating in the derivation 

f a dispersion relation. The implications of the dispersion relation 

re then investigated to identify the combined effect of Taylor dis- 

ersion and heat loss on the flame cellular and oscillatory instabil- 

ties. The paper closes with numerical simulations addressing both 

ypes of instabilities, including a comparison between theory and 

umerics with particular emphasis on clarifying the role played by 

he Zeldovich number. 

. Formulation 

.1. Thermo-diffusive model with Taylor dispersion 

In order to have a simple model accounting for Taylor disper- 

ion effects on flames, we consider the case of a channel Poiseuille 

ow, although other shear flows such as a Couette flow could also 

e used. The configuration of study is represented in Fig. 1 de- 

icting a flame propagating in a channel of width 2 H against a 

oiseuille flow of amplitude ˆ A . In a Cartesian frame of reference 

 ̂ x , ̂  y , ̂  z ) attached to the walls, the problem can be represented by 

he following depth-averaged 2D model 

∂ T 

∂ ̂  t 
+ 

2 ̂

 A 

3 

∂ T 

∂ ̂  x 
= D T (1 + γ Pe 2 ) 

∂ 2 T 

∂ ̂  x 2 
+ D T 

∂ 2 T 

∂ ̂  y 2 

+ 

q 

c p 
B Y F e 

−E/R T − K( T − T u ) (1a) 
2 
∂ Y F 

∂ ̂  t 
+ 

2 ̂

 A 

3 

∂ Y F 
∂ ̂  x 

= D F (1 + γ Pe 2 Le 2 ) 
∂ 2 Y F 
∂ ̂  x 2 

+ D F 
∂ 2 Y F 
∂ ̂  y 2 

− B Y F e 
−E/R T 

(1b) 

 = T u Y F = Y F u as ˆ x → −∞ (1c) 

∂ T 

∂ ̂  x 
= 0 Y F = 0 as ˆ x → + ∞ (1d) 

The model has been derived in Daou [6] , except that it is 

lightly modified here to incorporate the effect of weak heat losses. 

hese are accounted for in a simple and common way through 

he addition of the term −K( T − T u ) in the temperature equa- 

ion where K is a heat loss coefficient. 

In this model, a chemical reaction following an Arrhenius law 

ith pre-exponential factor B and activation energy E, and heat 

elease q is adopted. R is the universal gas constant, Y F the fuel 

ass fraction (assumed deficient), T the temperature and the sub- 

cript u indicates values in the unburnt mixture (as ˆ x → −∞ ). The 

arameters Pe and Le are the Peclet and Lewis numbers given by 

e = 

ˆ A H 

D T 

and Le = 

D T 

D F 

espectively, where D T is the thermal diffusivity and D F the fuel 

iffusion coefficient. The bar indicates quantities depth-averaged 

cross the channel width such that 

 = T ( ̂  x , ̂  y , ̂  t ) = 

1 

2 H 

∫ H 

−H 

T d ̂  z 

ote that the term 2 ̂  A / 3 is the average of the Poiseuille flow 

ˆ  ≡ ˆ A (1 − ˆ z 2 /H 

2 ) and that the diffusion coefficients D T and D F 

ave enhanced effective values in the longitudinal direction ˆ x . 

his enhancement is in agreement with Taylor–Aris dispersion for- 

ula [2] and involves the parameter γ which is a numerical coeffi- 

ient determined by the velocity profile; γ = 8 / 945 for the channel 

oiseuille flow considered here. This result and a rigorous deriva- 

ion of the model used herein can be found in appendix 1 of [6] .

he derivation is obtained in the double limit ε → 0 with εPe → 0 

here ε = H/δL is the channel width scaled with the laminar flame 

hickness δL . This double limit is more general than, and comprises 

he distinguished limit ε → 0 with Pe = O (1) used in Pearce and 

aou [4] , Daou et al. [5] . 

Since the enhancement of diffusion is in the longitudinal ˆ x - 

irection only, and not in the ˆ y -direction, a notable feature of the 

roblem is the presence of anisotropic diffusion. 

Our aim is to investigate the stability of the planar flame so- 

utions, independent of ˆ y , of problem (1a) –(1d) . That is, we need 

o revisit the thermo-diffusive instabilities of flames accounting 

or the consequences of Taylor dispersion and the corresponding 

nisotropic diffusion, as well as heat losses. 
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.2. Non-dimensional equations in a frame attached to the 

nperturbed planar flame front 

In a frame of reference attached to the unperturbed (planar) 

ame front, the problem (1a) –(1d) takes the non-dimensional form 

∂θ

∂t 
+ U 

∂θ

∂x 
= (1 + p 2 ) 

∂ 2 θ

∂x 2 
+ 

∂ 2 θ

∂y 2 
+ ω − κθ

β
(2a) 

∂y F 
∂t 

+ U 

∂y F 
∂x 

= 

1 

Le 
(1 + p 2 Le 2 ) 

∂ 2 y F 
∂x 2 

+ 

1 

Le 

∂ 2 y F 
∂y 2 

− ω (2b) 

= 0 y F = 1 as x → −∞ (2c) 

x = 0 y F = 0 as x → + ∞ (2d) 

n terms of 

 F = 

Y F 
Y F u 

θ = 

T − T u 

T ad − T u 

ere, U is the non-dimensional propagation speed of the un- 

erturbed front with respect to the gas. Furthermore, T ad ≡ T u + 

Y F u /c p is the adiabatic flame temperature ( c p being the mixture’s 

eat capacity) and β ≡ E(T ad − T u ) /RT 2 
ad 

is the Zeldovich number. 

or non-dimensionalisation, we have chosen S L as unit speed, δL as 

nit length, and δL /S L as unit time where 

 L = 

√ 

2 

β2 
Le D T Be −E/RT ad and δL = 

D T 

S L 

re the laminar flame speed (for β � 1 ) and the planar flame 

hickness in the absence of Taylor dispersion and heat losses ( p = 0

nd κ = 0 ). Throughout the paper, p 2 ≡ γ Pe 2 represents the Taylor 

ispersion coefficient and κ ≡ βKD T /S 2 
L 

the non-dimensional heat 

oss coefficient. Finally, ω is the reaction rate given by 

 = 

β2 

2 Le 
y F exp 

(
β( θ − 1 ) 

1 + αh ( θ − 1 ) 

)
here αh ≡ (T ad − T u ) /T ad . 

The analysis is most consistently carried out analytically in the 

imit β → ∞ using the so-called near-equidiffusional flame (NEF) 

pproximation based on the assumption that the Lewis number 

eviates little from unity [22, p. 33] . Within this approximation, 

he reduced Lewis number l ≡ β( Le − 1 ) is O (1) and Eqs. (2a) and 

2b) can be written in terms of the leading order temperature 
0 ∼ θ and h ∼ β( θ + y F − 1 ) . The reformulated problem is given 

y the equations 

0 
t + Uθ0 

x = 

(
1 + p 2 

)
θ0 

xx + θ0 
yy (3) 

 t + Uh x = 

(
1 + p 2 

)
h xx + h yy + l 

[(
1 − p 2 

)
θ0 

xx + θ0 
yy 

]
− κθ0 (4) 

hich are applicable outside an infinitely thin reaction sheet, given 

y x = f (y, t) say, subject to the boundary conditions 

0 = 0 h = 0 as x → −∞ (5) 

0 = 1 h has no exp. growth as x → + ∞ (6) 

nd the jump conditions 

� θ0 � = 0 � h � = 0 (7a) 

� h x � + 

1 + f 2 y − p 2 

1 + f 2 y + p 2 
l � θ0 

x � = 0 (7b) 
3 
(
1 + f 2 y + p 2 

) 1 
2 � θ0 

x � = − exp ( 
h 

2 

) (7c) 

t x = f (y, t) . Here we have used the notation � φ � = φ(x = f + ) −
(x = f −) . 

The jump conditions (7) , accounting for anisotropic diffusion, 

re fully derived in Daou [6] following a methodology commonly 

sed in premixed combustion (see e.g., Buckmaster and Ludford 

 22 , p. 39]). They reduce to the well known jump conditions of 

remixed flames [ 23 , p. 527] when p 2 = 0 , that is when Taylor dis-

ersion is absent. 

. Linear stability analysis 

.1. The planar flame solution 

The planar flame solution (denoted by a tilde) whose stability 

s being investigated is governed by Eqs. (3) –(7) with ∂ /∂ t = 0 and

 /∂ y = 0 . The solution is given by 

˜ f = 0 (8a) 

˜ = 

{
e 

Ux 

1+ p 2 (x < 0) 
1 (x > 0) 

(8b) 

˜ 
 = 

{ 

[ 
−2 κ(1+ p 2 ) 

U 2 
+ 

(
κ
U 

− l(1 −p 2 ) U 
(1+ p 2 ) 2 

)
x 

] 
e 

Ux 

1+ p 2 (x < 0) 

−2 κ(1+ p 2 ) 
U 2 

− κx 
U 

(x > 0) 

(8c) 

here the propagation speed U is determined by 

U 

2 

1 + p 2 
ln 

(
U 

2 

1 + p 2 

)
= −2 κ (8d) 

The last equation can be written as 

 

2 
∗ ln U ∗ = −κ (9) 

here 

 ∗ ≡ U (
1 + p 2 

) 1 
2 

(10) 

epresents the planar flame propagation speed U = U(κ, p) scaled 

y its adiabatic value 
(
1 + p 2 

) 1 
2 . A plot of U ∗ versus κ is shown in 

ig. 2 where a classical inverse-C shaped curve is obtained exhibit- 

ng an extinction point labelled C with coordinates 

ext ≡ 1 

2 e 
U 

ext 
∗ ≡ U 

ext √ 

1 + p 2 
= e −

1 
2 (11) 

.2. Normal modes analysis 

A normal-mode stability analysis can now be applied to the ba- 

ic solution (8) by considering perturbations of the form 

 

f 

θ0 

h 

] 

= 

⎡ 

⎣ 

˜ f 
˜ θ (x ) 
˜ h (x ) 

⎤ 

⎦ + δ e st+ iky 

⎡ 

⎣ 

1 

ˆ θ (x ) 
ˆ h (x ) 

⎤ 

⎦ (12) 

here δ is a small number representing the amplitude of the per- 

urbation, and k and s are a real and a complex numbers repre- 

enting its wavelength and its growth rate, respectively. The main 

im is to derive a dispersion relation expressing the dependence of 

 on k and the parameters l, κ and p 2 . Instability will correspond 

f course to situations for which Re (s ) > 0 occurs. 
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Fig. 2. Scaled propagation speed U ∗ versus κ . The stability of the planar solutions 

corresponding to the points labelled A , B , C and D will be examined in Fig. 3 based 

on the dispersion relation (13) . All points on the lower branch have been confirmed 

to be unstable, as expected. 
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Note that the speed U appearing in the governing Eqs. (3) –

7) and the basic solution (8) is a known quantity, determined by 

q. (8d) in terms of κ and p, and corresponds to the propagation 

peed of the unperturbed planar front. The methodology used to 

erive the dispersion relation is classical, see e.g., [24,25] , and the 

erivation is given in Appendix A . Briefly, when perturbed solu- 

ions of the form (12) are substituted into Eqs. (3) –(7) , an eigen-

oundary value problem for the functions ˆ θ (x ) and 

ˆ h (x ) is ob- 

ained in the linear approximation corresponding to small values 

f δ. The dispersion relation is found to be given by 

�2 ( � − 1 ) + 2(�2 − 1) ln U ∗

+ 

l 

1 + p 2 

[
( � − 1 − 2 s ∗) (1 − p 2 ) + 4 p 2 k 2 ∗

]
= 0 (13) 

here 

= 

(
1 + 4 

(
s ∗ + k 2 ∗

)) 1 
2 

ere the starred variables s ∗ and k ∗ are rescaled versions of s and 

 defined by 

 ∗ ≡ s 

U 

2 ∗
k ∗ ≡ k 

U ∗
(14) 

here U ∗ is the rescaled propagation speed, introduced in (10) , 

hich is a bivalued function of κ given by (9) and represented in 

ig. 2 . 

Once a value of U ∗ has been selected, corresponding to a point 

n either the upper or lower branch of Fig. 2 and hence to a spe-

ific value of κ , the stability of the corresponding solution can be 

nvestigated for arbitrary values of p by turning to Eq. (13) . In sum- 

ary, the dispersion relation (13) encapsulates all the information 

haracterising the stability of the flame to small perturbations for 

rbitrary values of l, κ and p. Before exploring its implications, we 

ote that (13) reduces as it should to the dispersion relation de- 

ived by Sivashinsky [24] when p = 0 and κ = 0 , to that derived

y Joulin and Clavin [25] when p = 0 , and to that derived by Daou

6] when κ = 0 . 
4 
. Implications of the theoretical results 

.1. Stability regions 

We note that the dispersion relation (13) incorporates the effect 

f Taylor dispersion and the resulting anisotropy of diffusion on 

he stability of non-adiabatic flames. 

The overall picture provided by the dispersion relation is illus- 

rated in Fig. 3 where bifurcation curves are plotted in the l − k ∗
lane for selected values of the parameters p and κ (or rather U ∗
hich is a bivalued function of κ). The first row in Fig. 3 corre-

ponds to point A in Fig. 2 , the second row to point B , the third

ow to the extinction point C, and the fourth row to point D on

he lower branch of Fig. 2 . 

When p = 0 (first column) and κ = 0 ( U ∗ = 1 , first row) we

ecover the classical stability diagram pertaining to an adiabatic 

ame. Here we have a stationary bifurcation for l < −2 (leading 

o a cellular instability) and a Hopf bifurcation for l > 32 / 3 (oscil-

atory instability). 

The effect of κ on the thermo-diffusive instability as studied 

y Joulin and Clavin [25] corresponds to the first column (where 

he dispersion coefficient p = 0 ). It is seen, in agreement with the 

ndings of [25] , that a decrease in the value of U ∗ destabilises the 

ame, promoting both the cellular and oscillatory instabilities. In 

articular, the last row confirms that point D on the lower branch 

s unstable, and so is in fact any other point on this lower branch 

and this is found to hold for any value of p). 

The first row summarises the effect of p in the adiabatic case; 

s p is increased the Hopf bifurcation curve is displaced to the 

ight and disappears for p ≥ 1 . This indicates that enhanced dif- 

usion strongly impedes the oscillatory instability. Also, the size of 

he stability domain in the left half-plane (delimited from the left 

y the stationary bifurcation curve) is reduced by an increase in 

p which indicates that Taylor dispersion may somewhat promote 

he cellular instability in that it destabilises some wave numbers 

hich are otherwise stable. This suggests that flames with finite or 

estricted extent in the y -direction (so that k must be larger than a 

inimum non-zero value) may be stable when p = 0 but unstable 

or non-zero values of p. This is confirmed by numerical simula- 

ions below; see Fig. 7 where such possibility is illustrated in two 

ases corresponding to κ = 0 and κ 	 = 0 . In general, Fig. 3 demon-

trates the ability of Taylor dispersion and heat loss to combine 

o as to significantly affect the stability of the flame. For example, 

hile the oscillatory instability is promoted by an increase in κ
decrease in U ∗), it is hampered by an increase in p. This is clearly

llustrated in Fig. 4 , where the stability regions are determined in 

he κ − l plane for p = 0 (left) and p = 0 . 5 (right). 

.2. The longwave cellular instability 

we note that the dispersion relation (13) has always a real root 

 ∗(k ∗) such that s (0) = 0 and that the Taylor expansion of s ∗(k ∗)
or small values of k ∗2 is given by 

 ∗ = − l + 2 + 4 ln U ∗
2 + 4 ln U ∗

k 2 ∗ −
l 2 
(
6 − l + (6 + l) p 2 

)
(
1 + p 2 

)
( 2 + 4 ln U ∗) 

3 
k 4 ∗ + O (k 6 ∗ ) 

rovided U ∗ > U 

ext ∗ ≡ e −
1 
2 (see (11) ). It is this root that is at the

rigin of the cellular instability, a longwave instability whose on- 

et corresponds to the coefficient of k 2 ∗ in the expansion becoming 

ero, which corresponds to l = l c where 

 c = −2 − 4 ln U ∗ (15) 

he critical value l c given by (15) coincides with that derived in 

oulin and Clavin [25] when p = 0 , but it is found here to be appli-

able irrespective of the value of p, provided the dependence on p

s incorporated in U ∗ as expressed in (10) . 
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Fig. 3. Bifurcation curves in the l − k ∗ plane for selected values of parameters p and U ∗ . The parameter p increases through the values 0, 0.5 and 1 from left to right. U ∗
decreases from top to bottom, taking the values corresponding to points A , B , C and D in Fig. 2 ; that is U ∗ = 1 (corresponding to κ = 0 ), U ∗ = 0 . 7 ( κ ≈ 0 . 174 ), U ∗ = e −1 / 2 

( κ = κext ≈ 0 . 184 ) and U ∗ = 0 . 5 ( κ ≈ 0 . 173 ). 
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In the weakly unstable regime near the onset of instability, l � 

 c , the expansion above can be written as 

 ∗ = 

l − l c 

l c 
k 2 ∗ −

(
1 − p 2 

1 + p 2 
− 6 

l c 

)
k 4 ∗ + . . . (16) 

or weakly unstable flames, l � l c , the unstable modes are those 

ith wavenumbers k = U ∗k ∗ such that 

 < k 2 ∗ < −
(
1 + p 2 

)
( l − l c ) 

( 6 − l c ) + ( 6 + l c ) p 2 

nd the most amplified mode is characterized by a wavenumber 

 0 = U ∗k 0 ∗ where k 2 is the midpoint of the interval above, that is

0 ∗

5 
k 2 0 

U 

2 ∗
= −1 

2 

(
1 + p 2 

)
( l − l c ) 

( 6 − l c ) + ( 6 + l c ) p 2 

herefore, using (15) , k 0 and the corresponding growth rate s 0 are 

iven by 

 

2 
0 = −U 

2 
∗

8 

(
1 + p 2 

)
( l + 2 + 4 ln U ∗) 

2 + ln U ∗ + ( 1 − ln U ∗) p 2 
(17) 

 0 = 

U 

2 
∗

32 

(
1 + p 2 

)
( l + 2 + 4 ln U ∗) 

2 

( 1 + 2 ln U ∗) 
(
2 + ln U ∗ + ( 1 − ln U ∗) p 2 

) (18) 
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Fig. 4. Bifurcation curves and stability regions in the κ − l plane for p = 0 (left) and p = 0 . 5 (right). The left subfigure is in agreement with Fig. 2 of Joulin and Clavin [25] . 

Fig. 5. Growth rate versus the wavenumber k for selected values of p in the adiabatic case κ = 0 ( U ∗ = 1 ) with the reduced Lewis number l = −2 . 2 (left subfigure) and 

l = −3 (right subfigure). The solid curves are based on the asymptotic formula (16) and the dashed curves are obtained numerically from the dispersion relation (13) . 
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1 Near extinction λ0 becomes independent of p as implied by formula (19) in the 

limit U ∗ → e −
1 
2 . 
These relations imply that an increase in p 2 widens the range of 

nstable wave numbers and raises the maximum growth rate and 

as therefore a destabilising effect. Theses conclusions are con- 

rmed in Fig. 5 , where the growth rate is plotted versus k for

elected values of p in the illustrative near-onset case l = −2 . 2 

left subfigure); the solid curves are based on the asymptotic for- 

ula (16) and the dashed curves are obtained numerically from 

he dispersion relation (13) . The right subfigure of Fig. 5 is simi- 

ar except that it pertains to the case l = −3 which is further from

nset. In this case, it is seen that the solid curves deviate signifi- 

antly from the dashed curves from the quantitative point of view, 

lthough the deviations are perhaps insignificant from the qualita- 

ive point of view. Still, when comparing with the finite- β numer- 

cal simulations to be presented below, we shall use growth rates 

ased on the dispersion relation (13) rather than formula (16) , and 

n the dashed, rather than solid, curves. 

We note that (17) can be used to provide a length scale λ0 = 

 π/k 0 which may plausibly characterize the size of cells appear- 

ng in the weakly unstable regime l � l c . This length scale is deter-

ined here in terms of p and κ (or U ∗) and is given by 

0 = 

4 π
√ 

2 

U ∗

√ 

2 + ln U ∗ + ( 1 − ln U ∗) p 2 (
1 + p 2 

)| l + 2 + 4 ln U ∗| (19) 
6 
he formula indicates that when p increases the cells size pre- 

icted by λ0 should decrease, with the ratio λ0 (p, U ∗) /λ0 (p = 

 , U ∗) tending to 
√ 

(1 − ln U ∗) / (2 + ln U ∗) as p → ∞ ; hence more 

ells should appear per unit transverse length if p is larger (ex- 

ept very close to extinction conditions 1 ). Such qualitative predic- 

ions will be roughly confirmed in the numerical simulations be- 

ow. They should be treated however with caution, from the quan- 

itative point of view at least, due to several limitations. An ob- 

ious limitation is that the flame extent in the transverse direc- 

ion is necessarily restricted in computations as well as in exper- 

ments, so that wavelengths close to λ0 may not be allowed in 

oderately large domains. Another more important limitation re- 

arding the theoretical results in general is that there are based 

n the assumption that the Zeldovich number β is infinite (used 

.g., in the jump conditions (7) ), while the numerical computa- 

ions are carried out with finite values of β . We shall examine in 

ore detail below this limitation related to the Zeldovich number, 

hose importance was noted in a number of studies on flame sta- 

ility, e.g., Denet and Haldenwang [15] , Lasseigne et al. [16] , Sharpe 

17,18] , Brailovsky et al. [19] . Finally, it is worth restating that an-
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2 For illustration, the initial condition adopted for the mass fraction field is 

y F = ̃  y F (x ) + ε rand (x, y ) where ˜ y F (x ) corresponds to the stationary planar solution, 

rand (x, y ) a uniformly distributed random function with mean zero and unit am- 

plitude, and ε = 10 −4 . Numerically, the perturbation term added to ˜ y F is replaced 

by zero when ˜ y F is not in the interval (ε, 1 − ε) to avoid nonphysical values of y F 
lying outside the interval (0,1). 
ther obvious limitation of our study is the predominance of the 

andau–Darrieus instability for real flames, an aspect which is not 

onsidered herein. 

.3. The Kuramoto–Sivashinsy equation 

Eq. (16) implies the following linear evolution equation for the 

ame front f (y, t) ∝ e st+ iky : 

f t = 

(
1 − l 

l c 

)
f yy −

(
1 − p 2 

1 + p 2 
− 6 

l c 

)
U 

−2 
∗ f yyyy 

here use has been made of (14) . We note that the coefficient of

he fourth derivative f yyyy remains negative for all values of l c in 

ts range [ −2 , 0) and p in [0 , ∞ ) , so that the last term is always

tabilising as in Sivashinsky’s original equation [24] . 

This linear equation need to be supplemented in the weakly 

nstable regime by a non-linear term which is required in order to 

aturate the instability. Such term may be determined by a semi- 

euristic kinematic argument as explained in Sivashinsky [10] . The 

esulting non-linear evolution equation is then given by 

f t = 

(
1 − l 

l c 

)
f yy −

(
1 − p 2 

1 + p 2 
− 6 

l c 

)
U 

−2 
∗ f yyyy − U ∗

2(1 + p 2 ) 
1 
2 

f 2 y 

(20) 

he last term in this equation may be plausibly justified as follows. 

or the unperturbed planar flame the propagation speed (with re- 

pect to the gas) in the negative x direction given by (8d) reads 

 = U ∗
(
1 + p 2 

) 1 
2 

onsider now that the flame is perturbed such that its local slope 

s f y . Assuming that the structure of such flame is unchanged from 

hat of a planar tilted flame with slope f y , its local propagation 

peed in the negative x -direction with respect to the gas can be de-

ermined using the governing equations and jump conditions (7) to 

e 

 

′ = U ∗
(
1 + f 2 y + p 2 

) 1 
2 

rom the definition of f it then follows that 

f t = U − U 

′ = U ∗
(
1 + p 2 

) 1 
2 − U ∗

(
1 + p 2 + f 2 y 

) 1 
2 

 Taylor expansion for | f y | � 1 then yields 

f t = − U ∗

2 

(
1 + p 2 

) 1 
2 

f 2 y + . . . 

hich suggests the non-linear term of Eq. (20) . 

It is worth noting when p = 0 and κ = 0 (so that U ∗ = 1 and

 c = −2 ) that Eq. (20) reduces to the Kuramoto–Sivashinsky equa- 

ion 

f t −
(
1 + 

1 
2 

l 
)

f yy + 4 f yyyy + 

1 
2 

f 2 y = 0 

hich is essentially Eq. (7) of Sivashinsky [10] . 

. Numerical simulations and discussion 

In this section, we present numerical results based on the time 

ependent simulations of problem (2) for finite values of β , in 

ontrast to the theoretical results presented above based on the 

imit β → ∞ . The simulations are carried out using the finite- 

lement package Comsol Multiphysics. This has been extensively 

ested in combustion applications, including in our publications 

4,5] , where more detailed descriptions of the numerical proce- 

ure can be found. The domain is covered by a grid of approxi- 

ately 20 0,0 0 0 triangular elements, with local refinement around 

he reaction zone. Solutions have been tested to be independent of 
7 
he mesh and the size of the domain. In the simulations, periodic 

oundary conditions in the transverse y direction are imposed, as 

t is common in studies on the thermo-diffusive flame instabilities 

r the Kuramoto–Sivashinsky equation [15,26] , and the transverse 

omain size, L y say, is explicitly specified. 

An important point to note is that although U in Eq. (2) refers 

o the propagation speed of the unperturbed planar front which is 

ime independent, it is considered in the simulations as a time de- 

endent eigenvalue. This is determined at each time step so that 

he flame remains anchored to the origin of the computational do- 

ain, by imposing the constraint θ = 0 . 5 at the origin. Thus U shall

haracterize below the instantaneous flame propagation speed at 

 = 0 in the negative x -direction. Another useful quantity which 

ill be referred to below, is the effective (or average) flame prop- 

gation speed in the negative x -direction, U T say. This is defined at 

ny given time t as the total burning rate per unit transverse flame 

rea, which in our 2D simulations is given by 

 T = 

1 

L y 

∫ ∫ 
ω d xd y (21) 

n all simulations, the stability of the planar flame is examined by 

olving an initial value problem, where the initial conditions cor- 

espond to the planar flame profiles (obtained numerically as sta- 

ionary solutions of a time independent problem) to which random 

erturbations of small amplitude are added. 2 

In presenting the numerical results below, the main focus will 

e on the cellular instability to which the next three sections are 

edicated. This is followed by a fourth section addressing the os- 

illatory instability. 

.1. The cellular instability in small and moderately large domains 

We begin with Fig. 6 which illustrates the cellular instability 

or Le = 0 . 7 and β = 10 for a moderately large transverse domain

ize, Ly = 40 , and selected values of p and κ specified in the cap- 

ions. The top row pertains to the adiabatic case κ = 0 and the 

ottom row to a non-adiabatic case. Shown are reaction rate con- 

ours, which represent stationary cells to which the flame front 

as evolved starting from an initial profile corresponding to the 

tationary planar flame solution to which random perturbations of 

mall amplitude are added as described above. We note that more 

ells are obtained as p is increased, which is in qualitative agree- 

ent with our comments regarding the expected cells size follow- 

ng Eq. (19) . 

We turn now to Fig. 7 , which is similar to the previous figure

ith a smaller transverse size, Ly = 10 . The figure shows that the 

ame front is stable when p = 0 , but that it is destabilised by Tay-

or dispersion, evolving to stationary cells when p 	 = 0 . Thus, the

imulations demonstrate that Taylor dispersion is able to desta- 

ilise an otherwise thermo-diffusively stable planar front. It turns 

ut, as we shall discuss below, that the finiteness of the Zeldovich 

umber β plays an essential part in the flame destabilisation in the 

ases of this figure, for which the flame should be stable according 

o the asymptotic analysis. 

.2. The cellular instability in large domains 

We now consider the case of large transverse sizes, Ly > 100 

ay, which is known to typically lead to a chaotic front dynam- 
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Fig. 6. Reaction rate fields for Le = 0 . 7 , β = 10 and selected values of p after a longtime evolution of a planar flame front; p = 0 (left), p = 1 (middle) and p = 3 (right). The 

first row corresponds to κ = 0 and the second row to κ = 0 . 11 . The domain transverse size is Ly = 40 . The cells appearing are stationary. We note that as p is increased, the 

size of the cells decrease. 

Fig. 7. Reaction rate fields for Le = 0 . 7 , β = 10 and selected values of p after a longtime evolution of a planar flame front; p = 0 (left), p = 1 (middle) and p = 3 (right). The 

first row corresponds to κ = 0 and the second row to κ = 0 . 11 . The domain transverse size is Ly = 10 . The cells appearing are stationary. We note that the flame is stable 

for p = 0 , but it is destabilised by an increase in p, both for κ = 0 and κ = 0 . 11 . 

8 
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Fig. 8. Temperature fields (left) and reaction rate fields (right) for Le = 0 . 7 , β = 10 and specific values of p at selected times; p = 0 (top row), p = 1 (middle) and p = 3 

(bottom). The domain transverse size is Ly = 120 and κ = 0 . 
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cs, at least in the absence of Taylor dispersion [10,15,26] . Two il- 

ustrative sets of simulations corresponding to L y = 120 and three 

elected values of p are shown in Fig. 8 , pertaining to the adia- 

atic case κ = 0 , and in Fig. 9 , pertaining to a non-adiabatic case.

he figures represent at several values of time t snapshots of the 

emperature and reaction rate fields of initially planar fronts sub- 

ect to small random perturbations at t = 0 . In each row, the sec-

nd figure from the left corresponds to a time close to the insta- 

ility development time where a cellular structure emerging from 

he planar front becomes discernable. The overall picture of the 

ront dynamics is further clarified in Fig. 10 where the propa- 

ation speed U is plotted versus time for the adiabatic cases of 

ig. 8 (top row) and the non-adiabatic cases of Fig. 9 (bottom 

ow). 

Several remarks are worth making in connection with the last 

hree figures: 
9 
(1) The evolution of the planar flame into a front with an appar- 

ently chaotic spatiotemporal dynamics is in line with the lit- 

erature [10,15,26] , and clearly involves the mechanism of tip- 

splitting and cells merging emphasized in [15] which seems 

to persist in the presence of moderate Taylor dispersion, e.g., 

when p = 1 . 

(2) In general, the effect of an increase in p is seen to 

have a destabilising effect on the planar front, by short- 

ening e.g., the instability development time observed in 

Fig. 10 (roughly the initial duration for U or U T to deviate 

significantly from its planar value). Furthermore, the typical 

size of the cells which first become discernable is seen to 

decrease with increasing p. Both these remarks are in line 

qualitatively with the theoretical predictions of Section 4.2 . 

(3) An interesting new outcome revealed by the numerical sim- 

ulations is that the chaotic time-dependent behaviour fol- 

lowing the destabilisation of the planar front is suppressed 
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Fig. 9. Temperature fields (left) and reaction rate fields (right) for Le = 0 . 7 , β = 10 and specific values of p at selected times; p = 0 (top row), p = 1 (middle) and p = 3 

(bottom). The domain transverse size is Ly = 120 and κ = 0 . 135 . 
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if p is large enough. This is observed e.g., for p = 3 where 

time-independent stable cellular structures are obtained for 

large times, as seen in Figs. 8 and 9 . Furthermore, the oc- 

currence of such stable cellular structures is found to be 

quite robust. Indeed, we have checked numerically that sim- 

ilar time-independent behaviours are obtained by changing 

the periodic lateral boundary conditions from periodic to 

Neumann conditions, the domain size (to L y = 150 e.g.), the 

value of p (to p = 2 or p = 4 e.g.), or the Lewis number (to

Le = 0 . 75 or Le = 0 . 6 e.g.). 

(4) The development of the cellular instability observed for p = 

3 seems to be somewhat in contradiction with the theoret- 

ical predictions of Section 4.2 when analysed carefully, even 

from the qualitative point of view. For example, the stable 

stationary structures obtained for large times just mentioned 

are not obtained when solving the Kuramoto–Sivashinsky 

Eq. (20) (calculations not shown herein). Furthermore the 

size of the cells first emerging from the destabilised pla- 

nar front is quite different from that predicted by the linear 

stability theory. It turns out, as discussed in the next para- 
10 
graph, that the dependence on the Zeldovich number is at 

the origin of such discrepancies between the numerical and 

asymptotic studies, as can be surmised from similar studies 

on flame instabilities [15–19] . 

.3. Effect of the Zeldovich number on the cellular instability 

In this section we examine the effect of the Zeldovich number 

which will allow us to reconcile apparent discrepancies between 

he numerical results carried out so far with β = 10 and the theo- 

etical stability analysis carried out in the asymptotic limit β = ∞ . 

e shall also identify flame behaviours obtained for finite real- 

stic values of β which can be missed in an asymptotic analysis. 

or simplicity, we shall restrict the discussion to the adiabatic case 

= 0 . 

We begin by focusing our attention on the case p = 3 of Fig. 8 .

n this case, the figure reveals that the planar front subject to ran- 

om perturbations at t = 0 evolves into a cellular structure which 

s first discernable with 12 cells emerging at time t ≈ 80 , suggest- 

ng that the fastest linearly growing mode under this confinement 
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Fig. 10. Propagation speed U versus time t for selected values of p (solid line). The first row pertains to κ = 0 and the cases of Fig. 8 . The second row pertains to κ = 0 . 135 

and the cases of Fig. 9 . The dashed red curves in the first top two figures represent the effective propagation speed U T defined in (21) . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Growth rate versus the wavenumber k for selected values of p, κ = 0 , and reduced Lewis number l = −3 . The dashed curves are based on the dispersion relation 

(13) as in Fig. 5 (b). The vertical lines represent the discrete wave numbers allowed for periodic solutions in a domain with transverse size L y = 120 given by k n = 2 πn/L y with 

n = 1 , 2 , 3 . . . . For p = 3 the most unstable mode is seen to correspond to k 7 , indicating that 7 cells are expected to appear near the instability onset for β � 1 . Numerically, 

this is found to be true when β > 25 approximately, as seen in Fig. 12 . 

11 
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Fig. 12. Temperature fields for l = −3 , p = 3 and selected values of β . The domain transverse size is Ly = 120 and κ = 0 . 
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as wavelength Ly/ 12 . Ultimately, the flame is seen to evolve into a

tationary 10-cell structure. In principle, the emergence of the 12- 

ell structure should be predicted by the dispersion relation (13) of 

he linear stability analysis. To this end, the growth rate versus k 

ased on (13) is reported in Fig. 11 for the case l ≡ β( Le − 1) = −3

f Fig. 8 . Also plotted on the figure are vertical lines corresponding 

o the discrete values k n = 2 nπ/L y ( n = 1 , 2 , 3 . . . ) of the wavenum-

er k allowed by the confinement when L y = 120 . For p = 3 the fig-

re indicates that the most unstable mode corresponds to k 7 sug- 

esting that 7 cells should first emerge from the unstable planar 

ront according to the theory, rather than 12 cells as found numer- 

cally. To examine the influence of β on the findings, the numer- 

cal simulations are repeated in this case for various values of β
ith l ≡ β( Le − 1) held fixed with l = −3 . The results are reported

n Fig. 12 where snapshots of the temperature field are given at 

elected times and prescribed values of β . The figure reveals that 

he number of cells in the cellular structure first emerging from 

he unstable planar front decreases with increasing β; this num- 

er is equal to 15 when β = 7 , 12 when β = 10 , 9 when β = 15 ,

 when β = 20 (not shown), and 7 when β = 25 . Thus, the num-

er of emerging cells predicted by the stability theory agrees with 

hat found numerically provided that β is sufficiently large, pos- 

ibly unrealistically large ( β > 25 approximately in this case). It 

s worth pointing out that the long-time behaviour when β = 7 , 

0, 15 and 20 correspond to a stationary cellular structure (with 

0, 10, 9 and 8 cells, respectively). In contrast, when β = 25 the 

ong-time behaviour corresponds to an unsteady cellular structure 

ith typically 7 cells, with an apparently chaotic dynamics and this 

ehaviour is in line with the predictions based on the Kuramoto–
12 
ivashinsky Eq. (20) . These remarks are confirmed in Fig. 13 where 

he effective propagation speed U T is plotted versus t for the cases 

f Fig. 12 ; in particular, the apparently chaotic dynamics is clear 

or β = 25 . Finally, we note that the deviations between the the- 

retical and numerical results associated with the size of β under 

iscussion appear to be most pronounced for larger values of the 

ispersion coefficient p. For example, when p = 0 , Fig. 11 implies 

hat k 4 is the most unstable mode which suggests that a 4-cell- 

tructure should first emerge from the unstable planar front; this is 

ndeed what is observed in the numerical simulations with β = 10 

n Fig. 8 . 

To close this section, we note that Fig. 11 , where the verti- 

al lines associated with the discrete values k n ( n = 1 , 2 , 3 . . . ) rep-

esent the allowed values of the wavenumber k when L y = 120 , 

an also be used for comparison with the numerical results of 

ig. 6 where L y = 40 , or with those of Fig. 7 where L y = 10 . In the

ase Ly = 40 , of course, the allowed values of k are restricted to k 3 ,

 6 , k 9 , k 12 , etc., and in the case L y = 10 , the allowed values of k are

 12 , k 24 , k 36 and so on. Let us briefly comment on the L y = 10 case.

his case is indeed interesting, because according to Fig. 11 all al- 

owed modes ( k 12 , k 24 , etc.) have negative growth rates and are

hus stable and thus the planar flame is expected to be stable for 

p = 0 , 1 or 3; according to the numerical simulations in Fig. 7 the

lanar flame is however unstable when p = 1 or 3. This demon- 

trates again that the finite- β numerical results can show qual- 

tative differences with the theoretical predictions, and such dif- 

erences are more pronounced for larger values of p. Luckily, it is 

till possible to reconcile the numerical and theoretical findings, by 

aking β to be large enough in the numerical simulations. For ex- 
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Fig. 13. Effective propagation speed U T versus time for l = −3 , p = 3 and selected values of β . The domain transverse size is Ly = 120 . All curves shown settle asymptotically 

to stationary values, but the curve corresponding to β = 25 remains time independent for large times. 
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Fig. 14. Propagation speed versus time for selected values of p; p = 0 (top) p = 0 . 12 

(middle), p = 0 . 25 (bottom). β = 15 , Le = 2 . 5 , κ = 0 and L y = 20 . We note that 

when p = 0 or p = 0 . 12 , the flame is unstable (oscillatory instability) but it is sta- 

ble for p = 0 . 25 . The origin of time in this and next figure is chosen after a long 

transient regime. 
mple, when p = 1 we have found (calculations not shown) that 

he planar flame is indeed stable when β > 13 , approximately, and 

nstable when β < 13 . Similarly, when p = 3 we have found that

he planar flame is stable when β > 43 (an unrealistically large 

alue), and stable otherwise. In summary, the asymptotic theory 

s robust, although the discrepancies aforementioned limit some- 

hat our confidence in its predictive ability for realistic values of 

, especially for larger values of p. 

.4. The flame oscillatory instability 

The numerical simulations above have focused on the flame cel- 

ular instability. For sake of completeness, we now address briefly 

he flame oscillatory instability. This is the subject of the last two 

gures, with Fig. 14 pertaining to the adiabatic case κ = 0 and Le = 

 . 5 , and Fig. 15 to the non adiabatic case κ = 0 . 11 and Le = 1 . 8 .

oth figures confirm that a small amount of dispersion can stabi- 

ize an otherwise oscillatory unstable flame, in agreement with our 

heoretical predictions. Note also that the oscillations observed in 

ig. 15 are suppressed if κ is set to zero for the cases of this fig-

re (calculations not shown), confirming the destabilising role of κ
uggested by the theory. 

As discussed in connection with the cellular instability above, it 

s worth examining the effect of β on the oscillatory instability. To 

his end, the calculations of Fig. 14 pertaining to β = 15 have been 

epeated with a value of β = 10 while maintaining l ≡ β( Le − 1) 

xed. It is then found that the planar flame is stable in all cases. 

 similar outcome is reached by repeating the calculations with Le 

eing held fixed. Thus, we can conclude that a decrease in β has 

lways a stabilizing effect on the oscillatory instability. This conclu- 

ion is true both in the presence and in the absence of Taylor dis- 

ersion; in the latter case ( p = 0 ), this observation is in line with

he findings of [16] . 
13 
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Fig. 15. Propagation speed versus time for selected values of p; p = 0 (top) p = 0 . 1 

(middle), p = 0 . 2 (bottom). β = 15 , Le = 1 . 8 , κ = 0 . 11 and Ly = 20 . We note that 

when p = 0 and p = 0 . 1 , the flame is unstable but it is stable for p = 0 . 2 . 
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. Conclusion 

In this paper, two original contributions have been made: (1) 

n analytical investigation of the effect of Taylor dispersion on the 

hermo-diffusive instabilities of non-adiabatic flames, and (2) an 

xtensive numerical study addressing the influence of Taylor dis- 

ersion on flame stability which appears to be the first in the lit- 

rature. 

The analytical investigation consists of a linear stability anal- 

sis carried out in the asymptotic limit β → ∞ , where β is the 

eldovich number. This has led to the dispersion relation (13) , 

ncapsulating the effects of the three parameters l (the reduced 

ewis number), p (the dispersion coefficient) and κ (the volumetric 

eat loss coefficient). The dispersion relation derived reduces as it 

hould to the dispersion relation derived by Sivashinsky [24] when 

p = 0 and κ = 0 , to that derived by Joulin and Clavin [25] when

p = 0 , and to that derived by Daou [6] when κ = 0 . A thorough dis-

ussion of the implications of the analytical findings on the flame 

ellular and oscillatory instabilities has been provided. This has in- 

luded the determination of bifurcation curves and domains of sta- 

ility/instability in the parameters space (see Figs. 3 and 4 ) and 

he derivation of the Kuramoto–Sivashinsky type Eq. (20) involving 

he parameters l, p and κ and characterising the flame dynamics 

n the weakly non-linear regime near the onset of the cellular in- 

tability. The theoretical results demonstrate the ability of Taylor 

ispersion and heat loss to significantly affect the stability of the 

ame. For example, while the oscillatory instability is promoted by 

n increase in κ , it is hampered by an increase in p. On the other

and, both p and κ have a destabilising effect in connection with 

he cellular instability, and the typical size of cells first emerging 

rom such instability can be predicted (near the instability onset) 

y a simple formula given by (19) . In general, this typical size is an

ecreasing function of p, suggesting that more cells should appear 

y unit transverse length for larger valued of p. 
14 
A numerical investigation has also been conducted which 

argely confirms and significantly extends the theoretical findings. 

n particular, the Zeldovich number β is found to be at the ori- 

in of apparent discrepancies between the theoretical and numer- 

cal results since β is assumed to be infinitely large in the asymp- 

otic analysis while taking finite values, β ≈ 10 , numerically. Such 

iscrepancies are more pronounced for larger values of p and can 

ave in fact a qualitative nature, in addition to being quantitative. 

or example, when the domain lateral size is relatively large as 

n the case of Fig. 13 corresponding to p = 3 , the long-time be-

aviour of an initially planar flame developing a cellular instability 

s found to be typically stationary for realistically large values of 

, say β < 25 , and chaotic for larger values or in the limit β → ∞ .

imilarly, when the domain lateral size is relatively small as in the 

ase of Fig. 7 , a flame which is stable according to the asymptotic

heory as β → ∞ , may turn out to be unstable for finite large val-

es of β . Luckily, the asymptotic theory is found to be robust in the 

ense that its predictions are recovered numerically if β is taken 

arge enough, although such predictions should be questioned for 

ealistic values of β . 

Finally, here is a compact summary of the asymptotic and nu- 

erical findings: an increase in p or a decrease in β have a desta- 

ilising effect in connection with the cellular instability, and a sta- 

ilizing effect in connection with the oscillatory instability; both 

nstabilities are promoted by an increase in κ . 

We close the paper by highlighting that this investigation has 

dopted the simplifying assumption of constant density, which is 

uite common in studies on the thermo-diffusive flame instabili- 

ies [15,25,27] and Clavin and Searby [ 28 , p. 77–81, 473–480]. This 

as been done deliberately for sake of analytical tractability, and 

lso in order to switch off the Darrieus–Landau (DL) instability so 

s to be able to focus on the thermo-diffusive instabilities as these 

re directly affected by Taylor dispersion. Of course, the DL insta- 

ility is prevalent for real flames, and the thermo-diffusive insta- 

ilities are found to be superimposed on them in suitable mixtures 

uch as propane rich or hydrogen lean mixtures, as observed in 

hotographs of real flames [ 10,11–28] , p. 78]. It is interesting to 

xamine how Taylor dispersion affects the coupling between the 

L and the thermo-diffusive instabilities, an in particular how gas 

xpansion may influence the findings of this paper. This is as yet 

n open and challenging question, which we shall address in the 

ear future as a natural follow up of the current work, both an- 

lytically and numerically. From the analytical point of view, we 

nticipate that the stability analysis will be facilitated by adopt- 

ng first a depth-averaged model which generalises the one used 

erein by incorporating the coupling between variable density and 

aylor dispersion as in Pearce and Daou [4] , Daou et al. [5] . As a

ramework for such future analytical and numerical studies, it is 

onvenient to continue adopting the Hele-Shaw channel configura- 

ion which has been the focus of recent experiments and numeri- 

al simulations such as those reported in the publications [12,13] . 

n these publications, the effect of forced convection on flame sta- 

ility has not been considered; this ingredient is essential how- 

ver to reveal the effect of Taylor dispersion and corresponding 

iffusion anisotropy on the flame. In fact, forced convection may 

e incorporated in theoretical and numerical models by prescrib- 

ng an incoming (Poiseuille) flow, which corresponds for example 

o maintaining an upwards flow in the vertical Hele–Shaw burner 

sed in Al Sarraf et al. [12] . Conceptually, a Couette shear flow may 

lso be envisaged, which would correspond to the channel walls 

oving in opposite directions, although this may be more chal- 

enging to the experimentalist. Furthermore, the direction of the 

hear flow may be taken, in theory, to be arbitrary with respect 

o the direction of propagation of the unperturbed flame, and this 

ay provide a deeper understanding of the effect of shear induced 

nisotropic diffusion on flame propagation. 



J. Daou, A. Kelly and J. Landel Combustion and Flame 248 (2023) 112588 

D

c

i

A

[

A

r

(

l

(

(

f

θ

a

a  

t  

e

E

f

θ

w

�

χ

b

a  

t

t

R

 

[

[

[

[

[

[

[

[

[

[

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgements 

JD is grateful to the EPSRC for financial support under grant 

EP/V004840/1]. 

ppendix A. Derivation of the dispersion relation 

This appendix is dedicated to the derivation of the dispersion 

elation (13) . We begin by substituting the perturbed solutions 

12) into Eqs. (3) –(7) . This leads to an eigen-boundary value prob- 

em for the functions ˆ θ (x ) and 

ˆ h (x ) which is given by 

1 + p 2 ) ̂  θ ′′ − U ̂

 θ ′ − (s + k 2 ) ̂  θ = 0 (A.1) 

1 + p 2 ) ̂ h 

′′ − U ̂

 h 

′ − (s + k 2 ) ̂ h = −l 

{ (
1 − p 2 

)
ˆ θ ′′ − k 2 ˆ θ

} 

+ κ ˆ θ

(A.2) 

or x 	 = 0 , subject to the boundary conditions 

ˆ = 0 

ˆ h = 0 as x → ±∞ (A.3) 

nd the jump conditions 

� ̂  θ� = 

U 

1 + p 2 
� ̂ h � = −

Ul 
(
1 − p 2 

)
(
1 + p 2 

)2 
(A.4) 

� ̂ h 

′ � + 

1 − p 2 

1 + p 2 
l� ̂  θ ′ � = −

U 

2 l 
(
1 − p 2 

)
(
1 + p 2 

)3 
(A.5) 

� ̂  θ ′ � = 

U 

2 (
1 + p 2 

)2 
− U 

1 + p 2 

(
ˆ h (0 

+ ) 
2 

− κ

2 U 

)
(A.6) 

t x = 0 . It is to be noted that the jump conditions at the reac-

ion sheet x = f (y, t) have been transferred to x = 0 , using Taylor

xpansions for small values of δ, since f = O (δ) according to (12) . 

The solution of the linear second order differential 

qs. (A.1) and (A.2) subject to all conditions except (A.5) is 

ound to be 

ˆ = 

{ −U 
1+ p 2 exp (r + x ) 
0 

, 

ˆ h = 

⎧ ⎨ 

⎩ 

[
U ( 1 −�) 

1+ p 2 + 

κ
U 

+ 

Ul ( 1 −p 2 ) 

( 1+ p 2 ) 2 
+ χ x 

]
exp (r + x ) for x < 0 [

U ( 1 −�) 
1+ p 2 + 

κ
U 

]
exp (r −x ) for x > 0 

here 

= 

(
1 + 

4 

U 

2 

(
1 + p 2 

)(
s + k 2 

)) 1 
2 

, r ± = 

U(1 ± �) 

2 

(
1 + p 2 

) and 

= 

l 
{[

U 

2 ( � + 1 ) + 2(1 + p 2 ) s 
](

1 − p 2 
)

− 4(1 + p 2 ) p 2 k 2 
}

2�
(
1 + p 2 

)3 

− κ

�
(
1 + p 2 

)

15 
In deriving the solution above, unstable modes characterised 

y Re (s ) ≥ 0 are assumed; this assumption implies that Re (�) ≥ 1 , 

nd hence Re (r + ) ≥ 0 , and Re (r − ≤ 0 ). Use of these expressions in

he jump condition (A.5) leads, after a few algebraic manipulations, 

o the dispersion relation (13) . 
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