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The paper examines the existence and stability of axisymmetric flame balls in a
non-uniform reactive mixture corresponding to a mixing layer taking into account pref-
erential diffusion and volumetric heat-loss. The mixture’s non-uniformity is measured
with a non-dimensional parameter ε which is inversely proportional to the square root
of the Damköhler’s number. The investigation is carried out analytically in the limit of
large activation energy and small values of ε, and numerically in the general case. New
simple formulas accounting for preferential diffusion are derived which determine in
particular the thermal energy and location of the flame ball; these may be argued to rep-
resent the minimum ignition energy and optimum spark location for a successful forced
ignition of the diffusion flame in the mixing layer. A new free boundary problem (FBP)
with two dependent variables is derived which describes non-adiabatic flame balls sub-
ject to volumetric heat-loss from the burnt gas. For small ε, the analytical solution to the
FBP shows that the main effect of weak non-uniformity can be understood in a simple
way if the volume of the distorted flame ball is characterised by an equivalent radius
Req which is plotted versus a heat-loss parameter κ . Specifically, the curve Req(κ) is
the same inverse-C shaped curve found in the literature in the uniform case (ε = 0) but
shifted to the left by an amount, proportional to ε2, which explicitly accounts for all
parameters. The numerical investigation addresses the existence of the axisymmetric
flame balls and their stability within two models familiar in studies on flame balls in
uniform mixtures, namely the ‘far-field losses model’ where heat-losses from the burnt
and unburnt gas are accounted for, and the ‘near-field losses model’ adopted in our
analytical investigation, where heat-loss from the unburnt gas is neglected. Typically
four regions are determined in the κ-ε plane for fixed Lewis numbers which identify
conditions for the existence of either the flame ball, the diffusion flame or of both. This
subdivision is argued to provide useful insight regarding the possible modes of burning
in the mixing layer. A particularly interesting type of solutions identified for moder-
ate values of ε corresponds to ring-shaped flame balls, termed ‘flame rings’, in regions
where the diffusion flame cannot exist. As for the stability of the flame balls, we have
found these to be typically unstable, as expected for their spherical counterparts. How-
ever, we have also determined these to be stable in special circumstances requiring low
Lewis numbers and the presence of heat-losses and depending on the non-uniformity
parameter ε. Furthermore, an increase in ε was found to play a stabilising effect, at least
for the cases considered.

Keywords: ignition of diffusion flames; ignition in non-uniform mixtures; flame balls;
flame stability

∗Corresponding author. Email: joel.daou@manchester.ac.uk

© 2019 Informa UK Limited, trading as Taylor & Francis Group

https://crossmark.crossref.org/dialog/?doi=10.1080/13647830.2019.1589581&domain=pdf&date_stamp=2019-08-19
mailto:joel.daou@manchester.ac.uk


Combustion Theory and Modelling 799

1. Introduction

The problem of flame ignition in a non-uniform reactive mixture by a localised energy
deposit is ubiquitous in combustion applications. This situation is typically encountered
in the forced ignition of a diffusion flame, by means of a spark say, after the mixing of
reactants has occurred in a mixing layer. Surprisingly, the fundamental question of deter-
mining the critical conditions for successful ignition in a reactive mixing layer has not
received dedicated attention in the literature. To address this question, a theoretical model
was derived and investigated analytically and numerically in two of our recent publica-
tions [1, 2]. One important objective of these publications was to determine the critical
minimum ignition energy and the optimum location for its deposit. These were argued
to be related, in first approximation, to the thermal energy inside a non-propagating non-
spherical axisymmetric structure, termed flame ball, generalising the well known spherical
Zeldovich flame ball to non-uniform mixtures. This stationary axisymmetric flame ball is
typically expected to be unstable, as it is the case with its spherical counterpart in uniform
premixed gases [3, p. 327]. In fact, the inherent instability of flame balls does not diminish
their importance at all, since it may be viewed as an essential ingredient for characterising
the ‘critical conditions’ for successful ignition in any theoretical analysis following the
pioneering interpretation of Zeldovich [4]. It has been found experimentally however that
stable spherical flame balls can be observed at zero gravity if the Lewis number of the
deficient reactant is small enough [5]. Theoretical models have explained the existence of
such stable spherical flame balls in special circumstances where preferential-diffusion and
heat-losses are taken into account [6–13]. An additional mechanism promoting stability
has been identified to be associated with the presence of a drift velocity, with the existence
of apparently stable drifting flame balls having been demonstrated theoretically, numer-
ically, and experimentally [14–19]. For the non-spherical flame balls in a non-uniform
mixture considered in [1, 2], the effect of preferential-diffusion and heat-loss and the flame
stability have not been investigated, although these aspects are essential to complete the
model.

In this paper, we shall complement the findings of [1, 2] with new results addressing the
effects of preferential-diffusion and heat-loss on the existence and stability of the axisym-
metric flame balls. Analytical results will be derived in the large Damköhler’s number limit
(or small values of a non-dimensional parameter ε) for the shape of the flame ball and its
location; these may be used to assess the minimum energy required for successful ignition
and the optimum location for its deposit. The optimum location is in fact only relevant in
non-uniform mixtures as considered herein and, as we shall see, it needs not coincide with
the stoichiometric location as an educated guess may suggest. Two models accounting for
heat-losses will be considered which are classical in the literature on spherical flame balls,
namely the ‘near-field losses’ and the ‘far-field losses’ models [6–8, 10]. The first model,
where heat-losses are restricted to the burnt gas region, is known to be more appropriate for
an asymptotic analysis and is therefore adopted in our analytical study. In our numerical
study, on the other hand, both heat-loss models are addressed.

The paper is structured as follows. Section 2 provides the formulation of a constant
density model describing axisymmetric flame balls in a two-dimensional mixing layer.
The problem is shown to lead in the large-activation-energy asymptotic limit to a free
boundary problem (FBP). The FBP is presented in Section 3 along with a summary of
the corresponding analytical results in the adiabatic case including new formulas elucidat-
ing the effect of differential-diffusion. This is followed by the presentation of a new FBP
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involving two dependent variables suitable for accounting for heat-loss from the burnt gas;
the new FBP will be shown to lead to insightful formulas derived for weakly non-uniform
mixtures. Numerical simulations, confirming and complementing the analytical findings
and including a stability analysis, are presented in Section 4.

2. Formulation

The configuration for studying flame balls in a mixing layer is the same as the one adopted
in [1, 2]. Namely, we consider a reactive mixture in a two-dimensional channel delim-
ited by two porous plane walls located at Z = ±L as depicted in Figure 1, where useful
notations are introduced. We note that this configuration is attractive in theoretical inves-
tigations [20–22] due to its simplicity, although it is difficult to achieve experimentally.
Nevertheless, it is worth pointing out that successful experimental attempts to approximate
it have been reported [23, 24].

Shown in the figure is an axisymmetric flame ball centred at a location Z = Zc (an
eigenvalue) which is in general distinct from the location Z = Zst of the stoichiometric
surface.

The combustion is represented by a one-step reaction of the form

F + sO → (1 + s)Product + q,

where s and q denote the mass of oxidizer consumed and the heat released per unit mass of
fuel. The reaction rate ω̃, defined as the mass of fuel consumed per unit volume and unit
time, is assumed to obey an Arrhenius law with pre-exponential factor B and activation
energy E of the form

ω̃ = Bρ2YFYO exp(−E/RT). (1)

Here ρ, YF , YO, R and T represent the density, the fuel mass fraction, the oxidizer mass
fraction, the universal gas constant, and the temperature, respectively.

For large activation energies, the region which is able to sustain significant heat gener-
ation is centred around the stoichiometric surface where YO = sYF . In the frozen mixture
far away from the flame ball, i.e. for X 2 + Y 2 → ∞, the mass fractions profiles are linear

Figure 1. A flame ball in a non-uniform reactive mixture between two porous walls located a
Z = ±L. The mass fractions are prescribed by YF = YF, F and YO = 0 on the fuel side, and YF = 0
and YO = YO,O on the oxidizer side. The flame ball is centred at Z = Zc (an eigenvalue) which is in
general distinct from the location Z = Zst of the stoichiometric surface.
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functions of Z given by

YF = YF,F

2

(
1 − Z

L

)
and YO = YO,O

2

(
1 + Z

L

)
,

and hence the stoichiometric surface is located at Z = Zst with

Zst

L
= � ≡ S − 1

S + 1
. (2)

Here S ≡ sYF,F/YO,O is a normalised stoichiometric coefficient, known as the mixture
equivalence ratio, and � a scaled version thereof which we shall use instead; the sub-
script ‘st’ will be used to indicate values at (X 2 + Y 2 → ∞, Z = Zst) such as YF,st =
YF,F(1 −�)/2 and YO,st = YO,O(1 +�)/2.

We now introduce the scaled quantities

yF = YF

YF,F
, yO = YO

YO,O
, θ = T − Tu

Tad − Tu
.

Here,

Tad ≡ Tu + qYF,F

2cp
(1 −�),

where cp is the mixture heat capacity, is the adiabatic flame temperature which is used
to define the Zeldovich number β ≡ E(Tad − Tu)/RT2

ad at the conditions prevailing at the
stoichiometric location. At these conditions (and for β � 1), the laminar speed SL of the
stoichiometric planar flame with thickness δL ≡ DT/SL, is given by

SL =
√

4LeFLeO

β3
YO,st(ρDT )B exp(−E/RTad), (3)

where DT , LeF and LeO are the thermal diffusivity, the fuel Lewis number and the oxidizer
Lewis number, respectively.

The non-dimensional equations are given by

β

εL

∂θ

∂t
= ∇̄2θ + 4

1 −�2

β2

ε2
L

(ω − H(θ)) (4a)

β

εL

∂yF

∂t
= Le−1

F ∇̄2yF − 2

1 +�

β2

ε2
L

ω (4b)

β

εL

∂yO

∂t
= Le−1

O ∇̄2yO − 2

1 −�

β2

ε2
L

ω, (4c)

in terms of the coordinates

x̄ = X

L
, ȳ = Y

L
, z̄ = Z

L
, (5)

after selecting the mixing layer thickness L as unit length and L/SL as a unit time and
writing ∇̄2 = ∂x̄x̄ + ∂ȳȳ + ∂z̄z̄. Note that the parameter εL represents the thickness of the
planar stoichiometric flame measured with L/β; it is also related to the Damköhler number
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Da defined as the ratio between the diffusion time across the mixing layer L2/DT and the
flame time δ2

L/DT . Specifically, we have

εL ≡ δL

L/β
= βDT

LSL
and Da ≡ L2

δ2
L

= β2ε−2
L . (6)

The non-dimensional reaction rate ω takes the form

ω = β3

4LeFLeO
yFyO exp

(
β(θ − 1)

1 + α(θ − 1)

)
, (7)

where α = (Tad − Tu)/Tad .
The term H(θ)which appears in Equation (4a) is intended to account for heat-losses and

can be set to zero in the adiabatic case where these are neglected. However, heat-losses
are known to be important in flame ball studies, in particular as a stabilising mechanism
when examining flame stability as discussed e.g. in references [6–8, 10, 25] where several
models for H(θ) are considered [6–8, 10, 25]. Among these, we shall consider herein two
simple models which we shall refer to as the ‘near-field losses’ and ‘far-field losses’ models
following a terminology close to that of [6–8]. In the first model, H(θ) takes the form

H(θ) = κθ

β
(8)

in the burnt gas and zero elsewhere, where κ will be referred to as the heat-loss coefficient.
In the second model, this same form for H(θ) is adopted everywhere, both in the burnt and
unburnt gases. We note that the ‘near-field losses’ model is known to conveniently lead
to a consistent asymptotic solution in the asymptotic limit β → ∞ (with κ = O(1)) in the
classical case of spherical flame balls in an unbounded domain, for technical reasons dis-
cussed in [7], and hence it will be adopted to derive the asymptotic results to be presented
below. In the numerical analysis undertaken, both models will be considered1.

The boundary conditions corresponding to frozen profiles in the far field x̄2 + ȳ2 → ∞,
and prescribed values on the walls z̄ → −1 or z̄ → 1, are

θ = 0, yF = 1 − z̄

2
, yO = 1 + z̄

2
. (9)

Equations (4) with the boundary conditions (9) complete the formulation of the problem
(subject to suitable initial conditions). A main aim when tackling this problem is to find its
stationary solutions (flame balls) and examine their stability. In particular, one would like
to determine the domain of existence of these stationary solutions, and the corresponding
profiles of θ , yF , and yO, in terms of the parameters εL, �, β, LeF, LeO and α. The analysis
of these equations in the asymptotic limit β → ∞ leads to a free boundary problem (FBP)
presented in the next section along with its analytical solution for small values of εL. This
is followed by a numerical investigation addressing the existence and stability of the flame
balls.

3. Analytical results: the free boundary problem for flame balls in the limit β → ∞
3.1. The free boundary problem in the adiabatic case and its results

In the limit β → ∞, stationary solutions of Equations (4) with the boundary conditions
(9), representing flame balls in the mixing layer, are solutions of a free boundary problem
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(FBP). In the adiabatic case H = 0, this FBP has been derived in [1] in the distinguished
limit β → ∞ with εL, lF , lO, x, y, z = O(1). Here lF ≡ β(LeF − 1) and lO ≡ β(LeO − 1)
are the reduced Lewis numbers and x, y and z non-dimensional coordinates2 scaled by L/β
defined by

x ≡ X

L/β
= β x̄, y ≡ Y

L/β
= β ȳ, z = Z − Zst

L/β
= β(z̄ −�), (10)

where use has been made of (2) and (5).
The FBP consists of a single Laplace equation for the leading order temperature ψ to

be solved outside a domain  (the burnt gas domain), with ψ required to vanish in the far
field and to satisfy two conditions on the unknown boundary ∂ of  (the infinitely thin
reaction sheet):

∇2ψ = 0 in R
3\ (11a)

ψ = 0, as |r| → ∞ (11b)

ψ = 1,
∂ψ

∂n
= −ε−1

L F on ∂. (11c)

Here F is an explicit function of (z;�, lF , lO) given by

F =
√

1 +
∣∣∣∣ lF − lO

2
+ z

1 −�2

∣∣∣∣ exp

{−lF − lO
4

− �z

2(1 −�2)

−
∣∣∣∣ lF − lO

4
+ z

2(1 −�2)

∣∣∣∣
}

. (12)

For small values of εL, an analytical description of the solutions of the FBP (11) and the
methodology to obtain them were presented in [1, 2] in the equidiffusional case lF = lO.
Following the same methodology, new results pertaining to the more general case corre-
sponding to arbitrary values of lF and lO can be derived. We shall simply record here a
summary of these new results.

It is found that a flame ball can exist only if it is centred at a single location zc of the
symmetry axis, given to leading order as εL → 0 by

zc ∼ z0 = −�(1 + |�|)+ lO − lF
2

(1 −�2). (13)

In fact, z0 is determined as an eigenvalue and it is found to correspond to the location of
the maximum of the function F(z) given in (12). On account of (10), Equation (13) can
also be written as

z̄c ≡ Zc

L
= z̄st + zc

β
∼ �− 1

β

[
�(1 + |�|)+ lO − lF

2
(1 −�2)

]
, (14)

which shows that the flame ball is centred at a location z̄c which is distinct from the
stoichiometric location z̄st = � except in the special case where the mixture is stoichiomet-
rically balanced, � = 0 (or S = 1) and equidiffusional, lF = lO. Although the difference
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between z̄c and z̄st is small, of order β−1, it is significant. Indeed, this difference leads to
an O(1) difference in the size of the flame balls in a uniform mixture at the conditions
prevailing at z̄c and z̄st and hence has a significant impact when estimating the minimum
critical energy for ignition based on these two locations (see Equation (19) below).

Using the expression of z0 in (13), we define a small expansion parameter ε, a rescaled
version of εL, by

ε = εL

F0
where F0 ≡ F(z0) = e−|�|/2

(1 − |�|)1/2 e−(lF+lO)/4−(lO−lF )�/4, (15)

and carry a perturbation analysis for small values of ε. This leads to the following
expansions

ψ = 1

r
+ bε2

3

(
1

r
+ 1

r3
− 3 cos2 θ

r3

)
(16)

R = 1 + bε2

3

(
2 − 3 cos2 θ

)
(17)

V = 4π

3

(
1 + bε2

)
(18)

EB

EZ
= F3

st

F3
0

(
1 + bε2) , (19)

where

b = 1

4 (1 + |�|)2 , (20)

and

Fst ≡ F(z = 0) =
√

1 +
∣∣∣∣ lF − lO

2

∣∣∣∣ exp

{−lF − lO
4

−
∣∣∣∣ lF − lO

4

∣∣∣∣
}

. (21)

These expressions are obtained after rewriting the problem in terms of spherical coordi-
nates centred at (x, y, z) = (0, 0, zc) and rescaled such that

(x, y, z − zc) = ε(r sin θ cosφ, r sin θ sinφ, r cos θ). (22)

The expansions describe axisymmetric solutions where r = R(θ) represents the domain
boundary ∂ and ψ the temperature field for r > R(θ), i.e. outside the burnt gas region.
The rescaled coordinate r corresponds to choosing as unit length δL/F0, which is the radius
of the spherical Zeldovich flame ball at the conditions prevailing at z0 as confirmed by the
limit R → 1 as ε → 0 implied by (17). On account of (6) and (15), ε is seen to represent a
non-dimensional measure of this spherical flame ball radius based on the length L/β.

The non-dimensional volume V of the distorted flame ball, given by

V ≡ 2π
∫ π

0

∫ R(θ)

0
r2 sin θ dr dθ , (23)

is evaluated using the expression (17) for R(θ)which yields formula (18) after expanding to
O(ε2). The corresponding dimensional volume of the distorted flame ball is VB = Vδ3

L/F3
0 .

On the other hand, the dimensional volume of the spherical Zeldovich flame ball at the
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conditions prevailing at the stoichiometric location z = 0 is given by VZ = (4π/3)δ3
L/F3

s ,
given that δL/Fs is the radius of the latter. The thermal energies inside VB and VZ

are denoted by EB and EZ , respectively. These are given by EB = ρcp(Tad − Tu)VB and
EZ = ρcp(Tad − Tu)VZ where cp is the heat capacity, when non-dimensional temperature
variations of order β−1 are neglected, and hence their ratio is given by (19). Equation (19)
shows that EB > EZ , since F0 is the maximum of the function F(z) (which occurs at
z = z0). This indicates that it is more difficult to ignite the mixture if external energy
is deposited at the stoichiometric location (z = 0) rather than at the optimum location
z = z0. Of course, the analytical formulas (14) and (19) allow a better appreciation
of this statement given the simple explicit dependence on the parameters which they
exhibit.

3.2. The free-boundary problem with heat-loss

In the asymptotic results presented above we have discarded heat-loss effects. These are
known however to be important in many circumstances, in particular when the concentra-
tion of the reactants is weak. They are also important as a stabilising factor in any stability
analysis, as undertaken in the next section. Here, we present a generalisation of the free-
boundary problem of the previous section to account for heat-losses. To this end, we again
consider the asymptotic limit β → ∞ and consider ‘near-field heat losses’ such that the
heat-loss term H(θ) in (4a) is of the form κθ/β in the burnt gas and zero elsewhere; as
noted in the paragraph following Equation (7) this form is known to lead to a consistent
asymptotic solution in the classical spherical case3. The free-boundary problem is found to
generalise to

∇2ψ = 0, ∇2φ = 0 in R3\ (24a)

ψ = 1, ∇2φ = ε−2
L κ in  (24b)

ψ = 0, φ = 0 as |r| → ∞ (24c)

[ψ] = [φ] = [φn] = 0, [ψn] = −eφ/2ε−1
L F on ∂. (24d)

Here, ψ ≡ θ0 is again the leading order temperature when expansions in terms of 1/β of
the form θ ∼ θ0 + θ1/β, yF ∼ y0

F + y1
F/β and yO ∼ y0

O + y1
O/β are used. The quantity φ

is defined by φ = lFθ0 + θ1 + 2y1
F/(1 −�)+ z/(1 −�) and φ = lOθ0 + θ1 + 2y1

O/(1 +
�)− z/(1 +�); this double definition of φ is permissible as the functions given by the
right hand sides in the two definitions can be shown to satisfy the same equation and
auxiliary conditions, those given for φ. The justification of this statement and the derivation
of the free boundary value problem (24) follow from applying an asymptotic methodology
similar to that of [1, 26, 27], which begins by introducing the expansions in terms of 1/β
just mentioned in the governing equations and using the distinguished limit β → ∞ with
εL, lF , lO, κ , x, y, z = O(1). We shall skip the rather lengthy but straightforward algebraic
details, and restrict ourselves to presenting the main analytical result corresponding to the
free boundary problem (24) derived for small values of εL.
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Figure 2. Flame ball radius R0 versus κ . The solid line represents stable solutions which exist
only if the effective Lewis number is sufficiently below one. The lower dot pertains to the turning
point at (κ , R0) = (3 e−1, e1/2) to the right of which there are no stationary solutions. The upper dot
pertains to the point at (κ , R0) = (15 e−5, e5/2) above which all stationary solutions are unstable to
3D disturbances.

To leading order, as εL → 0, we find that the flame ball is spherical with radius R0 such
that

R0 = eκR2
0/6. (25)

This is the same result as the one found in the literature on flame balls in uniform mix-
tures, see e.g. [6–8]. A plot of R0 versus κ is shown in figure 2 and indicates that two
branches of solutions exist for κ less than a critical value κcrit = 3 e−1. Solutions on the
lower branch (corresponding to smaller flame balls) are known to be unstable, while the
upper branch possesses a stable portion (indicated by a solid line) if the Lewis number of
the deficient reactant is below a critical value which is strictly less than one [8]. As the
Lewis number is decreased towards zero, the stable portion extends to cover the whole
upper branch according to a linear analysis of stability to one-dimensional disturbances;
linear analysis of stability to three-dimensional disturbances shows however that stable
solutions cannot exist for R0 > e5/2, irrespective of the value of the Lewis number [8].
Therefore, stable flame balls cannot be neither too large nor too small, and must satisfy
the necessary (but not sufficient) condition e1/2 < R0 < e5/2. One aim of this paper is to
examine, as done below numerically, how these conclusions pertaining to the stability of
flame balls in a uniform mixture are affected by the mixture non-uniformity included in
our model.

To next order we find that

R = R0 + bε2R3
0

(
1

3 − κR2
0

+ 5

15 − κR2
0

(1 − 3 cos2 θ)

)
, (26)

where b is as in (20) and ε is given by (15).
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Figure 3. Flame ball shape R(θ) plotted in the xz plane for selected values of ε and κ based on
Equation (26). Three cases are shown: uniform adiabatic case (ε = 0, κ = 0) (one spherical ball),
uniform nonadiabatic case (ε = 0, κ = 0.8) (two spherical balls) and non-uniform non-adiabatic case
(ε = 0.4, κ = 0.8) (two non-spherical balls).

The equation describes how the non-uniformity of the mixture distorts the spherical
flame balls. This is shown graphically in Figure 3 which illustrates the combined effect of
ε and κ on the flame shape.

The volume V of the distorted flame ball, given by (23), can de evaluated using the
expression for R(θ) given in (26), which yields after expanding to O(ε2)

V = 4πR3
0

3

(
1 + 3bR2

0

3 − κR2
0

ε2

)
.

The leading order is of course the volume corresponding to the spherical flame ball with
radius R0 = R0(κ) given in (25). It is convenient to define the equivalent radius Req as
being the radius of a sphere having the same volume V, that is V = 4πR3

eq/3. To O(ε2), we
thus have

Req = R0 + bR3
0

3 − κR2
0

ε2. (27)

For selected values of ε, plots of Req versus κ , similar to the plot of Figure 2, should
provide a meaningful global assessment of the effect of non-uniformity measured by ε.
However, if expansion (27) is used as it is to this end, erroneous results will be obtained
in the vicinity of the turning point of the leading order R0(κ), that is for κ → 3 e−1 or
equivalently R0 → e1/2, as the second term in the expansion becomes clearly more singular
than the first in this limit. This is not surprising as such non-uniformity in expansions where
the leading order term has a singularity are common, and can be remedied in principle
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Figure 4. The flame ball equivalent radius Req versus κ for selected values of ε and b = 1/4.

by the method of renormalisation [28, 29]. The method consists roughly in expanding the
relevant independent variable itself in such a way so as to render each term in the expansion
of the dependent variable less singular than the term of lower order. Although applicable
in our case, we shall not use this method as a more straightforward remedy is to notice that
expansion (27) can be rewritten in the form

Req = R0(κ + 2bε2), (28)

where the parentheses on the right hand side contain the argument of the (bi-valued)
function R0(κ). Indeed, (27) can be recognised as a Taylor expansion valid to O(ε2) of
Equation (28) on account of the definition of R0 in (25). Formula (28) provides an elegant
and simple interpretation of the effect of ε (and in fact of all the parameters entering in the
definition of ε and b given by (15) and (20)) on the equivalent radius Req. Specifically, the
curve of Req versus κ is the same as the curve of R0(κ) shifted to the left by 2bε2. This
result has significant implications regarding the existence and the size of the flame balls,
as illustrated in Figure 4 where Req(κ) is plotted for selected values of ε and b = 1/4 (a
stoichiometrically balanced mixture with � = 0). For example, for any ε > 0, it is clear
that flame balls can exist only if κ < 3 e−1 − 2bε2 and their equivalent radius Req can-
not be arbitrary large (as in the case ε = 0, disregarding stability aspects) but has a finite
maximum value which decreases with ε.

Before closing this section, we simply mention that the non-uniformity in the expan-
sion (27) for Req can be traced to the non-uniformity in the expansion (26) for R. The
second term of (26) contains the singularity associated with the turning point of the leading
order R0(κ) corresponding to κ → 3 e−1 or equivalently R0 → e1/2 and also an additional
singularity corresponding to κ → 15 e−5 or equivalently R0 → e5/2. It is interesting to note
that this additional singularity corresponds to the point, shown in Figure 2, and identified
in [6, 8] in the analysis of stability of flame balls to 3D perturbations. As done above to
write the more meaningful expression (28) for Req, a similar more meaningful expression
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may be written for R as

R = R0
(
κ + ε2f (κ , θ)

)
, (29)

where the outer parentheses on the right hand side contain the argument of the function
R0(κ) and where the function f is given by

f (κ , θ) = 2b

[
1 + 1 − 2 ln R0(κ)

1 − 2
5 ln R0(κ)

(
1 − 3 cos2 θ

)]
.

Indeed, (26) can be recognised as a Taylor expansion valid to O(ε2) of Equation (29) on
account of the definition of R0 in (25).

4. Numerical Results including a stability analysis

In this section we present illustrative numerical results of the finite-β problem of Section 2.
We also examine the stability of the axisymmetric flame balls, and identify cases where
they are indeed stable.

The numerical solutions to the problem given by Equations (4) subject to boundary con-
ditions (9) and suitable initial conditions are obtained using the method described in [2, 21,
22, 30] which we have tested extensively in several combustion applications. Briefly, the
set of equations are solved using the finite-element package Comsol Multiphysics on a non-
uniform grid of triangular elements, with particular refinement around the reaction zone.
The results are tested to ensure that they are not dependent on the mesh. All calculations
are performed for β = 10, α = 0.85, � = 0 and LeO = 1, unless otherwise stated.

4.1. Effect of the Lewis number on the flame ball (adiabatic case)

We begin by describing the effect of varying the fuel Lewis number LeF on the flame
ball in the adiabatic case H ≡ 0; for simplicity LeO is kept fixed equal to one through-
out. Figure 5 illustrates how the flame ball shape and location are affected by variations in
lF ≡ β(LeF − 1). Plotted is the flame ball shape, represented numerically by the temper-
ature iso-contour θ = θmax(1 − 2β−1), for selected values of εL and lF . It’s seen that an
increase of lF for a fixed value of εL shifts the flame ball centre downwards towards the
fuel side and increases the flame ball size. Conversely, a decrease in lF shifts the flame ball
upwards towards the oxidizer side and decreases its size. These observations are in agree-
ment with the asymptotic formulas (14), (15), and (18) of Section 3.1, at least for small
values of εL.

Another important effect of the Lewis number is associated with its influence on the
existence domain of the flame ball. In the adiabatic case, this existence domain, determined
numerically, corresponds to the shaded region in the lF-εL plane which is below and to
the left of the lower curve plotted in Figure 6. It is seen that an increase/decrease in lF
decreases/increases the εL-range where flame balls exist. In this figure, we have also plotted
the extinction curve of the planar diffusion flame in our configuration; the diffusion flame
existence domain is to the left of this upper curve and is seen to include the flame ball
existence domain. Therefore, under adiabatic conditions, flame balls may only exist under
conditions which permit the existence of diffusion flames. This conclusion becomes invalid
when heat-losses are taken into account, as in the cases described by the next three figures
which address the combined influence of heat-loss and preferential diffusion.
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Figure 5. Plots in the x̄-z̄ plane of the flame shape, defined numerically by θ = θmax(1 − 2β−1),
for selected values of εL and lF = −2 (left subfigure), lF = 0 (middle subfigure) and lF = 2 (right
subfigure).

Figure 6. Existence domain of the flame ball in the lF -εL plane in the adiabatic case (shaded area).
Also plotted is the extinction curve of the planar diffusion flame.

4.2. Combined influence of heat-loss and preferential diffusion on the existence
domain

In this section, we shall adopt the ‘far-field heat losses’ model introduced above, that is with
the heat-loss term being given by (8) in the whole domain. In the next section, ‘near-field
heat losses’ are also considered.

Figure 7 illustrates how the flame ball existence domain in the lF-εL plane is influenced
by the heat-loss parameter κ . Plotted are curves representing the boundary of this domain,
to the left of which flame balls exist, for selected values of κ . A straightforward observation
is that the existence domain shrinks with increasing values of κ , in conformity with our
expectation. More importantly, we note that a turning point in the domain boundary is
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Figure 7. Existence domain of the flame ball in the lF − εL plane for selected values of the
heat-loss parameter κ . For a given value of κ , the flame ball exists to the left of the curve labelled
with this value.

present for any κ > 0, while none is found for κ = 0. For a given κ > 0, we shall denote by
(l∗F , ε∗

L) the turning point of the domain boundary where a lower branch, say εmin
L (lF), and an

upper branch, say εmax
L (lF), merge. The presence of the turning point has several physically

meaningful consequences. It implies, for example, that the flame ball may exist only if lF
is bounded above, namely for lF < l∗F , while no such upper bound occurs when κ = 0. It
implies also that a necessary condition for the flame ball existence, not too far from the
turning point, is that εL must be in the finite range [εmin

L , εmax
L ], where εmin

L > 0 as seen
from the figure. This means that, as εL is varied, flame balls fail to exist either when they
become too large or too small. Furthermore, the strict inequality εmin

L > 0 demonstrate the
occurrence of cases pertaining to specific values of κ and lF for which non-spherical flame
balls (corresponding to εL > 0) exist but spherical flame balls in the uniform mixture at the
stoichiometric conditions (obtained in the limit εL → 0) cannot exist. In other words, the
non-uniformity of the mixture, whose strength vanishes in the limit εL → 0, is necessary
in these cases for the existence of the flame ball.

It is worth noting that the occurrence of the turning point in the boundary of the flame
ball existence domain is also found in the extinction curve of the diffusion flame when
κ > 0. This is illustrated in Figure 8 where the diffusion flame extinction curve and the
flame ball existence domain are displayed for κ = 0.02; also plotted for sake of reference
the diffusion flame extinction curve for κ = 0. We note that the diffusion flame extinc-
tion curve is an inverse-C shaped curve when κ > 0. The points on the upper branch
represent extinction at small values of the Damköhler number (large εL) due to the phe-
nomenon of ‘flame quenching’ (triggered by a fast supply of reactants to the reaction zone)
which is also operative in the adiabatic case κ = 0. The points on the lower branch rep-
resent extinction at large values of the Damköhler number (small εL) due to heat-loss;
this type of extinction with fast chemistry is mainly associated with the fact that the
rate of heat generation by the chemical reaction decreases as εL (or the rate of reactant
supply to the reaction zone) is decreased, leading to extinction for any non-zero value
of κ . Both types of extinction are known in the literature on diffusion flames in similar
configurations [31–35].
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Figure 8. Flame ball existence domain for κ = 0.02 in the lF − εL plane along with the diffusion
flame extinction curves for κ = 0.02 and κ = 0.

Another informative way to characterise the existence domains of the flame ball and
of the diffusion flame is to delimit these domains in the κ-ε plane for fixed values of lF .
For lF = −2 this is done in Figure 9. We note that four regions can be identified which
are labelled by roman numerals. In region I both the flame ball and the diffusion flame can
exist, in region II only the flame ball exists but not the diffusion flame, in region III only the
diffusion flame exists, and in region IV none of these solutions may exist. We note that the

Figure 9. Flame ball existence domain (delimited by solid line) and diffusion flame extinction
curve (dashed line) for lF = −2. Four regions labelled by roman numerals are identified. In region I
both the flame ball and the diffusion flame can exist, in region II only the flame ball exists but not the
diffusion flame, in region III only the diffusion flame exists, and in region IV none of these solutions
may exist.
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Figure 10. Existence domains of Flame Balls (delimited by solid line) and Diffusion Flame
(delimited by dashed line) for two selected values of lF .

subdivision of the κ-ε plane into such four regions remains valid for zero and moderately
large positive values of lF , with the main effect of increasing lF being to shrink the size
of the regions I, II, and III where flame ball and/or the diffusion flame can exist. This can
be seen in Figure 10 where the boundaries of these domains are plotted for lF = 0 and
lF = −2. We note that the subdivision of the κ-ε plane aforementioned provides useful
insight regarding the possible modes of burning, ignition, and extinction in the mixing
layer. For example, since in region III flame ball cannot exist, any Zeldovich type ignition
theory based on flame balls cannot be extended to diffusion flames in this region, that
is for sufficiently large values of κ and εL. Another interesting result is that the flame
balls may exist in situations where the diffusion flame cannot. This occurs for conditions
pertaining to region II in Figure 9 which are able to sustain burning in the form of flame
balls but not in the form of planar diffusion flames. The variety of shapes the flame ball
solutions take in regions I and II is illustrated in Figures 11 and 12 pertaining to ε = 0.5 and
ε = 2, respectively, and to several selected values of κ . A particularly interesting type of
solutions identified corresponds to ring-shaped structures seen e.g. in case (e) of Figure 11.
These non-propagating solutions, which may be termed ‘flame rings’, are found in parts of
region II due to local extinction near the vertical symmetry axis. The extinction occurs for
elongated flame balls for which the conditions near the axis are such that the flame there
may be approximated as a portion of a planar diffusion flame which cannot exist.

4.3. Stability of the flame balls

The existence of flame balls as stationary solutions of the governing equations considered
in the previous section is an essential step preceding a stability analysis of these structures
which we now address. We note beforehand that both the existence of the flame balls and
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Figure 11. Temperature θ (left) and reaction rate ω (right) for lF = −2, εL = 0.5 and selected
values of κ . The colour bar indicates the common temperature scale for all left subfigures; the w-field
in each of the right subfigures has its own colour-scale (for sake of clarity). The figures are cross
sections in the x̄-z̄ plane, with the range of the horizontal x̄-axis displayed being [0, 2.75], and that of
the vertical z̄-axis being [−1, 1].
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Figure 12. Temperature θ (left) and reaction rate ω (right) for lF = −2, εL = 2 and selected values
of κ . The colour bar indicates the common temperature scale for all left subfigures. The figures are
cross sections in the x̄-z̄ plane, with the range of the horizontal x̄-axis displayed being [0, 2.75], and
that of the vertical z̄-axis being [−1, 1].

their stability are expected to be sensitive to the heat-loss model adopted, as suggested by
studies related to the spherical flame balls in uniform mixtures [6–8]. We shall confirm
that these suggestions remain valid in our non-uniform case. For example, adoption of the
‘near-field losses model’, where κ in Equation (8) is set to zero outside the burnt gas, leads
to an existence domain shown in Figure 13 which presents quantitative and qualitative
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Figure 13. Flame ball existence domain (delimited by solid line) and Diffusion Flame extinction
curve (dashed line) for lF = −2 for the ‘near-field losses model’. As in Figure 9, four regions labelled
by roman numerals are identified. In region I both the flame ball and the diffusion flame can exist, in
region II only the flame ball exists but not the diffusion flame, in region III only the diffusion flame
exists, and in region IV none of these solutions may exist.

differences with the existence domain corresponding to the ‘far-field losses model’ shown
in Figure 9. Without repeating the discussion of the previous section, we simply note the
existence in both figures of the four regions introduced above, with a notable qualitative
change in the flame ball domain boundary which is now monotonically decreasing with κ .

We summarise now the results pertaining to the stability of the flame balls. The stability
of a given stationary solution is determined numerically by solving the unsteady governing
equations with initial condition corresponding to the stationary solution modified by the
addition of small random perturbations of small amplitude (of the order of 10−4) which are
localised in a region several times the size of the flame ball.

Consider first the stability of the flame balls within the ‘near-field losses model’ which
was adopted in the analytical investigation of Section 3.2. For unit Lewis numbers, we
have found that all flame balls are unstable, as expected. The question arises whether stable
flame balls do exist in our non-uniform mixture. Figure 14 exhibits a case, corresponding
to lF = −2 and εL = 0.5, where such stable solutions (solid line on the upper branch) do
exist; the subfigure shows how a perturbed solution on the lower branch (corresponding
to an unstable small flame ball) evolves towards a stable larger flame ball on the upper
branch. We note that our conclusions are similar to those found in investigations on spheri-
cal flame balls in uniform mixtures with a ‘near-field heat losses model’ [6, 8], as discussed
in connection with Figure 2. Figure 15 shows a similar situation with a larger value of εL,
where the whole upper branch is found to consist of stable solutions.

Next, we address the stability of the flame balls within the ‘far-field losses model’. Illus-
trative results are presented in Figures 16 and 17. In particular, these figures show that
no stable solutions exist now (with far-field heat-losses allowed) for εL = 0.5 while such
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Figure 14. Flame Ball equivalent radius Req versus heat-loss parameter κ for lF = −2 and
εL = 0.5. Solid line represents stable solutions. Subfigure: an unstable FB evolving to a larger stable
FB (κ = 0.33).

Figure 15. Flame Ball equivalent radius Req versus heat-loss parameter κ for lF = −2 and εL = 2.
Solid line represents stable solutions. Subfigure: an unstable FB evolving to a larger stable FB
(κ = 0.225).

stable solutions still exist (on the upper branch) for εL = 2. In the latter case, with relatively
large εL, the lateral boundaries are likely to play an important part in flame stabilisation.

In summary, our numerical results indicate that the flame balls encountered in our mixing
layer are typically unstable, as expected for their spherical counterparts, and hence good
candidates to incorporate in theories predicting critical ignition conditions. However, we
have also shown that they can be stable in special circumstances requiring low Lewis
numbers and the presence of heat-losses and depending on the non-uniformity parameter
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Figure 16. Flame Ball equivalent radius Req versus heat-loss parameter κ for lF = −2 and
εL = 0.5. All solutions are found to be unstable. The points labelled (a), (b), (c), (d) and (e) refer
to the subfigures with the same labelling in Figure 11.

Figure 17. Flame Ball equivalent radius Req versus heat-loss parameter κ for lF = −2 and εL = 2.
Solid line represents stable solutions. The points labelled (a), (b), (c) and (d) refer to the subfigures
with the same labelling in Figure 12.

εL. It is interesting to note that, at least for the cases identified in Figures 15 and 17, the
non-uniformity (that is an increase in the value of εL) plays a stabilising effect.

5. Conclusions

In this paper, we have significantly expanded our previous treatment of flame balls in
mixing layers [1, 2], a subject we believe to be both fundamental for modelling the forced
ignition of diffusion flames and important on its own right in combustion theory. Among
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the novel contributions of the paper we would like to emphasize (a) the new formulas
of section 3.1, elucidating in particular the effect of preferential diffusion on the flame
balls, (b) the new free boundary problem (11) involving two dependent variables which
models flame balls subject to heat-loss from the burnt gas, (c) the small-ε solution of this
free boundary problem which leads in particular to formula (28) for the equivalent radius
Req of the distorted flame balls allowing a simple interpretation of the overall effect of a
weak mixture’s non-uniformity, and (d) the numerical results of section (4) which provide
a wealth of information about the existence and stability of the flame balls; we single out
in particular the subdivision of the κ-εL plane for fixed Lewis numbers into four regions
which provides useful insight about the modes of burning in the mixing layer including
distorted flame balls taking the form of ‘flame rings’; we also note the identification of
stable flame ball solutions in non-adiabatic low Lewis numbers situations with the non-
uniformity parameter ε found to play a stabilising role.

Notes
1. In our numerical study, ‘near-field losses’ are conveniently simulated by taking H(θ) = κθ/β

if θ/θmax > 1 − 2β−1 and zero otherwise, where θmax is the maximum temperature in the
domain. Also, ‘far-field losses’ are simulated by adopting H(θ) = κθ/β everywhere; in this
latter case a better scaled heat loss-model H(θ) = κθ/β2 could have been adopted [7, 10], but
this was not deemed necessary for the numerical study.

2. The non-dimensional coordinates x, y and z are more suitable to the asymptotic analysis (since
significant chemical activity is restricted to a strip of thickness of order L/β around the stoi-
chiometric surface [1]) compared to the barred non-dimensional coordinates x̄, ȳ, and z̄ (scaled
by L) which are more suitable to the numerical analysis as they fix the lateral boundaries of the
domain at z̄ = ±1.

3. In the numerical results with finite β presented below, ‘near-field heat losses’ are simulated
conveniently by taking H(θ) = κθ/β if θ/θmax > 1 − 2β−1 and zero otherwise, where θmax is
the maximum temperature in the domain. Numerically, ‘far-field heat losses’ are also included
by adopting H(θ) = κθ/β everywhere; in this case a better scaled heat loss-model H(θ) ∝
θ/β2 could have been adopted, but this was not deemed necessary.
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