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We consider generalized flame balls which correspond to stationary spherical flames
with a flow of hot inert gas, either a source or a sink, at the origin. Depending on
the flow, these flames can have positive, zero, or negative burning speeds, with zero
speeds characterizing the Zeldovich flame balls. A full analytical description of these
structures and their stability to radial perturbations is provided, using a large activation
energy asymptotic approach and a thermo-diffusive approximation. The results are also
complemented by a numerical study. The number and stability of the generalized flame
balls are identified in various regions of the l-M-h0 space, where l is the (reduced)
Lewis number, and M and h0 the flow rate and its enthalpy at the origin, respectively.
It is typically found that, when the flow is a source, there is a maximum value of the
flow rate Mmax depending on l and h0, above which no stationary solutions exist, and
below which there are two solutions characterizing a small stable flame ball and a large
unstable flame ball; the implications of these results to the problem of ignition by a
hot inert gas stream are discussed. When the flow is a sink, however, there is typically
a single unstable solution, except for sufficiently large values of the Lewis number
and large negative values of M , where three flame balls exist, the medium one being
stable. Finally, the relation between the flame speed, positive or negative, and the flame
curvature, small or large, is discussed.
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1. Introduction

Flame balls are non-propagating spherical flames, predicted by Zeldovich over sixty years
ago, as stationary solutions of the heat conduction and diffusion equations in a motionless
reactive mixture [1, p. 327]. These solutions are unstable under adiabatic conditions [1,
p. 331], [2]. However, theoretical studies have shown that flame balls may be stabilized
if account is taken of additional physical mechanisms such as volumetric heat-loss [3, 4],
conductive heat-loss to walls [5] or suitably defined weakly non-uniform flow fields [6]. In
these studies, two branches of solutions are typically found when the radius of the flame
balls is plotted versus a control parameter such as the intensity of volumetric heat-loss,
smaller than a critical value; the solutions on the lower branch representing small flames
including Zeldovich flame balls are unstable, while those on the upper branch representing
large flame balls are stable for a given range of the control parameter. In fact, much of
the recent theoretical work on flame balls has been motivated by the observation of such
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apparently stable structures in lean hydrogen–air mixtures in the experiments by Ronney
and coworkers under micro-gravity conditions [7, 8].

In addition to the significance of flame balls as a possible mode of combustion in weakly
flammable mixtures, an important related aspect, of particular relevance to the present work,
is their significance in ignition problems involving heat addition by an external source such
as an electric spark. In this context, they may indeed serve to estimate the minimum energy
to be deposited by the source for successful ignition whereby an initially formed hot kernel
generates an outwardly propagating flame front [1, p. 331]. For successful ignition to
occur, however, both the power and the duration of the source need be taken into account
[2, 9, 10]. In the particular case of a point source of constant power, two branches of
stationary solutions are obtained depending on the power of the source [2]; the lower
branch representing small flame balls which are stable, the upper branch representing large
flame balls, including Zeldovich flame balls, which are unstable.

In this work, we extend these studies, by considering a model for flame balls in the
presence of a flow of hot inert gas, either a source or a sink, at their origin. Depending on
the direction and magnitude of the flow, these flames can have positive, zero or negative
burning speeds, with zero speeds characterizing Zeldovich flame balls. We shall refer
to these stationary solutions of the advection-diffusion-reaction heat and mass transport
equations as generalized flame balls.

One motivation for studying these solutions is that they provide a simple framework
for analysing the important problem of flame initiation, intentional or accidental, by a hot
gas stream; [11, p. 265] and [12]. They also provide valuable analytical information on
the effect of convection, albeit for a specific radial flow, on the existence and stability of
flame balls. Finally, the dependence of their burning velocity, positive or negative, on their
curvature, small or large, may provide some insight into such dependence when studying
the local behaviour of more complex premixed flames such as edge-flames in strained
mixing layers or flamelets in turbulent flow fields.

The paper is structured as follows. We begin by formulating the model and identifying
its main non-dimensional parameters. An asymptotic analysis is then presented, where
the stationary solutions, their multiplicity and their stability are fully described. This is
followed by a numerical study which validates and illustrates the analytical results. Finally,
a conclusion section where the main findings are summarized and additional extensions of
the work suggested, closes the paper.

2. Formulation

We consider a spherically symmetric flame around a point source of hot inert gas located
at the origin, as shown in Figure 1. Within the thermo-diffusive approximation of constant
density and constant transport properties, a relevant non-dimensional model consists of the
equations

∂θ

∂t
+ M

r2

∂θ

∂r
= 1

r2

∂

∂r

(
r2 ∂θ

∂r

)
+ ω, (1)

∂yF

∂t
+ M

r2

∂yF

∂r
= 1

Le

1

r2

∂

∂r

(
r2 ∂yF

∂r

)
− ω, (2)

subject to the far-field boundary condition

θ = 0, yF = 1 as r → ∞, (3)
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Y FuY F = T uT =

Unburnt reactive gas
Hot inert (burnt) gas 

Y   = 0F

Flow rate: M

Figure 1. Spherical flame sustained by a point source of hot inert gas, with flow rate M > 0. Negative
values of M correspond to a sink (not shown in this figure).

and the requirement inside the ball that

⎧⎨
⎩

(θ, yF ) = (θ0, 0) for M > 0

as r → 0 .

(θ, yF ) are bounded for M ≤ 0
(4)

Here θ and yF are the non-dimensional temperature and mass fraction of the fuel, re-
spectively, and Le is the Lewis number. They are given by θ = (T − Tu)/(Tad − Tu) and
yF = YF /YFu, where Tu and YFu are the temperature and the fuel mass fraction of the re-
active mixture in the far-field, and Tad is the adiabatic planar flame temperature. The fuel is
assumed to limit the reaction rate ω, which is taken to follow the standard (non-dimensional)
Arrhenius form

ω = β2

2Le
yF exp

(
β(θ − 1)

1 + α(θ − 1)

)
,

where β is the non-dimensional activation energy or Zeldovich number, and α = (Tad −
Tu)/Tad the heat release parameter. A convection term of strength M is included in the
equations to account for the presence of a point-source radial flow at the origin if M > 0,
where M represents the non-dimensional volumetric flow rate; when M < 0, we are in the
presence of a sink which sucks the burnt gas. The units for speed and length chosen for the
non-dimensionalization correspond to the propagation speed SL and the thickness δL of the
planar flame (more precisely to the asymptotic values of these as β → ∞).

The far-field boundary condition (3) corresponds to a frozen mixture with prescribed
temperature and composition. The boundary condition (4) specifies the temperature of the
fuel-free (inert) stream at the origin when M > 0; when M ≤ 0, θ and yF are simply
required to be bounded.
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We have now completed the formulation of the problem. The main task is to find time-
independent solutions to Equations (1)–(4) which represent spherical flame balls whose
radius R depend on the parameters Le, M and θ0, in addition to β and α.

We begin by reformulating the problem in the asymptotic limit β → ∞ in the next
section. This is followed by an analytical treatment which allows R to be determined in
terms of three parameters representing Le, M and θ0, along with the multiplicity of the
solutions. The linear stability of these to one-dimensional perturbations is then addressed
analytically. Finally, a numerical treatment of the problem with a finite value of β is provided,
which supports and illustrates the analytical findings. We also discuss the application of the
results to the problem of ignition by a hot inert gas flow and to clarifying the dependence
of the speed and the burning rate of the flames encountered on their curvatures.

3. The large activation energy asymptotic limit

In the limit β → ∞, the reaction is confined to an infinitely thin reaction sheet, located
at r = rf , say. It is convenient to adopt the near-equidiffusion flame (NEF) approximation
for which l ≡ β(Le − 1) is O(1), supplemented by the assumption that the temperature
at the origin θ0 may deviate from unity by an amount at most of O(β−1), and thus may
be written as θ0 = 1 + h0/β, which defines h0. These assumptions insure that the leading
order temperature θ0 is unity in the burnt gas, θ0(r ≤ rf ) = 1, and allow the problem to be
reformulated in terms of θ0 and the (excess) enthalpy h ≡ θ1 + y1

F ∼ β(θ + yF − 1); see
e.g. [13, p. 38] and [14]. Here and below superscripts indicate expansions in terms of β−1.
In terms of θ0 and h we have to solve

∂θ0

∂t
+ M

r2

∂θ0

∂r
= 1

r2

∂

∂r

(
r2 ∂θ0

∂r

)
(r > rf ) (5)

∂h

∂t
+ M

r2

∂h

∂r
= 1

r2

∂

∂r

(
r2 ∂h

∂r

)
+ l

r2

∂

∂r

(
r2 ∂θ0

∂r

)
(r �= rf ) (6)

subject to the far-field boundary condition

θ0 = 0, h = 0 as r → ∞ (7)

and the requirement inside the ball that⎧⎨
⎩

h = h0 for M > 0
as r → 0 .

h is bounded for M ≤ 0
(8)

In addition, the jump conditions

[θ0] = 0, [h] = 0 , (9a)[
∂h

∂r

]
+ l

[
∂θ0

∂r

]
= 0 , (9b)

[
∂θ0

∂r

]
= exp

(
h(r−

f )

2

)
, (9c)
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must be satisfied; here [ ] = ( )r−
f

− ( )r+
f

, indicate a jump at the reaction sheet located
at r = rf (see e.g. [13, p. 39] and [15, p. 529]).

4. Analytical results

In this section, we consider the problem described by Equations (5)–(9). We thus have
three free parameters, namely, M (the flow rate), l (the reduced Lewis number), and h0 (the
excess enthalpy at the origin).

4.1. The stationary profiles

Stationary solutions satisfying (5)–(9), except the last jump condition 9c, are readily deter-
mined, and are given by

θ0 =
{

1 for r ≤ R

1−e−M/r

1−e−M/R for r ≥ R
(10)

h =

⎧⎪⎨
⎪⎩

h∗ + H (M) (h0 − h∗)
[
1 − e−M/r

e−M/R

]
for r ≤ R[

h∗ + lM
R

· e−M/R

1−e−M/R

]
1−e−M/r

1−e−M/R − lM
r

e−M/r

1−e−M/R for r ≥ R

(11)

where h∗ ≡ h(R), characterizing the departure of the flame temperature from the adiabatic
planar flame value, is given by

h∗ ≡ h(R) = − lM

R(1 − e−M/R)
+ H (M)

[
h0(1 − e−M/R) + lM

R

]
(12)

and H (M) is the Heaviside function defined by

H (M) =
⎧⎨
⎩

0 for M ≤ 0

1 for M > 0 .

On using the remaining jump condition (9c), we obtain

M

R2

e−M/R

1 − e−M/R
= exp

(
h∗
2

)
,

i.e.

M

R2

e−M/R

1 − e−M/R
= exp

(
− lM

2R(1 − e−M/R)
+ H (M)

[
h0

2
(1 − e−M/R) + lM

2R

])
, (13)

which allows the radius of the stationary flame R to be determined in terms of M , l, and h0.
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It can be noted that when M ≤ 0 the enthalpy h inside the ball is a constant equal to
h∗ ≡ h(R) which is determined as part of the solution and is independent of the choice
of h0. In contrast, when M > 0 corresponding to a source at the origin, h0 is of course
essential in determining the profiles.

4.2. Notation and preliminary remarks

In order to facilitate the discussion of the results, we introduce here two quantities µ and S

characterizing the flame by

µ = exp

(
h∗
2

)
(burning rate) (14)

and

S = − M

R2
(flame speed). (15)

The quantity µ represents the (non-dimensional) burning rate per unit flame area, a fact
which follows from the jump condition (9c).1 It is equal here to each side of Equation (13).

The quantity S represents the flame speed or burning velocity defined as the speed
with which the flame travels with respect to the unburnt gas ahead of it (or more precisely
just ahead of its reaction sheet2), or equivalently, as minus the speed of the unburnt gas at
r = R+ with respect to the stationary flame ball, this speed being obviously given by the
right-hand side of (15). It can be noted therefore that negative flame speeds S are obtained
for M > 0, and positive flame speeds for M < 0.

We note that Equation (12) can be written as

h∗ = − lm

1 − e−m
+ H (m)

[
h0(1 − e−m) + lm

]
(16)

showing that the perturbation in the flame temperature h∗ is a function of the parameter
m ≡ M/R, in addition to the reduced Lewis number l and the excess enthalpy h0; h∗ =
h∗(m; l, h0). Also, Equation (13) can be recast into the parametric form

R = R(m; l, h0) = m exp
(

l
2

m
1−e−m − H (m)

[
h0
2 (1 − e−m) + lm

2

])
em − 1

(17a)

M = M(m; l, h0) = mR(m; l, h0) , (17b)

involving the parameter m. Parametric plots of R versus M , and similarly of S = −M/R2 =
−m/R and µ versus M , can thus be generated by varying m in the range (−∞,∞) for
selected fixed values of l and h0. For future reference we record the asymptotic behaviour

R ∼ −m , M ∼ −m2 , µ ∼ 1 , S ∼ 1 as m → −∞ , (18)

1Indeed, since θ 0 + y0
F = 1 everywhere, and yF = 0 in the burnt gas, the left-hand side of (9c) reduces

to (∂y0
F /∂r)r=r+

f
, which is the (non-dimensional) mass of fuel reaching the reaction sheet per unit

area of the latter and unit time, in the limit β → ∞.
2Using the location of the reaction sheet to define the flame speed is a convenient and unambiguous
choice in the limit β → ∞, although other choices are possible [16].
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which follows from (14) to (17). This shows that in the limit of infinitely strong sink,
M → −∞, the radius of the stationary flame is large, R ∼ √−M , while its burning rate
µ and speed S approach those of the planar flame as expected. On the other hand, we have

R ∼ me−m− h0
2 , M ∼ m2e−m− h0

2 , µ ∼ e
h0
2 , S ∼ −em+ h0

2 as m → ∞ , (19)

so that, in particular, R → 0 and M → 0 as m → ∞; this shows that all curves of R versus
M must approach the point (R = 0,M = 0) and that S takes infinitely large negative values
in this limit.

4.3. The adiabatic case h0 = 0

We begin with the adiabatic case h0 = 0, whose results are summarized in Figure 4.3.
Plotted versus M are the flame radius R (top), the flame speed S (middle) and the burning
rate per unit flame area µ (bottom), for selected values of l. These curves are generated
as parametric plots, as explained in the previous paragraph, by varying the parameter m

in the range (−∞,∞); for illustration, an arrow has been added to the curve R versus
M corresponding to l = 0 to indicate the direction of increasing m. It is observed that a
maximum value of M depending on l exists, say Mmax, above which there are no stationary
solutions. As will be demonstrated later, Mmax defines in fact a critical value of M for
ignition to occur, with ignition defined as the transition from stationary to outwardly
propagating flames.

For 0 ≤ M < Mmax, each curve R versus M has two branches of solutions, representing
flame balls with burning speeds S ≤ 0. The upper branch intersects the vertical axis, M = 0,
at a value of R corresponding to Zeldovich flame balls,3 R = exp(l/2), as can be verified by
taking the limit m → 0 in (17). For solutions on this upper branch, R and S are decreasing
functions of M , and so is µ if l < 0; µ is an increasing function of M if l > 0, and
constant equal to one if l = 0. The lower branch intersects the vertical axis at the point
(R = 0,M = 0), in agreement with the asymptotic behaviour 19 obtained for m → ∞;
in this limit we have also S → −∞, and, in the present case with h0 = 0, µ → 1. For
solutions on this lower branch, R and S are increasing functions of M , and so is µ if l < 0;
µ is a decreasing function of M if l > 0, and µ = 1 if l = 0.

For M < 0, we have typically a unique solution, that is a single-valued dependence of R

on M , as exemplified in the cases l = −2, l = 0 and l = 2. As M → −∞, and irrespective
of the value of l, the flame is rejected to infinity, and therefore behaves as a planar flame, in
conformity with the asymptotic formulae (18) obtained in the limit m → −∞. It is notable
however that this uniqueness of solution is lost when l is sufficiently large, as illustrated in
the case l = 8 for which R versus M takes the form of an S-shaped curve, for M < 0.

It is instructive to determine in the l-M plane the locus of the turning points of the
S-shaped curve obtained for M < 0 and of the maximum flow rate Mmax. At these points,
we must have dM/dm = 0, which can be solved for l to yield a relation of the form
l = l(m; h0), namely,

l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4e−2m + (2m − 8)e−m − 2m + 4

m(me−m + e−m − 1)
(m < 0)[

(e−m − 1)(4 − me−mh0) + 2m
]

(e−m − 1)

me−m(e−m + m − 1)
(m > 0).

(20)

3See e.g. [15, p. 530].
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R (Flame radius)
 

M

l = 8 (rescaled)

2

0

-2

M

S (Flame speed)  
l = -2

2
0

l = 8 

M

µ (Burning rate) 

l = -2

2
0

l = 8

Figure 2. Flame radius R versus M (top), flame speed S versus M (middle) and burning rate per
unit flame area µ versus M (bottom), for selected values of l. In the top subfigure, R is divided by
10 for the particular case l = 8; also an arrow has been added to the curve corresponding to l = 0 to
indicate the direction of increasing m in the range (−∞, ∞).

When used with (17b), Equation (20) enables us to generate Figure 3. Plotted versus l

are Mmax (upper half-plane) and the values of M corresponding to the turning points of
R versus M for M < 0 (curves in the lower half-plane). Four regions are thus delimited
in the l-M plane, indicating the number of the stationary solutions. In the upper half
plane, there are no solutions above the curve of Mmax and two solutions below it. In the
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Reduced Lewis number l

Mmax
M

No solution

3 solutions

1 solution

2 solutions 

Figure 3. Maximum flow rate Mmax allowing stationary solutions (curve in the upper half-plane),
and the loci of the turning points of R versus M for M < 0 (curves in the lower half-plane).

lower half-plane, there is one solution, except in the cusp-region below the cusp, located at
(lc = 7.83,Mc = −15.6), approximately.

4.4. Effect of h0

In this paragraph, we examine the effect of h0 on the results, focusing our attention on
the cases M > 0, since h0 plays no part when M ≤ 0; see also the Appendix. This effect
is illustrated in Figure 4. Plotted is the flame radius R versus M for selected values of l,
and three values of h0 increasing from top to bottom. In the half-plane M > 0, all curves
are inverse C-shaped passing through the origin, as found in the previous section. These
curves shrink, with their tip located at the point I ≡ (Mmax, R(Mmax)) moving down and
to the left, as h0 increases or l decreases. As already hinted, I plays the role of an ignition
point, and this fact will become clearer after the stability of the solutions is examined in
Section 5. The results then indicate that ignition, defined as the transition from stationary
to propagating flames, is more readily obtained for larger values of h0 (i.e. hotter streams)
and smaller values of l, since the source strength Mmax needed for ignition is then smaller.
This remark, which is in line with our physical expectation, is further confirmed in Figure 5,
where Mmax is plotted versus l for selected values of h0.

Another way to examine the existence and multiplicity of the stationary solutions is
to plot R versus l, for fixed values of M and h0. This is carried out in Figure 6, using
the fact that Equation (13) provides an explicit expression of l in terms of M , R and h0.
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The curves labelled M = 0 represent the classical Zeldovich flame balls. These curves
and those corresponding to M < 0 are of course unaffected by the value of h0. It can be
seen that two branches of solutions exist for M > 0 provided that l is larger then a critical
value lcrit(M; h0), depending on M and h0. For each fixed value of h0, these critical values
generate a curve which is obviously identical to the curve of Mmax versus l obtained for
this particular value of h0, as those in Figure 5.

4.5. Flame speed and burning rate dependence on curvature

An interesting feature of the current problem is that it provides analytically the flame speed
S and the burning rate per unit flame area µ in terms of the flame curvature ε ≡ R−1, for
all values of ε ranging from vanishingly small to infinitely large. Such analytical results
may be valuable as a guide in interpreting the local behaviour of curved flames in more
complex situations where analytical expressions are usually nonexistent, notably for highly

M

R

R

R

h

l = 3

2

0

-2

l = 3

2

0

0

-2

-2

2

l = 3

Figure 4. R versus M for selected values of l and h0 = −3 (top), h0 = 0 (middle), and h0 = 3
(bottom).
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Mmax

Reduced Lewis number l

h

Figure 5. Mmax versus l for selected values of h0.

curved flames characterized by negative flame speeds. Examples of such situations include
edge-flames in strained mixing layers referred to in the Appendix, and plausibly turbulent
premixed flames.

More specifically, using Equations (14)–(17) and the fact that m ≡ M/R = −S/ε, we
obtain

S

1 − e−S/ε
= exp

{
l

2

S/ε

1 − eS/ε
+ H (−S)

[
h0

2
(1 − eS/ε) − l

2

S

ε

]}
, (21)

a formula which relates S to ε and involves the parameters l and h0; this also determines µ

which is given by either side of (21).
In the case of weakly curved flames, the flame properties approach those of the planar

laminar flame, in particular, S → 1 and µ → 1, in the limit ε → 0, as already indicated
by the asymptotic results (18). The deviation of S and µ from their planar values due to
the flame curvature are in fact negligible, transcendentally small, in the limit ε → 0, in
agreement with available knowledge on weakly stretched flames [17]; the flame-stretch
being zero for the stationary spherical flames under consideration.

In the case of highly curved flames, on the other hand, S → −∞ and µ → exp(h0/2)
in the limit ε → ∞, as indicated by the asymptotic results (19). More precisely, Equation
(21) implies that
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Figure 6. Flame radius R versus the reduced Lewis number l for selected values of M and h0 = −2
(top), h0 = 0 (middle), and h0 = 2 (bottom).

S exp
S

ε
∼ −µ ∼ − exp

(
h0

2
− l

2ε
exp

h0

2

)
as ε → ∞ , (22)

a formula which clarifies the dependence of negative flame speeds S, and the corresponding
burning rates µ, on large flame curvatures ε, and the parameters h0 and l. We note that
although the dependence of S on ε in (22) is not explicit, unlike that of µ, ε itself is an
explicit function of S, namely ε = [

S + l
2 exp ( h0

2 )
]
/
[

h0
2 − ln(−S)

]
.

To close this section, we illustrate in Figure 7 the dependence of S and µ on ε, for selected
values of l and h0 = −3 (top), h0 = 0 (middle), and h0 = 3 (bottom). Concentrating first
on the cases with h0 = 0, we observe that negative burning speeds are only possible for
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Figure 7. Flame speed S (left) and burning rate µ (right) versus flame curvature ε = R−1 for selected
values of l and h0 = −3 (top), h0 = 0 (middle), and h0 = 3 (bottom).

sufficiently large values of the flame curvature ε, except for sufficiently large values of the
Lewis number. Typically, for moderate deviation of l from zero, S versus ε is single valued,
and is monotonically decreasing for non-negative values of l. The burning rate µ on the
other is constant for l = 0, and has typically a non-monotonic dependence on ε. We note
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in particular that the location of the maximum of µ, for negative values of l, corresponds
to the Zeldovich flame balls for which S = 0, and does not coincide with the location of
the maximum of S.

The effect of h0 on the results, more precisely on those corresponding to negative
values of S, can be assessed by comparing the top, middle, and bottom figures. Beside
the obvious fact that a decrease in the value of h0 decreases both S and µ, it is observed
that negative flame speeds and the corresponding burning rates may become typically
multi-valued function of the flame curvature ε for h0 < 0.

Finally, we note parenthetically that the relationships presented herein, relating the
burning speed S or the burning rate µ to the flame curvature ε = R−1, can be nicely
complemented by similar relationships pertaining to the well-studied problem of stationary
spherical flames stabilized on a point source of Fuel. In the latter problem, the burning
speed S cannot of course be negative, and, we have in fact S = µ, if S is defined as the
speed of the gas at the location of the reaction sheet. Without providing here the details of
the derivation, we mention that the simple formula

S = exp

(
h∞e−S/ε

2

)

can be obtained, provided that the temperature θ∞ of the ambient gas in the far field is
close to unity (the adiabatic planar flame temperature) such that h∞ ≡ β(θ∞ − 1) is O(1)
as β → ∞. This formula is the counterpart of formula (21) and implies in particular that

S = 1 + EST as ε → 0 and S ∼ exp

(
h∞
2

− h∞
2ε

exp
h∞
2

)
as ε → ∞ .

5. Stability analysis

In this section, we carry out a linear stability analysis of the stationary solution (θ0, h, rf ) =
(θ̄ , h̄, R) given by (10), (11) and (13) by considering perturbed solutions of the form

rf = R + ε′eσ t , θ0 = θ̄ + ε′eσ tϕ(r), h = h̄ + ε′eσ tψ(r), (23)

where rf is the radius of the perturbed flame and ε′ a small parameter characterizing
the amplitude of the radial perturbations. By substitution into the equations and auxiliary
conditions of Section 3, one ends up with ϕ(r < rf ) ≡ 0 and the equations

ϕrr + 2r − M

r2
ϕr − σϕ = 0 (r > rf ) (24)

ψrr + 2r − M

r2
ψr − σψ = −lσϕ − lM

r2
ϕr (r �= rf ) (25)

subject to the boundary conditions

ϕ = 0, ψ = 0 as r → ∞ (26)⎧⎨
⎩

ψ = 0 for M > 0
as r → 0

ψ is bounded for M ≤ 0
(27)
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and the jump conditions

[ϕ] = −µ , [ψ] = lµ (28a)

[ψr ] + l[ϕr ] = lM

R2
µ (28b)

[ϕr ] =
(

ψ∗
2

+ 2

R
− M

R2
− H (M)

M

2R2
(h0 − h∗)

)
µ (28c)

at r = R. Here ψ∗ ≡ ψ(R−), while h∗ ≡ h(R) and µ ≡ exp(h∗/2) are given by (12) and
(14), respectively.

It is to be noted that the jump conditions at the reaction sheet r = rf (t) have been
transferred to r = R, using Taylor expansions about r = R, since rf − R is small, of
O(ε′), according to (23)4.

Equations (24)–(28) constitute an eigen-boundary value problem, whose solution
should, in principle, provide a dispersion relation between the eigen values σ and the
parameters of the problem of the form F (σ ; l,M, h0) = 0. This relation should determine
whether a particular solution is stable or unstable, based on whether all perturbations of
this solution have Re(σ ) < 0 and thus decay, or at least one perturbation has Re(σ ) > 0
and thus grows.

It is instructive to revisit first the particular case M = 0 pertaining to the classical
Zeldovich flame balls, for which the dispersion relation can be determined analytically
as known in the literature, see e.g. [1, p. 327]. Indeed, in this case, we have h∗ = −l,
µ = exp(−l/2) and R = exp(l/2) on taking the limit M → 0 in (12) and (13). Thus,
the stability problem reduces to solving (24) to (27) with M = 0, along with the jump
conditions [ϕ] = −1/R, [ψ] = l/R, [ψr ] + l[ϕr ] = 0, and [ϕr ] = ψ∗/2R + 2/R2 at r =
R = exp(l/2). The solution satisfying all conditions, except the last jump condition, is
given by

ϕ =
{

0 if r < R

1
r
e(R−r)

√
σ if r > R

ψ =

⎧⎪⎨
⎪⎩

l
4r

er
√

σ − e−r
√

σ

eR
√

σ
if r < R

R
r
e(R−r)

√
σ

{
ψ∗ − l

R

(
1 +

√
σ

2 (R − r)
)}

if r > R

with ψ∗ ≡ ψ(R−) = l(eR
√

σ − e−R
√

σ )/4ReR
√

σ , provided that we assume that Re(
√

σ ) >

0. The last jump condition then yields the dispersion relation

l = 4(R
√

σ − 1)(1 + coth(R
√

σ )) , (29)

4More explicitly, Taylor expansions to O(ε ′) yield the relations [ϕ] = −[θ̄r ], [ψ] = −[h̄r ], [ψr ] +
l[ϕr ] = −[h̄rr ] − l[θ̄rr ], and [ϕr ] =

(
ψ(R−)

2 + h̄r (R−)
2

)
exp ( h̄(R−)

2
) − [θ̄rr ], where the brackets desig-

nate jumps evaluated at r = R. These lead to the jump conditions (28) once the stationary solutions
θ̄ and h̄ given by (10) and (11) are used.
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which implies that for any value of l there exists an unstable mode characterized by a
value of σ which is real and positive5. Thus, we recover the known result that flame balls are
always unstable, in the absence of other stabilizing effects, such as volumetric heat-losses,
or the presence of a flow, M �= 0, considered next.

Unfortunately, for M �= 0, analytical derivation of a dispersion relation is not straight-
forward since, to start with, the general solution to (24) does not seem to be expressible in
terms of familiar elementary functions, as it is the case when M = 0. To make progress we
may turn into a numerical treatment, as done in the next section, where it is found in partic-
ular that the transition from stable to unstable behaviours, occurs without oscillations, thus
suggesting that Im(σ ) = 0, and hence σ = 0, for marginal stability. We may also continue
the analytical treatment but limiting our objective to determining the stability/instability
domains in the l-M-h0 space, without derivation of the dispersion relation itself. To this end,
we look for marginal stability surfaces in the l-M-h0 space by anticipating, as suggested
by the numerics, that these are characterized by σ = 0. Thus, we solve (24) to (28) with
σ = 0. The solution satisfying all conditions, except the last jump condition, is given by

ϕ =
{

0 if r < R

µ 1−e−M/r

1−e−M/R if r > R

ψ =
⎧⎨
⎩

ψ∗
{

1 − H (M)
(

1 − e−M/r

e−M/R

)}
if r < R(

ψ∗ + lµ2R − lµ
)

1−e−M/r

1−e−M/R − lµ2 R2

r
e−M/r

e−M/R if r > R ,

with

ψ∗ = lM(R−1 − µ)

R(1 − e−M/R)[1 + H (M)Mµ−1R−2]
.

The last jump condition then yields a relation of the form l = l(m; h0), which turns out
to be identical to Equation (20), valid at the turning points identified earlier. When this
relation is used with Equation (17b) which is of the form M = M(l; m,h0), the marginal
stability surfaces can be generated by varying the parameters m and h0.

We conclude that, for a fixed value of h0, the marginal stability curves coincide with the
curves depicting the extremum values of M versus l, as shown in Figure 3, in the particular
case h0 = 0. Furthermore, since the solutions corresponding to the Zeldovich flame balls
are unstable, any branch of solutions passing by these in Figure 4.3 (top) e.g. is unstable up
to the turning points. In particular, in the domain M > 0 in Figure 3 where two solutions
are found, the one with the larger radius is unstable, the one with the smaller radius stable;
when M < 0 we are typically in the presence of a single solution which is unstable, except
in the cusp region where three solutions exist, the middle one being stable, the others
unstable. The picture is similar for h0 �= 0, since only the curve in the upper half plane in
Figure 3 is shifted as h0 is changed, as illustrated in Figure 5. The results are conveniently
summarized in Figure 8, where four regions are delimited in the l-M-h0 space, with the
number of stationary solutions (flame balls) and their stability indicated in each region.

5This conclusion follows, e.g., from a plot of the simple explicit relation (29) of l versus the variable
R

√
σ assumed real and positive. Also, the assumption Re(

√
σ ) > 0 which has just been made is

consistent with this conclusion.
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Figure 8. Number of stationary solutions (flame balls) and their stability in different regions of the
l-M-h0 space.

6. Numerical results

Although the analytical analysis performed in the asymptotic limit β → ∞ is rather com-
plete and self-contained, it is complemented here by a numerical study carried out with a
finite value of β. As we shall see, this study confirms the analytical predictions, at least
from the qualitative point of view, and provides further illustrations. More specifically,
the problem defined by Equations (1)–(4) is solved numerically both as a time-dependent
boundary value problem, with appropriate initial conditions, and as a stationary boundary
value problem. A finite volume discretization in the space variable r is used to reduce the
problem into a system of ordinary differential equations in the time-dependent case, and
into a system of non-linear algebraic equations in the stationary case. The system of ordi-
nary differential equations is solved by LSODA, a well tested robust solver with adaptive
time-step which is suitable both for stiff and non-stiff problems [18]. The non-linear system
of algebraic equations is solved with the NAG routine C05NBF [19], which is based on
Powell’s hybrid method [20]. The (non-dimensional) radial extent of the computational
domain is typically from r = 0 to r = 300, with a non-uniform spatial-grid comprising
5000 points. A cutoff temperature θc = 0.01 below which the reaction rate is set to zero
is introduced to avoid the cold-boundary-difficulty. The values β = 10 and α = 0.85 are
adopted, with other parameters specified in each case.

6.1. Stationary solutions

Figure 9 shows the profiles of the temperature θ , the fuel mass fraction yF , and the reaction
rate ω (normalized by its maximum value ωmax) in an illustrative case corresponding to

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
h
e
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
n
c
h
e
s
t
e
r
]
 
A
t
:
 
1
2
:
0
3
 
2
2
 
O
c
t
o
b
e
r
 
2
0
0
9



286 J. Daou et al.

0 2 4

0.5

1

r

θ

y
F

ω / ω
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ω
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 = 1.7

M =  0.6
R =  0.25

Figure 9. The profiles of the temperature θ , the fuel mass fraction yF , and the normalized reaction
rate ω/ωmax for h0 = 0, M = 0.6 and Le = 1.

M = 0.6, h0 = 0 and Le = 1. A flame ball of radius R ≈ 0.25 is observed with this choice
of parameters, R being defined as the location where the reaction rate is maximum.

A comparison between the analytical and numerical results is carried out in Figure 10
pertaining to h0 = 0. Shown is the maximum flow rate Mmax versus the Lewis number Le
based on the numerics (solid curve) and the asymptotics (dashed curve). The agreement is
excellent qualitatively, and good quantitatively provided the deviation of Le from unity are
moderate, say Le in the range [0.6, 1.3].

The effect of h0 is illustrated numerically in Figure 11 where R is plotted versus M , for
selected values of h0 and Le = 1. The results are in agreement with the asymptotics, with
a single stationary solution obtained for M < 0, and two solutions for M > 0 less than a
maximum value Mmax which decreases with increasing h0.

0.4 0.8 1.2 1.61
0

2

4

3

Le

M
m

ax

 

 

Numerics
Asymptotics

Figure 10. Mmax versus Le for h0 = 0 determined numerically (solid curve) and analytically (dashed
curve).
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h
0
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h
0
= 0

h
0

M

Figure 11. Flame radius R versus M for selected values of h0 and Le = 1.

In addition to the multiplicity of solutions obtained for M > 0, multiple solutions are
also predicted in the analytical study for M < 0 when Le is sufficiently larger than unity,
as exemplified in Figure 4.3 (top subfigure, curve labelled l = 8). This fact is successfully
confirmed numerically in Figure 12, where R is plotted versus M for Le = 2.

6.2. Stability and time dependent calculations

The stability of the stationary solutions to one-dimensional perturbations has been tested,
using the following procedure. (1) The sparse non-linear algebraic problem is solved using
the non-linear solver C05NBF to yield stationary solutions, each one being a vector with N

0 2011
0  

80 

160

M

R

Le = 2

Figure 12. Flame radius R versus M for Le = 2. Stars (on the middle branch in the left half-plane)
and diamonds (on the lower branch in the right half-plane) are computed solutions which are found
stable.
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Le = 1.2 unstable
 stable

Figure 13. Flame radius R versus M for selected values of Le and h0 = 1 (top), h0 = 0 (middle),
and h0 = −1 (bottom). Solid lines represent branches of stable solutions and dashed lines branches
of unstable solutions.

components, say y(N ), N being twice the number of gridpoints. (2) Perturbations are added

to the stationary solution y(N ) to generate yperturbed(N ) = y(N ) + ε × rand(N ), where

ε = 10−4 and rand(N ) an N -dimensional vector of random numbers from the standard
normal distribution produced using the NAG routine G05FDF [19]. (3) The system of ODEs
corresponding to the time-dependent problem is solved using LSODA, starting from the
perturbed solution yperturbed(N ) as initial condition. When the resulting solution converges
as time increases to a stationary solution y∗(N ) such that ‖y∗(N ) − y(N )‖ < 10−5, the

stationary solution y(N ) is considered stable, otherwise unstable.6

By applying the testing procedure just described, we end up with the following con-
clusions. (a) When M > 0, the solutions represented by the upper branch of R versus M

in Figure 13 are found to be unstable, while those represented by the lower branch stable.
(b) When M < 0, no stable solutions were found except for values of the Lewis number
well above one and for sufficiently large negative values of M where multiple solutions
are obtained as illustrated in Figure 12 pertaining to Le = 2. The middle branch of the

6The notation ‖ · ‖ stands here for the maximum norm.
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Figure 14. Flame radius R versus time t for selected values of M , with h0 = 0 and Le = 1.

S-shaped curve in the left half-plane of this figure is found to be stable as predicted by the
asymptotics, except in a small neighbourhood of the lower turning point (the stars on this
branch indicate stable solutions7).

Finally, we carry out the following numerical experiment to illustrate the ignition
process, i.e. the transition from stationary stable flame balls (lying on the lower branch
of R versus M) to outwardly propagating flames, as M is increased. Starting with an
initial condition corresponding to a frozen mixture, we simulate the blowing of hot air at
the adiabatic flame temperature (h0 = 0) with a flow rate M = 0.3. After a transient, the
solution settles to a stationary flame ball with radius R = 0.128, as illustrated in Figure 14
where R is plotted versus time (curve labelled M = 0.3). Starting from this stationary
solution as initial condition, the calculation is repeated with a higher value of M = 0.5; the
radius of the ball increases to a new stationary value R = 0.224. Starting from this new
stationary solution as initial condition, and repeating the computation with M = 1, it is
seen that the flame radius continually increases with time, illustrating the transition from
stationary to expanding spherical flames.

7. Conclusions

The problem under investigation has provided a complete analytical description of several
fundamental aspects of combustion, made tractable by the simplifying assumptions of
spherical symmetry and large activation energy. These aspects include the problem of
ignition by a hot inert gas stream, the dependence of flame speeds, positive or negative,
on the flame curvature, and the stability of the stationary solutions encountered which
have been called generalized flame balls. In particular, as Zeldovich flame balls are used
as criteria for successful ignition in stagnant reactive gases, generalized flame balls have
been shown to provide similar criteria for ignition by a hot radial stream, a step towards
understanding ignition by more practical flows of hot gases such as jets [12].

7We have checked that this small neighbourhood of the lower turning point with unstable solutions
shrinks as β is increased (not shown here), improving thus the agreement with the asymptotics.
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The main conclusions concerning the existence of generalized flame balls and their
stability in the various regions of the l-M-h0 space have been summarized in Figure 8: for
M ≥ 0 smaller than a maximum value Mmax depending on l and h0 two flame balls are
found the smaller one being stable; for M < 0 we have typically a single solution which is
stable unless the Lewis number Le is sufficiently greater than one and M has a sufficiently
large negative value, in which case three flame balls exist the medium one being stable.

The ignition process has been discussed and illustrated in connection with Figure 14;
typically if a hot gas is blown with a weak flow rate M < Mmax, a stable stationary flame
ball forms, which increases in size as M increases, and generates an expanding flame
ball when M > Mmax. This transition from stationary stable to propagating flames typifies
successful ignition and presents strong similarities with flame initiation by a constant power
heat-source in a stagnant environment described in [2].

Finally the dependence of the burning rate per unit flame area µ and the flame speed
S on the flame curvature ε = R−1 has been described in Section 4.5 and Figure 7, and
may provide insight when analysing the local behaviour of more complex flames such as
turbulent premixed flames or edge-flames in mixing layers, where both positive and negative
flame speeds are encountered.

Of course, the results established within our simple model can be extended in future
studies to account for several additional effects, such as the size of the source (which has
been modelled as a point-source in this paper), the presence of heat-losses coupled with the
flow, a non-spherical geometry, etc.
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Appendix: A special class of solutions

There is a fundamental change in the character of the generalized flame balls described in
this paper as M varies from negative to positive values. Namely, while h (and hence the
temperature θ ) is constant in the burnt gas for M ≤ 0, it is typically dependent on r and
the enthalpy at the source h0 when M > 0, as implied by the boundary condition (8). We
note however from (11) and (12) that the special choice h0 = −lM/R(1 − e−M/R) when
M > 0 leads to the constancy of h inside the ball, as for the cases M ≤ 0. The solutions with
constant h in the burnt gas can be thus viewed as stationary solutions to a problem depending
on the two parameters M and l, which is defined by Equations (5) and (6) applied in the
domain r > rf , along with the requirements θ0(r < rf ) = 1 and h(r < rf ) = const, the
far-field boundary condition (7) and the jump conditions (9). The solutions corresponding
to M = 0 of this two-parameter problem (i.e. Zeldovich flame balls) can be extended
smoothly to positive and negative values of M , unlike the solutions to the three-parameter
problem discussed above, which are typically continuous but non-smooth functions of M

as M → 0. Of course, although the two-parameter problem is simpler to study than the
three-parameter problem, its solutions are more difficult (but conceptually possible) to
obtain experimentally, requiring a special choice of h0. The object of this appendix is to
present briefly the main results of this simpler, albeit less realistic, model.

As before, stationary solutions satisfying all equations except the last jump condition
9c are readily determined, and are given by

θ0 =
⎧⎨
⎩

1 for r ≤ R

1−e−M/r

1−e−M/R for r ≥ R

(30)

h =
⎧⎨
⎩

− lM
R

1
1−e−M/R for r ≤ R

− lM
R

1−e−M/r

1−e−M/R − lM
r

e−M/r

1−e−M/R for r ≥ R.
(31)

Using these solutions in (9c), we obtain

M

R2

e−M/R

1 − e−M/R
= exp

(
− lM

2R

1

1 − e−M/R

)
, (32)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
h
e
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
n
c
h
e
s
t
e
r
]
 
A
t
:
 
1
2
:
0
3
 
2
2
 
O
c
t
o
b
e
r
 
2
0
0
9



292 J. Daou et al.

which allows the flame ball radius R to be determined in terms of M and l; in the particular
case M = 0 pertaining to Zeldovich flame balls, a Taylor expansion for small M provides
R = exp(l/2), as found in the literature [15, p. 530].

Also the effect of M on the flame radius R is easily obtained by recasting Equation (32)
into the form

R = R(m; l) = m exp
(

l
2

m
1−e−m

)
em − 1

, M = M(m; l) = mR(m, l) (33)

involving the parameter m ≡ M/R. This allows parametric plots of R versus M for
selected fixed values of l to be generated as in Figure 15. Since there is no difference
between the three- and two-parameter models for M ≤ 0, we emphasize in this appendix
only the case M > 0. In particular, we note that in the limit m → ∞, we have R → 0 and
M → 0 only if l < 2 and R → ∞ and M → ∞ if l ≥ 2; this explains the disappearance
of the lower branch containing the origin for l = 2 (or larger values, which are not shown).
Thus l = 2 appears as a critical value below which the curves of R versus M are multi-
valued, and above which they are single-valued. In the multi-valued cases corresponding
to l < 2, two solutions are typically present for positive values of M , provided that M

is smaller than a maximum value Mmax depending on l which characterizes the turning
points in Figure 15. The curve depicting Mmax versus l, given in Figure 16, shows that M

increases with l and tends to infinity as l → 2. In the domain above this curve there are no
solutions; in the domain below it, delimited by the vertical line l = 2 and the horizontal line
M = 0, two flame balls exit; everywhere else in the l-M domain, including in the half-plane
M < 0 (which is not shown), a single flame ball exists except outside the cusp region in
Figure 3. Also, using Equation (32), we can plot R versus l for fixed values of M , as shown
in Figure 17, where the curve labelled M = 0 represent Zeldovich flame balls, for which
R = exp(l/2).

Figure 15. R versus M for selected values of l.
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Figure 16. Mmax versus l.

Figure 17. R versus l for selected values of M .
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Figure 18. Flame speed S versus ε = R−1 for selected values of l.

Finally, a plot of the flame speed S versus the flame curvature ε = R−1 is provided
for selected values of l in Figure 18, and can be compared with Figure 7 pertaining to
the three-parameter model. We note that the range of flame curvatures ε and the range
of negative speeds S cannot be arbitrarily large if l ≥ 2 within the two-parameter model.
However, the transition from positive to negative speeds occurs now smoothly as ε is
increased. Furthermore, the curves plotted nicely mimic, when l < 2, the numerically
observed variation of the propagation speed of edge-flames with a strain-related parameter
ε determining their curvatures (compare with Figure 3 in [21] and Figure 6 in [22]).
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