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We investigate the effect of Taylor dispersion on the thermo-diffusive instabilities of
premixed flames. This is a physically interesting and analytically tractable problem
within a relatively unexplored class of problems pertaining to the interaction between
Taylor dispersion (or flow-enhanced diffusion) and Turing-like instabilities in reaction–
diffusion systems. The analysis is carried out in the Hele–Shaw burner configuration
and adopts a constant density and negligible heat-loss assumptions. These simplify-
ing assumptions allow to isolate the effect of Taylor dispersion on flame stability (by
switching off the Darrieus–Landau instability and experimentally challenging extinc-
tion phenomena) while keeping the problem analytically tractable. Starting from a 3D
formulation, depth-averaged equations are first obtained leading to a 2D model which
accounts for enhanced diffusion in the flow direction and shows that diffusion is effec-
tively anisotropic. A linear stability analysis of the travelling wave solutions of the 2D
problem leads to a simple dispersion relation which generalises a classical one obtained
by Sivashinsky to incorporate the effect of the flow Peclet number coupled to that of
the mixture’s Lewis number. Based on the new dispersion relation, stability-bifurcation
diagrams are drawn in terms of the Peclet and Lewis numbers and their physical impli-
cations are discussed. In particular, the study clearly demonstrates the ability of Taylor
dispersion to significantly affect the flame thermo-diffusive instabilities, whether these
are of the cellular or oscillatory types, with the effect on the latter being more pro-
nounced. It is found that Taylor dispersion typically promotes the cellular instability
and hampers the oscillatory instability. This is the first stability analysis accounting for
Taylor dispersion in the context of combustion and has thus a fundamental value, both
in combustion and in other reaction–diffusion areas, independent of the fact that the
phenomena predicted may well be difficult to reproduce experimentally.

Keywords: Taylor dispersion; flame instabilities; Hele–Shaw burner; travelling-waves
in reaction–diffusion systems; turing instability

1. Introduction

Taylor dispersion is a well-investigated topic which was initiated by Taylor’s seminal paper
[1] in which a formula describing the dispersion of a solute in a Poiseuille flow was derived
and was later generalised by Aris [2] to parallel flows in tubes with arbitrary cross sec-
tions. Taylor-Aris formula is derived under the assumption that the characteristic diffusion
transverse time is small compared with the advective time. The derivation shows that the
cross-sectionally averaged concentration of the solute obeys a one-dimensional equation
with an effective diffusion coefficient Deff which is larger than the diffusion coefficient D
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such that
Deff

D
= 1 + γ Pe2

D (1)

where PeD is a Peclet number based on D and γ a numerical coefficient determined by
the velocity profile. If um is the maximum of the velocity profile, then γ = 1/192 for a
Poiseuille flow in a circular pipe with radius a and Peclet number PeD = aum/D, while
γ = 8/945 for a 2D Poiseuille flow in a channel with half-width h and PeD = hum/D.
Applications of Taylor dispersion are ubiquitous in areas involving transport phenomena
and this is reflected by the abundance of related publications in the literature; see the book
by Brenner and Edwards [3] for a comprehensive review.

Despite its widespread study, Taylor dispersion has surprisingly not received any ded-
icated investigation in combustion except in our recent papers [4,5] addressing premixed
flames, and even more recently in a paper by Liñán et al. [6] addressing diffusion flames.
The effect of variable density has been incorporated in the analysis in [4,5], while the effect
of preferential diffusion associated with non-unity Lewis numbers has been incorporated
in [5,6]. In particular, the analyses revealed that the essential flame characteristics (such
as the propagation speed of the premixed flame, and the temperature, location and burning
rate of the diffusion flame) are significantly affected by preferential-diffusion effects char-
acterised by an effective Lewis number Leeff which depends on the flow Peclet number.
For example, for a premixed flame propagating against a 2D Poiseuille flow, it is found
that

Leeff

Le
= 1 + γ (1 − α)2Pe2

1 + γ (1 − α)2Pe2Le2 , (2)

where Le = DT/DF is the Lewis number, Pe = hum/DT the Peclet number, and α the gas
expansion parameter defined in terms of the unburnt gas and burnt gas densities ρu and ρb

by α = 1 − ρb/ρu; here and elsewhere DT and DF refer to the thermal diffusivity and the
fuel diffusion coefficient in a fuel lean mixture, respectively. Formula (2), which can be
inferred from (1) in the constant density case α = 0, is derived in [5] in the distinguished
limit ε → 0 with Pe = O(1), where ε ≡ h/δL is the channel width h measured with the
laminar flame thickness δL.

As noted in [5], these flow dependent preferential effects are expected to be an important
factor when addressing flame stability. To our knowledge, however, the coupling between
flame stability and Taylor dispersion is as yet a totally unexplored topic. The initiation
of the exploration of this scientifically rich topic is the main object of the present paper.
Our investigation will focus on premixed flames, and more specifically on their thermo-
diffusive instabilities which are controlled by preferential diffusion effects [7–9]. The
analysis is conveniently conducted in the framework of a Hele–Shaw burner configuration
which is amenable to theoretical as well as experimental investigations on flame instabil-
ities as done in [10,11]. For illustration and future reference, a sketch of the experimental
setup of [10] is shown in Figure 1 whose captions include a brief description of the opera-
tion of the experiment. In actuality, the investigation of flame instabilities is complex even
in the rather academic Hele–Shaw configuration, due to the fact that these are wide-ranging
and that they typically interact with each other. Such instabilities may include the thermo-
diffusive, the Darrieus–Landau, the Rayleigh–Taylor and the Saffman–Taylor instabilities
[11–13].

For a thorough overview of the vast topic of flame instabilities, the reader is referred
to dedicated reviews, e.g. [14–16]. These highlight in particular two major intrinsic flame
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Figure 1. Sketch of Hele–Shaw burner (IRPHE, University of Aix-Marseille) adapted from [10]
showing a flame propagating downwards. As described in [10], the burner’s operation is briefly as
follows. By opening the inlet valve at the bottom, a reactive mixture flows upwards to fill the cell
and is ignited at the top of the burner where a flame parallel to the horizontal y-direction is formed
and remains anchored thanks to a flow velocity exceeding on average the laminar flame speed SL.
Closing the valve, the flow is stopped and the downwards flame propagation is recorded.

instabilities in premixed combustion. The first, known as the Darrieus–Landau or hydrody-
namic instability, is the instability of an interface propagating towards a less dense medium
[17]. The second instability, known as the thermo-diffusive instability [7], occurs in fuel-
lean mixtures where the thermal diffusivity DT and the fuel diffusion coefficient DF are
such that their ratio, the Lewis number Le = DT/DF , is sufficiently away from unity. In
fact, two types of thermo-diffusive instability are distinguished, depending on whether Le
is sufficiently larger than unity (where the instability is oscillatory, and occurs through a
Hopf-bifurcation) or Le is sufficiently smaller than unity (where the instability is cellular,
and occurs through a stationary bifurcation). These two types are collectively referred to
herein as thermo-diffusive instabilities, using the plural. The thermo-diffusive instabilities
may be identified as Turing-like instabilities [14] since they require, as in the case of Tur-
ing instability in a reaction–diffusion system [18], two diffusive processes to have differing
diffusion coefficients. Now, since non-unit values of the Lewis number are at the root of
the thermo-diffusive instabilities and since Taylor dispersion introduces an effective Lewis
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number Leeff which is significantly modified by the flow as seen1 from (2), we expect
that Taylor dispersion has significant influence, worth exploring, on the thermo-diffusive
instabilities. This is a highly original investigation that is best initiated by addressing the
stability of a planar flame adopting the constant density approximation (α = 0), which
switches off the hydrodynamic instability, and assuming further that all heat-losses are
negligible, although these are difficult to ignore experimentally. These simplifying assump-
tions will allow us to isolate the effect of Taylor dispersion on flame stability while making
the problem analytically tractable. The initially unperturbed flame will be taken to be
transverse to the flow direction, say parallel to the y-axis in Figure 1 and propagating
downwards against an upward flow. Parenthetically, we note that in the experiment of
[10] represented in Figure 1, the effect of the flow (or forced convection) has not been
addressed. Despite the simplifying assumptions adopted, the problem has still a crucial
complication: Taylor dispersion, which leads to enhanced diffusion and to formula (2) for
Leeff, is applicable in the longitudinal direction (x-direction in Figure 1); in the transverse
(y-)direction diffusion is unaffected by the flow. Therefore, the stability problem in the x-y
plane (obtained by z-averaging the governing equations), is one involving anisotropic dif-
fusion. Accordingly, the classical approach of tackling the problem, using familiar jump
conditions applicable at inner reaction layers needs significant revision. This revision and
related aspects are addressed in this work. The main task is therefore to revisit the premixed
flame thermo-diffusive instabilities accounting for the consequences of Taylor dispersion
and the corresponding anisotropic diffusion. This task will be carried out analytically, with
the principal outcome being the derivation of a dispersion relation describing the linear
stability of the planar flame whose implications will be explored.

The presentation is structured as follows. The problem formulation is given in Section 2.
Starting from the 3D governing equations for flame propagation between two parallel
plates against a Poiseuille flow, a 2D model is derived upon depth-averaging and using
perturbation methods. The 2D model incorporates Taylor dispersion in the flow direction
and the resulting anisotropic diffusion. The derivation of this model is explained in the
text and is supported by Appendix 1 which is included in order to make the paper reason-
ably self-contained. Section 3 is dedicated to the linear stability analysis of 1D travelling
wave solutions of the 2D model, representing specifically planar flames perpendicular to
the flow direction. This section contains novel theoretical material, such as the derivation
of non-standard jump conditions accounting for non-isotropic diffusion applicable at thin
reaction zones, which is supported by a dedicated appendix, Appendix 2. The linear sta-
bility analysis culminates in the derivation of a dispersion relation whose implications are
examined in Section 4. The paper closes with concluding remarks given in Section 5.

2. Formulation

2.1. Governing equations and Taylor dispersion

We consider a flame propagating in a channel of width 2h against a Poiseuille flow of
amplitude Â as represented in Figure 2. In a Cartesian frame of reference (x̂, ŷ, ẑ) attached
to the walls, the governing equations are

∂T

∂ t̂
+ Â

(
1 − ẑ2

h2

)
∂T

∂ x̂
= DT

(
∂2T

∂ x̂2
+ ∂2T

∂ ŷ2
+ ∂2T

∂ ẑ2

)
+ q

cp
BYF e−E/RT (3)

∂YF

∂ t̂
+ Â

(
1 − ẑ2

h2

)
∂YF

∂ x̂
= DF

(
∂2YF

∂ x̂2
+ ∂2YF

∂ ŷ2
+ ∂2YF

∂ ẑ2

)
− BYF e−E/RT (4)
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Figure 2. Flame propagation against a parallel flow in Hele–Shaw channel with width 2h.

and are subject to the boundary conditions

∂T

∂ ẑ
= ∂YF

∂ ẑ
= 0 at ẑ = ±h (5)

T = Tu, YF = YFu as x̂ → −∞ (6)

T = Tad , YF = 0 as x̂ → +∞ (7)

Here, the flame is modelled by a single chemical reaction whose rate ω̂ follows an
Arrhenius law with pre-exponential factor B and activation energy E such that

Fuel ⇒ Product + q,
ω̂

ρ̂
= BYF exp

(
− E

RT

)

where ρ̂ is the density (assumed constant), q the heat release per unit mass of the fuel
(assumed to be deficient), R the universal gas constant, YF the fuel mass fraction and T
the temperature. We denote by Tad ≡ Tu + qYFu/cp the adiabatic flame temperature (cp

being the mixture’s heat capacity, assumed constant) and use the subscript u (throughout)
to indicate values in the unburnt mixture (as x̂ → −∞). For simplicity, the channel is
assumed to be of infinite extent in the ŷ-direction, and we shall simply require that T and
YF are bounded as ŷ → ±∞. The walls are assumed rigid and adiabatic and volumetric
heat-losses are neglected.

Now, the 3D problem (3)–(7) can be reduced in first approximation to a 2D problem for
T and Y F , where the bar indicates quantities depth-averaged across the channel width 2h
such that

T = T(x̂, ŷ, t̂) = 1

2h

∫ h

−h
T dẑ

This reduction, as explained in Section 2.2 and in Appendix 1, can be obtained using an
asymptotic approach similar to that of Daou et al. [5] and leads to the governing equations

∂T̄

∂ t̂
+ 2Â

3

∂T̄

∂ x̂
= DT (1 + γ Pe2)

∂2T̄

∂ x̂2
+ DT

∂2T̄

∂ ŷ2
+ q

cp
BȲF e−E/RT̄ (8)

∂ȲF

∂ t̂
+ 2Â

3

∂ȲF

∂ x̂
= DF(1 + γ Pe2Le2)

∂2ȲF

∂ x̂2
+ DF

∂2ȲF

∂ ŷ2
− BȲF e−E/RT̄ (9)



6 J. Daou

subject to the boundary conditions

T̄ = Tu, ȲF = YFu as x̂ → −∞ (10)

T̄ = Tad , ȲF = 0 as x̂ → +∞ (11)

Note that in the 2D problem the Poiseuille flow û ≡ Â(1 − ẑ2/h2) is replaced by its average
value û = 2Â/3, and the diffusion coefficients DT and DF are replaced in the longitudi-
nal direction x̂ by effective enhanced values in agreement with Taylor–Aris dispersion
formula (1).

It is important to emphasise that the enhancement of diffusion is in the longitudinal
x̂-direction only, and not in the ŷ-direction. The problem thus appears as one involving
anisotropic diffusion.

Our aim is to investigate analytically the stability of the planar flame solutions (inde-
pendent of ŷ) of the depth-averaged problem (8)–(11) to small perturbations. That is, we
need to revisit the thermo-diffusive instabilities of flames accounting for the consequences
of Taylor dispersion and the corresponding anisotropic diffusion.

2.2. Non-dimensionalisation and the depth-averaged problem

We begin by non-dimensionalising Equations (3)–(7) by choosing SL as unit speed, δL/Â as
unit time, h as unit length in the ẑ-direction, and δL as unit length in the x̂ and ŷ directions.
Here,

SL =
√

2

β2
LeDT Be− E

RTad and δL = DT

SL
(12)

are the laminar flame speed and the planar flame thickness. Thus, in terms of

x = x̂

δL
, y = ŷ

δL
, z = ẑ

h
, t = t̂

δL/Â
, yF = YF

YFu
, θ = T − Tu

Tad − Tu
(13)

the non-dimensional governing equations are

εPe

{
∂θ

∂t
+ u

∂θ

∂x

}
= ε2

{
∂2θ

∂x2
+ ∂2θ

∂y2

}
+ ∂2θ

∂z2
+ ε2ω (14)

εPe

{
∂yF

∂t
+ u

∂yF

∂x

}
= ε2

Le

{
∂2yF

∂x2
+ ∂2yF

∂y2

}
+ 1

Le

∂2yF

∂z2
− ε2ω (15)

and are subject to the boundary conditions

∂θ

∂z
= ∂yF

∂z
= 0 at z = ±1 (16)

θ = 0, yF = 1 as x → −∞ (17)

θ = 1, yF = 0 as x → +∞ (18)

Here u ≡ 1 − z2 is the scaled Poiseuille flow and ω is the non-dimensional reaction rate
given by

ω = β2

2Le
yF exp

(
β (θ − 1)

1 + αh (θ − 1)

)
(19)
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where β ≡ E(Tad − Tu)/RT2
ad is the Zeldovich number and αh ≡ (Tad − Tu)/Tad a heat

release coefficient. Furthermore, the non-dimensional parameters appearing in the equa-
tions are defined by

ε = h

δL
, Pe = hÂ

DT
= εA, Le = DT

DF

and represent, respectively, the (non-dimensional) flow scale, the Peclet number, and the
Lewis number.

Now, following the methodology of [5], we integrate Equations (14)–(15) with respect
to z across the channel width (z : −1 → 1). Thus, as detailed in Appendix 1, we
obtain to leading-order in an asymptotic expansion where ε → 0 and Pe = O(1), the
two-dimensional equations

εPe

{
∂θ̄

∂t
+ ū

∂θ̄

∂x

}
= ε2(1 + γ Pe2)

∂2θ̄

∂x2
+ ε2 ∂2θ̄

∂y2
+ ε2ω(θ̄ , ȳF) (20)

εPe

{
∂ ȳF

∂t
+ ū

∂ ȳF

∂x

}
= ε2

Le
(1 + γ Pe2Le2)

∂2ȳF

∂x2
+ ε2

Le

∂2ȳF

∂y2
− ε2ω(θ̄ , ȳF) (21)

Here, ū = 2
3 and ω(θ , yF) is given by the rhs of (19) with θ and yF replaced by θ and yF

where the notation

φ ≡ 1

2

∫ 1

−1
φ dz and φ′ ≡ φ − φ

is used to characterise the depth-average of any quantity φ and its fluctuation.
Equations (20)–(21) are supplemented by the boundary conditions

θ̄ = 0, ȳF = 1 as x → −∞ (22)

θ̄ = 1, ȳF = 0 as x → +∞ (23)

which follow from (16)–(18); as y → ±∞ we shall simply require that θ and yF are
bounded to complete the mathematical formulation.

2.3. The planar flame solution in the presence of Taylor-dispersion

The problem (20)–(23) admits one-dimensional travelling wave solutions of the form
θ = θ(ξ) and yF = yF(ξ) where ξ = x + Ut whose stability is the main focus of the
investigation. These y-independent traveling waves describe planar flames travelling in
the negative x-direction with speed U, with U > 0 indicating propagation to the left with
respect to the walls. The unknown parameter U and the corresponding solutions are
determined from the one-dimensional eigen-boundary value problem

UT
dθ

dξ
= (

1 + γ Pe2
) d2θ

dξ 2
+ ω(θ , yF) (24a)

UT
dyF

dξ
= 1 + γ Pe2Le2

Le

d2yF

dξ 2
− ω(θ , yF) (24b)

θ = 0, yF = 1 as ξ → −∞ (24c)

θ = 1, yF = 0 as ξ → +∞ (24d)
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in which

UT ≡ Pe

ε
(U + ū)

(
with ū = 2

3

)
appears as an eigenvalue describing the propagation speed with respect to the unburnt gas.
As done in [5], the solution is given in the limit β → ∞ by

θ =

⎧⎪⎨
⎪⎩

exp
UTξ

1 + γ Pe2

1

, yF =

⎧⎪⎨
⎪⎩

1 − exp
Le UTξ

1 + γ Pe2Le2 for ξ < 0

0 for ξ > 0

(25)

with

UT = 1 + γ Pe2(
1 + γ Pe2Le2

)1/2 (26)

3. Linear stability analysis

3.1. Governing equations and NEF reformulation

The stability of the planar solution (25) will now be addressed by using the two-
dimensional time-dependent equations

∂θ

∂τ
+ UT

∂θ

∂ξ
= (

1 + γ Pe2
) ∂2θ

∂ξ 2
+ ∂2θ

∂y2
+ ω(θ , yF) (27)

∂yF

∂τ
+ UT

∂yF

∂ξ
= (

1 + γ Pe2Le2
)

Le−1 ∂2yF

∂ξ 2
+ Le−1 ∂2yF

∂y2
− ω(θ , yF) (28)

which are obtained by applying the change of variables ξ = x + Ut, y = y and τ = εt/Pe
to Equations (20)–(21). The equations are to be solved together with the boundary
conditions (24c)–(24d) and the requirement of boundedness of θ and yF as y → ±∞.

The stability analysis is most consistently carried out in the limit β → ∞ using the so-
called near-equidiffusional flame (NEF) approximation [19, p. 33]. The approximation is
based on the assumption that the Lewis number deviates little from unity such that Le ∼
1 + l/β with l being an O(1) quantity referred to as the reduced Lewis number. In the NEF
approximation, we may introduce the expansions

θ̄ ∼ θ0 + θ1

β
, ȳF ∼ y0

F + y1
F

β
(29)

and reformulate the problem in terms of the leading order temperature θ0 and the quantity
h ≡ θ1 + y1

F . The reformulated problem consists in solving the equations

θ0
τ + UTθ0

ξ = (
1 + γ Pe2

)
θ0
ξξ + θ0

yy (30)

hτ + UT hξ = (
1 + γ Pe2

)
hξξ + hyy + l

[(
1 − γ Pe2

)
θ0
ξξ + θ0

yy

]
(31)

which are applicable outside an infinitely thin reaction sheet, given by ξ = f (y, τ) say,
subject to the boundary conditions

θ0 = 0, h = 0 as ξ → −∞ (32)

θ0 = 1, h = 0 as ξ → +∞ (33)
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and the jump conditions [[
θ0
]] = 0, [[h]] = 0 (34)

[[
hξ

]] + 1 + f 2
y − γ Pe2

1 + f 2
y + γ Pe2 l

[[
θ0
ξ

]] = 0 (35)

√
1 + f 2

y + γ Pe2
[[
θ0
ξ

]] = − exp

(
h

2

)
(36)

applicable at ξ = f (y, τ). Here [[ φ ]] = φ(ξ = f +) − φ(ξ = f −) denotes a jump in the
value of a quantity φ across the sheet. The derivation of jumps conditions (34)–(36) is
provided in Appendix 2 along with a justification of the NEF formulation of this subsec-
tion. We note that these jump conditions, accounting for anisotropic diffusion, are novel
and that their use is not limited to the stability analysis under consideration. Their deriva-
tion follows however a methodology commonly used in premixed (see, e.g. [19, p. 39],
[20, p. 527] and [21]) and partially-premixed [22,23] combustion, which is based on an
inner analysis using a stretched variable such as ζ̄ = β(ξ − f (y, τ)) used in Appendix 2;
the jump conditions result then from the matching conditions between the inner and outer
profiles. We note that conditions (34)–(36) reduce to the well known jump conditions of
premixed flames [20, p. 527] when γ Pe2 = 0, that is when Taylor dispersion is absent.

We are now in a position to investigate the stability of the planar flame solution (denoted
by a tilde), which is governed by Equations (30)–(36) with ∂/∂τ = 0 and ∂/∂y = 0. The
solution is given by

f̃ = 0, θ̃ =

⎧⎪⎨
⎪⎩

exp
ξ(

1 + γ Pe2
)1/2

1

,

h̃ =

⎧⎪⎪⎨
⎪⎪⎩

−1 + γ Pe2(
1 + γ Pe2

)3/2 lξ exp
ξ(

1 + γ Pe2
)1/2 for ξ < 0

0 for ξ > 0

(37)

and

UT =
√

1 + γ Pe2

and these expressions can also be obtained from (25) and (26) in the limit β → ∞ using
the fact that Le ∼ 1 + l/β and h ∼ β(θ + yF − 1).

A normal-mode stability analysis can now be applied to the basic solution (37) by
considering perturbations of the form

[f , θ0, h] = [0, θ̃ (ξ ), h̃(ξ)] + δ esτ+iky[1, θ̂ (ξ ), ĥ(ξ)] (38)

where δ is a small number representing the amplitude of the perturbation, and k and s are a
real and a complex numbers representing its wavelength and its growth rate, respectively.
The main aim is to derive a dispersion relation expressing the dependence of s on k and
the parameters l and γ Pe2 of the problem, i.e. a relationship of the form

F(s, k; l, γ Pe2) = 0 (39)

Instability will correspond of course to situations for which Re(s) > 0 occurs.
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3.2. Derivation of the dispersion relation

This section is dedicated to the derivation of the explicit form of the dispersion rela-
tion (39). The methodology used is similar to that used in the literature, e.g. [9], [19, p. 50],
[20, p. 532] and [21].

When perturbed solutions of the form (38) are substituted into Equations (30)–(36), an
eigen-boundary value problem for the functions θ̂ (ξ ) and ĥ(ξ) is obtained. Namely, with
primes denoting differentiation with respect to ξ , we have

(1 + γ Pe2)θ̂ ′′ − UT θ̂ ′ − (s + k2)θ̂ = 0 (40)

(1 + γ Pe2)ĥ′′ − UT ĥ′ − (s + k2)ĥ = −l
{(

1 − γ Pe2
)
θ̂ ′′ − k2θ̂

}
(41)

for ξ 	= 0, subject to the boundary conditions

θ̂ = 0, ĥ = 0 as ξ → ±∞ (42)

and the jump conditions

[[
θ̂
]]

= 1√
1 + γ Pe2

,
[[

ĥ
]]

= − l
(
1 − γ Pe2

)
(
1 + γ Pe2

) 3
2

(43)

[[
ĥ′
]]

+ 1 − γ Pe2

1 + γ Pe2 l
[[

θ̂ ′
]]

= −
(
1 − γ Pe2

)
l(

1 + γ Pe2
)2 (44)

[[
θ̂ ′
]]

= 1

1 + γ Pe2 − ĥ(0+)

2
(
1 + γ Pe2

) 1
2

(45)

at ξ = 0. It is to be noted that the jump conditions at the reaction sheet ξ = f (y, τ) have
been transferred to ξ = 0, using Taylor expansions for small values of δ, since f = O(δ)

according to (38). The solution of the linear second-order differential Equations (40)–(41)
subject to all conditions except (44) is found to be

θ̂ =

⎧⎪⎪⎨
⎪⎪⎩

− exp (r+ξ)(
1 + γ Pe2

) 1
2

0

,

ĥ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ 1 − �(

1 + γ Pe2
) 1

2

+ l
(
1 − γ Pe2

)
(
1 + γ Pe2

) 3
2

+ l χ ξ

⎤
⎦ exp (r+ξ) for ξ < 0

1 − �(
1 + γ Pe2

) 1
2

exp (r−ξ) for ξ > 0

where

� =
√

1 + 4(s + k2), r± = 1 ± �

2
√

1 + γ Pe2
and

χ = (� + 1 + 2s)
(
1 − γ Pe2

) − 4γ Pe2k2

2�
(
1 + γ Pe2

)2
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In deriving the solution above, unstable modes characterised by Re(s) ≥ 0 are assumed;
this assumption implies that Re(�) ≥ 1, and hence Re(r+) ≥ 0, and Re(r− ≤ 0).2 Use
of these expressions in the jump condition (44) leads, after simple manipulations, to the
dispersion relation

2�2(� − 1) + l

1 + γ Pe2

[
(� − 1 − 2s)(1 − γ Pe2) + 4γ Pe2k2] = 0 (46)

We note that this equation reduces to the dispersion relation derived by Sivashinsky [9]
when γ Pe2 = 0, as it should.

4. Implications of the findings

The main outcome of this study is the derivation of the dispersion relation (46), which
encapsulates all the information characterising the linear stability of the flame to arbitrary
small perturbations. As usual, the perturbations are taken as linear combination of normal
modes, with each mode being here proportional to an amplitude depending on ξ multiplied
by exp (sτ + iky) where k is the mode’s wave number and s its growth rate. In this rela-
tion, the notation � = √

1 + 4s + 4k2 is used and two parameters are involved, namely the
reduced Lewis number l = β(Le − 1) and the combination γ Pe2 characterising the parallel
flow.

We note that the dispersion relation incorporates the effect of Taylor dispersion and the
resulting anisotropy of diffusion. For illustration, a sample of the results implied by the
dispersion relation is shown in Figure 3 for selected values of the parameter γ Pe2, where
the stability regions are identified in the l-k plane along with the bifurcation curves sepa-
rating them from the instability regions. For a selected value of γ Pe2, a given point (l, k)

is in a stability region (shaded) if Re(s) < 0 for all corresponding roots s = s(k; l, γ Pe2)

of the dispersion relation. By sweeping the l-k plane systematically, the complex roots
s = s(k; l, γ Pe2) are determined numerically using Maple. The instability regions are
unshaded and correspond to the condition Re(s) > 0 being satisfied by at least one root
s. The bifurcation curves correspond to either s = 0 (stationary bifurcation) or Re(s) = 0
with Im(s) 	= 0 (Hopf bifurcation). Equation (46) implies that the stationary bifurcation
curve has the explicit expression

l =
(−2 − 8k2

) (√
1 + 4k2 − 1

) (
1 + γ Pe2

)
√

1 + 4k2 − 1 + γ Pe2
(

1 + 4k2 − √
1 + 4k2

) (47)

When γ Pe2 = 0, we recover the classical results (see, e.g. [9] and [20, p. 535]) with a
stationary bifurcation curve obtained for sufficiently negative values of l and a Hopf bifur-
cation curve for sufficiently large positive values; this is illustrated in the top left subfigure
of Figure 3. The stationary bifurcation curve, given in this case by l = −2 − 8k2, deter-
mines the onset of the so-called flame cellular instability which occurs a l is decreased
below a critical value lc = −2. The Hopf bifurcation curve determines the onset of the
so-called flame oscillatory instability which occurs when l is increased beyond a critical
value lh = 32

3 . In the domain lc < l < lh, the flame is thermo-diffusively stable.
As γ Pe2 is increased the Hopf bifurcation curve is displaced to the right and disappears

when γ Pe2 > 1. This is more clearly seen in Figure 4 where the Hopf bifurcation curve is



12 J. Daou

Figure 3. Stability regions and bifurcation curves in the l–k plane for selected values of the
parameter γ Pe2; l is the reduced Lewis number and k is the perturbation wave number.

plotted in the l-k plane for selected values of the parameter γ Pe2. Thus a sufficiently strong
flow impedes the flame oscillatory instability. Also, the size of the stability region in the
left half-plane (delimited from the left by the stationary bifurcation curve) is reduced by
an increase in γ Pe2 which indicates that the flow typically promotes the cellular insta-
bility. Note however that the stationary bifurcation curves all originate from the point
(l, k) = (−2, 0), which indicates that the onset of the cellular instability as l is decreased
still corresponds to lc = −2, irrespective of the valued of γ Pe2. This conclusion is true
provided the domain size Ly in the y-direction is infinite, as assumed here, so as to permit
the mode k = 0 corresponding to an infinite wavelength perturbation. In actual domains
with finite size Ly, the onset of instability will correspond to values of lc less than −2 which
are increasing functions of γ Pe2; that is, it is easier to trigger the thermo-diffusive instabil-
ity when Taylor dispersion is accounted for. This follows from the fact that the stationary
bifurcation curve given by (47) moves upwards in the (l, k)-plane as γ Pe2 is increased as
seen in Figure 3, although it always originates from the point (l, k) = (−2, 0).

Another way of consolidating the conclusions of the last two paragraphs is to deter-
mine the stability regions and bifurcation curves in the l-γ Pe2 plane or equivalently the
Le-γ Pe2 plane. This is done in Figure 5 where the stability domain appears shaded and
the bifurcation curves, represented by solid lines, are clearly labelled. These correspond
to a domain infinitely large in the y-direction, Ly = ∞, as assumed in this study. Note
parenthetically however that one may infer from the dispersion relation how the bifurca-
tion curves delimiting the stability region are changed when Ly is finite and suitable lateral
boundary conditions assumed (say at y = ±Ly/2). For example, continuing to neglect heat-
losses and assuming Neumann (or zero-flux) lateral boundary conditions at y = ±Ly/2
implies that k must take discrete values which are multiples of kmin = π/Ly. The bifurca-
tion curves can then be recomputed using the dispersion relation and kmin. For illustration,
the recomputed curves are plotted in Figure 4 for the case Ly = 5 as a dotted line for the
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Figure 4. Hopf bifurcation curves in the l–k plane for selected values of the parameter γ Pe2; l is
the reduced Lewis number and k is the perturbation wave number. The full circles determine the
critical conditions for the onset of the oscillatory instability which are also reported in Figure 5.
The stars indicate the intersection of the bifurcation curves with the k = 0 axis and characterise the
onset of instability of a planar flame to planar perturbations; these have the analytical expression
l = (4 + 4

√
3)(1 + γ Pe2)/(1 − γ Pe2).

Figure 5. Stability regions and bifurcation curves in the Le-γ Pe2 plane; Le = 1 + l/β with β = 10
being adopted here. The full circles on the Hopf bifurcation curve determine the critical conditions
for the onset of the oscillatory instability which are also reported in Figure 4. The stationary bifur-
cation curve reduces to the vertical line Le = 1 − 2/β or l = − 2. The stable domain is shaded.
Parenthetically, to illustrate the effect of a bounded domain in the y-direction, the bifurcations curves
are also plotted for the case Ly = 5 for which the minimum permitted value of k is kmin = π/5. In
this case, the Hopf bifurcation and stationary bifurcation curves are represented by the dotted and
dashed curves, respectively. Also in this case, a stable configuration (corresponding, e.g. to point
a) may become unstable (point b) by an increase in γ Pe2 (Taylor dispersion) as represented by the
vertical arrow.

Hopf bifurcation and a dashed line for the stationary bifurcation. It is interesting to note
that in this case situations occur for which the effect of the flow (or Taylor-dispersion)
is destabilising, in the sense that an increase in the value of γ Pe2 can lead from a sta-
ble configuration (corresponding, e.g. to point a in the figure) to an unstable configuration
(point b).

As a last comment regarding the effect of Taylor dispersion on the stability of the flame,
we note that the dispersion relation (46) has always a real root s(k) such that s(0) = 0
(which is a consequence of the translational invariance of the problem in the longitudinal
ξ direction) and the Taylor expansion of s(k) for small values of k2 is given by

s = −
(

1 + l

2

)
k2 − l2

(
6 − l + (6 + l)γ Pe2

)
8 + 8γ Pe2 k4 + O(k6)
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It is this root which is at the origin of the cellular instability whose onset is seen to corre-
spond to l = lc = −2 irrespective of the value of the flow parameter γ Pe2. In the weakly
unstable regime near the onset of instability, l � lc, the expansion above can be written as

s = −
(

1 + l

2

)
k2 − 4 + 2γ Pe2

1 + γ Pe2 k4 + . . .

and implies the following linear evolution equation for the flame front f (y, τ) ∝ esτ+iky:

fτ =
(

1 + l

2

)
fyy − 4 + 2γ Pe2

1 + γ Pe2 fyyyy

This equation reduces, as it should, to the linear Kuramoto–Sivashinsky equation when
γ Pe2 = 0. The coefficient of the fourth derivative fyyyy being negative, the last term is
stabilising as in Sivashinsky’s original equation [9]. Note however that this term is most
stabilising when the flow is absent as its coefficient is most negative, equal to −4, when
γ Pe2 = 0 and increases monotonically to −2 as γ Pe2 increases towards infinity. For
weakly unstable flames, l � −2, the unstable modes are those with wavenumbers k such
that

0 < k2 < − 1 + γ Pe2

8 + 4γ Pe2 (l + 2)

and the most amplified mode is characterised by a wavenumber k0 and a growth rate s0

given by

k2
0 = − 1 + γ Pe2

16 + 8γ Pe2 (l + 2) , s0 = 1 + γ Pe2

64 + 32γ Pe2 (l + 2)2

Thus an increase in γ Pe2 widens the range of unstable wavenumbers and increases the
maximum growth rate and has therefore a destabilising effect.

5. Conclusion

To conclude, we note that our analysis demonstrates the ability of Taylor dispersion to
significantly affect the flame thermo-diffusive instabilities. This is true whether these are
cellular, where Taylor dispersion is found to promote the instability, or oscillatory, where it
is found to strongly hamper the instability. The findings are highly original in combustion
theory since, to our knowledge, the interaction of Taylor dispersion with flame instabilities
do not seem to have been addressed before. For the sake of analytical tractability and in
order to isolate the effect of Taylor dispersion, strong assumptions, including the neglect
of density variations and heat losses, have been adopted. This has allowed a full analyti-
cal treatment culminating in the derivation of a compact dispersion relation which led to
transparent conclusions. The study may therefore serve as a new building bloc to incor-
porate in future investigations addressing flame instabilities in a Hele–Shaw burner under
a more general framework which may include, as done in [12,13], the Darrieus–Landau,
the Rayleigh–Taylor and the Saffman–Taylor instabilities. In such future investigations,
which will build on interesting studies motivated by recent experiments on flame instabil-
ities in Hele–Shaw cells [10,11], our assumptions can be relaxed and the effect of forced
convection necessary for Taylor dispersion incorporated.



Combustion Theory and Modelling 15

As a final remark, it is worth pointing out the value of the present study extends well
beyond combustion, as it provides an analytical description of the effect Taylor dispersion
may have on Turing-like instabilities of propagating fronts in reaction–diffusion systems,
such as the ‘liquid-flames’ in iodate-arsenous acid systems considered by Ronney [24].
More generally, the ability of Taylor dispersion to influence Turing-like instabilities in
reaction–diffusion systems seems to be a poorly investigated topic, at least analytically,
and deserves in depth exploration in particular in relation to propagating fronts.

Notes
1. Note that formula (2) implies that Leeff → Le as Pe → 0 and Leeff → Le−1 as Pe → ∞
2. Defined as a square root of a complex number, � is assumed to lie on the right half-complex

plane.
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Appendices

Appendix 1. Derivation of Taylor dispersion formula
The objective of this appendix is to describe how the 3D problem (3)–(7) can be reduced to the depth-
averaged 2D problem (8)–(11) or equivalently to the non-dimensional 2D problem (20)–(23). This
demonstrates in particular the enhancement of diffusion in the longitudinal x-direction as predicted
by Taylor–Aris dispersion formula (1).

We begin by non-dimensionalising the 3D problem (3)–(7) as done in section 2.2 to obtain (14)–
(18) which we rewrite for convenience

εPe

{
∂θ

∂t
+ u

∂θ

∂x

}
= ε2

{
∂2θ

∂x2 + ∂2θ

∂y2

}
+ ∂2θ

∂z2 + ε2ω (A1)

εPe

{
∂yF

∂t
+ u

∂yF

∂x

}
= ε2

Le

{
∂2yF

∂x2 + ∂2yF

∂y2

}
+ 1

Le

∂2yF

∂z2 − ε2ω (A2)

∂θ

∂z
= ∂yF

∂z
= 0 at z = ±1 (A3)

θ = 0, yF = 1 as x → −∞ (A4)

θ = 1, yF = 0 as x → +∞ (A5)

Here u ≡ 1 − z2 is the scaled Poiseuille flow and ω = ω(θ , yF) is a function of two variables repre-
senting the nondimensional reaction rate as given by (19). We now introduce for any quantity φ its
depth-average φ and its fluctuation φ′ such that

φ ≡ 1

2

∫ 1

−1
φ dz, φ′ ≡ φ − φ and φ′ = 0

On integrating (A1) with respect to z and using (A3) we thus obtain

εPe

{
∂θ̄

∂t
+ ū

∂θ̄

∂x
+ u′ ∂θ ′

∂x

}
= ε2

{
∂2θ̄

∂x2 + ∂2θ̄

∂y2

}
+ ε2ω(θ , yF) (A6)

where u = 2
3 and u′ = 1

3 − z2. Anticipating that the fluctuations θ ′ and y′
F are small, of order εPe as

we shall confirm below, we may use the Taylor expansion

ω(θ , yF) = ω(θ̄ , ȳF) + θ ′ωθ (θ̄ , ȳF) + y′
FωyF (θ̄ , ȳF) + O(θ ′2, θ ′y′

F , y′2
F ) (A7)
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to obtain upon depth-averaging

ω(θ , yF) = ω(θ , yF) + O(θ ′2, θ ′y′
F , y′2

F )

Neglecting the quadratic terms in this equation, we can replace ω(θ , yF) in (A6) by ω(θ , yF) to obtain

εPe

{
∂θ̄

∂t
+ ū

∂θ̄

∂x
+ u′ ∂θ ′

∂x

}
= ε2

{
∂2θ̄

∂x2 + ∂2θ̄

∂y2

}
+ ε2ω(θ̄ , yF) (A8)

In order to evaluate the expression u′∂θ ′/∂x in (A8) in terms of depth-averaged quantities, we
need an equation for the fluctuation θ ′. This is readily obtained by subtracting (A8) from (A1),
and reusing (A7) with the O(θ ′2, θ ′y′

F , y′2
F )-terms neglected:

εPe

{
∂θ ′

∂t
+ u′ ∂θ

∂x
+ u

∂θ ′

∂x
− u′ ∂θ ′

∂x

}
= ∂2θ ′

∂z2 + ε2

{
∂2θ ′

∂x2 + ∂2θ ′

∂y2 + θ ′ωθ (θ , yF) + y′
FωyF (θ , yF)

}

We now consider the double limit ε → 0 with εPe → 0, which is more general than the dis-
tinguished limit ε → 0 with Pe = O(1) used in [5] and mentioned in the text. On the RHS of the
equation above only the first term is clearly dominant in the limit ε → 0. On the LHS a single
term is dominant in the curly bracket, namely u′∂θ/∂x, since it is the only term not containing the
fluctuation θ ′ which is assumed small. Hence we have the leading order balance

εPe u′ ∂θ

∂x
= ∂2θ ′

∂z2

This implies that θ ′ = O(εPe) as anticipated above, and this justifies in particular our neglect of all
terms containing θ ′ on the LHS in the limit εPe → 0. We can now find θ ′ by integrating the last
equation twice w.r.t z, using the boundary conditions ∂θ ′/∂z = 0 at z = ±1 implied by (A3), the
requirement that θ ′ = 0, and the fact that u′ = 1

3 − z2 to obtain

θ ′ = εPe
∂θ

∂x

(
z2

6
− z4

12
− 7

180

)

From this formula it readily follows that

u′ ∂θ ′
∂x

= −γ εPe
∂2θ

∂x2 where γ = 8

945
which allows (A8) to be rewritten as

εPe

{
∂θ̄

∂t
+ ū

∂θ̄

∂x

}
= ε2(1 + γ Pe2)

∂2θ̄

∂x2 + ε2 ∂2θ̄

∂y2 + ε2ω(θ̄ , ȳF) (A9)

Proceeding in the same fashion with the yF -equation (A3) we obtain similarly

εPe

{
∂ ȳF

∂t
+ ū

∂ ȳF

∂x

}
= ε2

Le
(1 + γ Pe2Le2)

∂2ȳF

∂x2 + ε2

Le

∂2ȳF

∂y2 − ε2ω(θ̄ , ȳF) (A10)

The boundary conditions for the last two equations follow readily from depth-averaging (A4)–(A5)
and are given by

θ̄ = 0, ȳF = 1 as x → −∞ (A11)

θ̄ = 1, ȳF = 0 as x → +∞ (A12)

We note that Equations (A9)–(A12) are identical to those of the non-dimensional problem (20)–(23).
Furthermore, on returning to dimensional variables, it is straightforward to show using (13) that the
problem is equivalent to the depth-averaged dimensional problem (8)–(11). This fulfills the objective
of this appendix which is precisely to derive the depth-averaged governing equations. In particular,
these demonstrate the enhancement of diffusion in the longitudinal x-direction, in agreement with
Taylor–Aris dispersion formula (1). Specifically, in the longitudinal direction, the heat and mass dif-
fusion coefficients DT and DF , and their ratio defining the Lewis number Le = DT/DF , are replaced
by effective values (indicated by the subscript eff) given by

DT , eff

DT
= 1 + γ Pe2,

DF, eff

DF
= 1 + γ Pe2Le2,

Leeff

Le
= 1 + γ Pe2

1 + γ Pe2Le2 (A13)
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Appendix 2. Jump conditions across the reaction sheet
The objective of this appendix is to derive the jumps conditions (34)–(36) and to justify the near-
equidiffusional flame (NEF) formulation (30)–(36) of the problem.

We begin by noting that the chemical reaction is confined to a thin region of thickness O(β−1)
which reduces to a surface given by ξ = f (y, τ) in the limit β → ∞. Next we introduce the coor-
dinate ζ = ξ − f (y, τ) which is equal to zero at the reaction sheet separating two outer zones
known as the preheat zone (ζ < 0) and the burnt gas zone (ζ > 0). Under the change of variables
(ξ , y, τ) → (ζ , y, τ) which implies that

∂ξ → ∂ζ , ∂y → ∂y − fy∂ζ , ∂τ → ∂τ − fτ ∂ζ (A14)

Equations (27)–(28) become

∂θ

∂τ
+ (

UT − fτ + fyy
) ∂θ

∂ζ
=
(

1 + f 2
y + γ Pe2

) ∂2θ

∂ζ 2 + ∂2θ

∂y2 − 2fy
∂2θ

∂ζ∂y
+ ω(θ , yF) (A15)

∂yF

∂τ
+
(

UT − fτ + fyy

Le

)
∂yF

∂ζ
= 1

Le

{(
1 + f 2

y + γ Pe2Le2
) ∂2yF

∂ζ 2

+∂2yF

∂y2 − 2fy
∂2yF

∂ζ∂y

}
− ω(θ , yF) (A16)

These equations are subject to boundary conditions (24c)–(24d) with the limit ζ → ±∞ replac-
ing ξ → ±∞. Now, in the NEF approximation where Le = 1 + l/β, it is seen by adding (A15)
and (A16) so as to eliminate the reaction term and taking into account the boundary conditions that
θ + yF ∼ 1 as β → ∞ and that h = β(θ + yF − 1) is an order one quantity satisfying

∂h

∂τ
+ (

UT − fτ + fyy
) ∂h

∂ζ
=
(

1 + f 2
y + γ Pe2

) ∂2h

∂ζ 2 + ∂2h

∂y2 − 2fy
∂2h

∂ζ∂y

+ l

{(
1 + f 2

y − γ Pe2
) ∂2θ

∂ζ 2 + ∂2θ

∂y2 − 2fy
∂2θ

∂ζ∂y
− fyy

∂θ

∂ζ

}
(A17)

Note from its derivation that this h-equation, which justifies (31), is valid everywhere in the domain,
including the reaction zone, and may be used to replace Equation (A16) for yF , since yF = 1 − θ +
h/β. In the outer region outside the reaction zone, the reaction term ω may be neglected to all orders
in β−1 and the problem is governed by Equations (A15)–(A16), or equivalently (27)–(28), with ω

deleted. These chemistry-free equations determine the outer profiles θ
outer

and youter
F described by

the outer expansions (29). Alternatively, the outer profiles are determined by (30) (which follows to
leading order from (27) with ω set to zero) and the h-equation (31).

The outer profiles, governed by Equations (30)–(31) as we have just explained, are subject to
jump conditions (34)–(36) that we now justify. Jump conditions (34) express simply the continuity
of the dependent variables across the reaction sheet; this follows in fact from the matching between
the inner and outer solutions as we shall demonstrate below. Jump condition (35) can be derived
by integration of Equation (A17) across the reaction sheet, namely from ζ = 0− to ζ = 0+, which
yields (

1 + f 2
y + γ Pe2

) [[ ∂h

∂ζ

]]0+

ζ=0−
+ l

(
1 + f 2

y − γ Pe2
)[[ ∂θ

∂ζ

]]0+

ζ=0−
= 0

Note that the right-hand side of the equation above has been set to zero using the continuity of θ̄ and
h and hence of their partial derivatives with respect to τ and y across the reaction sheet.

To justify finally jump condition (36), we turn now to the inner solution by introducing an inner
variable ζ̄ and inner expansions by

ζ̄ = ζ

β−1 , θ̄ inner ∼ 1 + �1(ζ̄ , y, τ)

β
, ȳinner

F ∼ F1(ζ̄ , y, τ)

β
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The inner problem to leading order is then given by(
1 + f 2

y + γ Pe2
) ∂2�1

∂ζ̄ 2
+ F1

2Le
exp

(
�1

)
= 0 (A18)

1

Le

(
1 + f 2

y + γ Pe2Le2
) ∂2F1

∂ζ̄ 2
− F1

2Le
exp

(
�1

)
= 0 (A19)

�1 = θ1(ζ = 0+), F1 = 0 as ζ̄ → +∞ (A20)

�1 = θ1(ζ = 0−) + ζ̄
∂θ0

∂ζ

∣∣∣∣∣
ζ=0−

, F1 = y1
F(ζ = 0−) + ζ̄

∂y0
F

∂ζ

∣∣∣∣∣
ζ=0−

as ζ̄ → −∞ (A21)

We note that conditions (A20) and (A21) follow from the matching requirement(
θ

inner
, yinner

F

) (
ζ̄ → ±∞) =

(
θ

outer
, youter

F

) (
ζ → 0±)

In particular, the zeroth-order matching is insured by requiring θ
outer

(0±) = 1 and youter
F (0±) = 0.

This implies the continuity of θ0 across the reaction sheet as expressed in the first equality in (34).
Also, the first-order matching is insured by the requirements (A20) and (A21).

The inner problem can now be simplified further, by noting that

F1 =
Le

(
1 + f 2

y + γ Pe2
)

(
1 + f 2

y + γ Pe2Le2
) (

θ1(ζ = 0+) − �1
)

identically; this is seen by adding (A18) to (A19) and using (A20). Equation (A21) then implies that
θ1(ζ = 0+) = θ1(ζ = 0−) and y1

F(ζ = 0+) = y1
F(ζ = 0−) and hence the continuity of h at reaction

sheet, that is the second equality in (34).
Eliminating F1, the inner problem becomes

2
(

1 + f 2
y + γ Pe2Le2

) ∂2�1

∂ζ̄ 2
+
(
θ1|ζ=0+ − �1

)
exp �1 = 0 (A22)

�1 (ζ̄ → −∞) = θ1|ζ=0+ + ζ̄
∂θ0

∂ζ

∣∣∣∣∣
ζ=0−

, �1 (ζ̄ → ∞) = θ1|ζ=0+ (A23)

We now multiply Equation (A22) by ∂�1/∂ζ̄ and integrate with respect to ζ̄ from ζ̄ = −∞ to
ζ̄ = +∞ to obtain

(
1 + f 2

y + γ Pe2Le2
)⎡⎣(∂�1

∂ζ̄

)2
⎤
⎦

+∞

ζ̄=−∞
+
∫ �1|ζ̄=+∞

�1|ζ̄=−∞

(
θ1|ζ=0+ − �1

)
exp

(
�1

)
d�1 = 0

Hence, using (A23), we have

(
1 + f 2

y + γ Pe2Le2
)⎛⎝0 −

(
∂θ0

∂ζ

)2
∣∣∣∣∣∣
ζ=0−

⎞
⎠ +

∫ θ1|ζ=0+

−∞

(
θ1|ζ=0+ − �1

)
exp

(
�1

)
d�1 = 0

Since the integral in this equation evaluates to exp(θ1|ζ=0+), we have

(
1 + f 2

y + γ Pe2Le2
) 1

2 ∂θ0

∂ζ

∣∣∣∣∣
ζ=0−

= exp

(
θ1|ζ=0+

2

)

Equation (36) follows readily from this equation by noting that the partial derivative with respect
to ζ can be replaced by the partial derivative with respect to ξ on account of (A14), that ζ = 0
corresponds to ξ = f , that Le can be replaced by unity in this leading order formula within the NEF
approximation, and that θ0

ζ |ζ=0+ = 0 since θ0 = 1 identically for ζ > 0 or ξ > f .
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